Pairing Computation on Jacobi’s Elliptic Curve

Sylvain Duquesne
University of Rennes 1

Symposium on Number Theory
Warwick, 2 July 2013

Joint work with E. Fouotsa and N. EIMrabet

Institut de recherche mathématique de Rennes

IRMAR - UMR 6625 du CNRS

IRMAR

S. Duquesne (Rennes 1) Pairings on Jacobi Curves Warwick, 02/07/13



Pairings in cryptography

Pairings are bilinear maps from (Gy,+) x (Gz, +) to (Gs, x)

Destructive use (mid 90's)

@ Transfer of discrete log from G; to G3

@ Decisional Diffie-Hellman is easy

\

Constructive use (since 2000)

Short signatures
ID-based cryptography
Broadcast encryption

Such bilinear maps are available on elliptic curves
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Realization of pairings

o E elliptic curve defined over Fj, (p prime) with neutral element P.

o P e E(F,) of prime order r.
o k the embedding degree (smallest integer such that r|pk — 1).
o Q€ E(F,) of order r

Let fp be the function on the curve such tkhat Div(fp) = rP — rP.
-1
e(P,Q)=fp(Q)" 7 €Ty

@ Supersingular curves (k < 2 in large characteristic)
@ MNT curves (k = 6), optimal for 80 bits security
o Barreto-Naherig curves (k = 12), optimal for 128 bits security

@ Other ordinary curves with prescribed embedding degrees
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Basic block for the computation of fp

Let f; p s.t. Div(f;ip) = iP — [i/]P — (i — 1)P. We have
fivj,p = fipfiphip P
where hg s is the rational function involved in the sum U of R and S

Div(hrs) =R+ S — U— Py

In the case of Weierstrass elliptic curves, hg s = K';—US where (g s is the line
passing trough R and S and vy is the vertical line passing by U

As a consequence, fp(= f, p) can be computed via any addition chain
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Tate pairing computation

The Miller loop (computation of 7p(Q))
o T+ P,f«+1

o for each bit of r do
f f2.hT’T(Q) and T < 2T
if the bitis 1 do f < f.hr p(Q)and T < T + P

where hg s is the function involved in the sum of R and S.

k_
The final exponentiation (computation of £°7 )

Split in an easy part (use of Frobenius) and a difficult part.
Difficult part is roughly ° with s ~ p and even p% (MNT) or p% (BN).
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Using twists

A twist E of degree d of a curve E/F, is isomorphic to E over Foa.
— variant of the Tate pairing with G = E(Fpk/d).

In practice : isomorphism between E and E = special form for Q in the
classical Tate pairing definition.

Consequences

o Work on smaller fields (IF ,x/a)

@ Elimination of subfield factors thanks to the final exponentiation

Example of quadratic twist

| A\

If v is not a square in /2, we have the twisted curves

E:y>?=x3+ax+b E:vy>’=x3+ax+b
The isomorphism from E to E is o((x,y)) = (x, y/7)
— Q = (x,y/V) with x,y € F /2

\

Remark : the degree d can only be 2, 3, 4 or 6.
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Alternatives to the Weierstrass model

Introduced in cryptography for
o efficiency reasons

@ security reasons

Alternatives models

e Montgomery form by? = x3 4 ax? + x

@ Hessian form x3 + y® +1 = cxy

o Jacobi form y? = dx* + 2ux? + 1

e Edwards form v + v? = c?(1 + du?v?)
o Huff form ax(y? — 1) = by(x%> — 1)

Drawbacks

@ 2 or 3 rational torsion

@ only twists of degree 2 in certain cases
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Jacobi quartic curves

Defined by equation of the form
Eq,: y2=dx* +2ux? +1
Eg4 ,, has a rational point of order 2

@ The neutral element is O = (0,1)

@ The opposite of (x1,y1) is (—x1,¥1)
@ The sum of (x1,y1) and (x2,y2) is given by
( x2 — x3 (x1 — x2)? >

; e + 1+ d2x2) —1
xiy2 — yixe’ (xiy2 — ylxp)? (. 1)

The doubling of (x1,y1) is given by

( 2y1 “ 2y1 ( 2y —y1>—1)
2y T 2-yf \2- 4
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functions involved in the group law

—P1 = (—xi1, y1) but the function h_p, p, involved is not y — y;.
DN(E):P+%—H—QO
0

where ¢ is the conic passing through P and O’ = (0, —1) (2 times) and f
is the line passing through O and O’ (lh = x)

Addition
The function hp, p, involved in Py + P, = P3 is given by

| A\

C
DW(F”ﬂ>:H+%—%—O
h—ps,pslg

where Cp, p, is the cubic passing through Py, P> and O’ (3 times).
Same idea for doubling.

\

Formulas for these functions are obtained by solving systems
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Twist of Jacobi quartic curves

Assuming k is divisible by 4, E; ,, has a twist of order 4 iff u = 0.
It is defined over F /4 by

E;O y? =dwtx* +1

where {1, w,w? w3} is a basis of F ok /T piesa
The isomorphism between E;yo and Eggis o(x,y) = (xw, y)

Consequence

The second input of the Tate pairing can be chosen in the form (xqw, yo)
with XQ,YQ € Fpk/zl

= All the factors involving only xq, yg, P,w? are cancelled by the final
exponentiation

This is the case for 2, hp _p(Q) and other terms involved in the cubic
equation defining the group law
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Doubling step of Miller algorithm

yo+1 yo+1
/T,T(Q): B ( xéw4) +D ( xQoJ4 w+A

@ h is h up to subfield factors
<yo+i> and <y"Jr ) precomputed in F
XQW Q

e A, B and D € F, are quantities involved in the classical doubling of T

A = Y(Y+2?
B = —X*Y+22°%
D = 2X3Z

Remarks
o We use the coordinates (X, Y, Z, X2, Z?) with x = X/Z,y = Y /Z?
@ No term in w® and constant term in F, = f2.h’T’T(Q) is faster

@ Only A, B and D are different for the addition step
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Comparison with previous results for the doubling step

@ With schoolbook arithmetic for I s
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 79 79 59
e With Karatsuba arithmetic for I s
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 42 42 37

@ With schoolbook arithmetic for I 6
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 271 275 163
e With Karatsuba arithmetic for IF 16
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 100 100 81

S. Duquesne (Rennes 1) Pairings on Jacobi Curves Warwick, 02/07/13 12 / 17



The Ate pairing

Let 7, be the Frobenius map on the curve : m,(x,y) = (xP, yP).
Tp has trace t and its eigenvalues are 1 and p.
— choose the proper spaces as G and Gy

The Ate pairing and its variants

pkfl

ea(P, Q) = fi_1,0(P) -
is a pairing (in fact a power of the Tate pairing)

@ The trace t is twice shorter than r

@ The role of P and @ are swapped : arithmetic on the elliptic curve is
performed over extension field

@ Using twists allows Q to have a special form and then to work on
subfields (less expensive, discard subfield factors)

@ Can be generalized to obtain smaller loop length (optimal pairing)
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Computing the (optimal-)Ate pairing for Jacobi curves

The formulas must be rewriting assumming

@ The point T is in F« but has the form (Xw, Y, Z) with
X, Y, Z € Fpisa
The function are evaluated in P = (xp,yp) € E(Fp)

All the factors lying in a proper subfield of F« can be discarded

1 1
We obtain h’ +(P) = B (yP T )w?, 4 Aw + D (yp + )

® A,B and D are the same as for the Tate pairing (but € F/4)

No term in w?

Same for addition

The situation is very similar to the Tate pairing
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Comparison with Weierstrass form for the doubling step

@ With schoolbook arithmetic for I s
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 101 - 85
e With Karatsuba arithmetic for I s
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 62 - 59

@ With schoolbook arithmetic for I 6
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in F, 377 = 313
e With Karatsuba arithmetic for IF 16
Method Weierstrass 2010 | Jacobi 2011 | This work
Mult in Fp 180 - 171
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Working example

@ A curve with embedding degree 8 can be obtained via Brezing-Weng
like method.

x = 24000000000010394
ro= 82x* +108x3 +54x% +12x + 1
p = 379906x° + ...

@ An optimal pairing is obtained using Vercauteren lattice based method

8_1

&o(Q.P) = (£5(P).h) E

where h is the product of 3 functions of the form hg s

@ No timing but the result is bilinear;-)
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Conclusion

@ We obtained the best complexities to date for curves with twists of
order 4

@ A careful implementation is missing to provide timings

@ To have more interest for reasonable security levels (say 96-110 bits),
it would be very useful to find prime curves with k = 8 (at least

log(r) =log(p))
° Adapt other improvements known for BN curves (clever factorisation
of 2— 1 , fast formulas for squaring during the final exponentiation, ...)

. Duquesne (Rennes 1) Pairings on Jacobi Curves Warwick, 02/07/13 17 / 17



Conclusion

@ We obtained the best complexities to date for curves with twists of
order 4

@ A careful implementation is missing to provide timings

@ To have more interest for reasonable security levels (say 96-110 bits),
it would be very useful to find prime curves with k = 8 (at least

log(r) =log(p))
o Adapt other improvements known for BN curves (clever factorisation
of Lr_l, fast formulas for squaring during the final exponentiation, ...)

Thank you for your attention
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