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Pairings in cryptography

Pairings are bilinear maps from (G1,+)× (G2,+) to (G3,×)

Destructive use (mid 90's)

Transfer of discrete log from G1 to G3

Decisional Di�e-Hellman is easy

Constructive use (since 2000)

Short signatures

ID-based cryptography

Broadcast encryption

...

Such bilinear maps are available on elliptic curves
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Realization of pairings

Context

E elliptic curve de�ned over Fp (p prime) with neutral element P∞.

P ∈ E (Fp) of prime order r .

k the embedding degree (smallest integer such that r |pk − 1).

Q ∈ E (Fpk ) of order r

Let fP be the function on the curve such that Div(fP) = rP − rP∞.

e(P,Q) = fP(Q)
pk−1
r ∈ Fpk

Examples

Supersingular curves (k ≤ 2 in large characteristic)

MNT curves (k = 6), optimal for 80 bits security

Barreto-Naherig curves (k = 12), optimal for 128 bits security

Other ordinary curves with prescribed embedding degrees
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Basic block for the computation of fP

Let fi ,P s.t. Div(fi ,P) = iP − [i ]P − (i − 1)P∞. We have

fi+j ,P = fi ,P fj ,Ph[i ]P,[j]P

where hR,S is the rational function involved in the sum U of R and S

Div(hR,S) = R + S − U − P∞

Example

In the case of Weierstrass elliptic curves, hR,S =
`R,S

vU
where `R,S is the line

passing trough R and S and vU is the vertical line passing by U

As a consequence, fP(= fr ,P) can be computed via any addition chain
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Tate pairing computation

The Miller loop (computation of fP(Q))

T ← P, f ← 1

for each bit of r do

f ← f 2.hT ,T (Q) and T ← 2T

if the bit is 1 do f ← f .hT ,P(Q) and T ← T + P

where hR,S is the function involved in the sum of R and S .

The �nal exponentiation (computation of f
pk−1
r )

Split in an easy part (use of Frobenius) and a di�cult part.

Di�cult part is roughly f s with s ≈ p and even p
1
2 (MNT) or p

3
4 (BN).
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Using twists

A twist Ẽ of degree d of a curve E/Fq is isomorphic to E over Fqd .
→ variant of the Tate pairing with G2 = Ẽ (Fpk/d ).

In practice : isomorphism between E and Ẽ ⇒ special form for Q in the

classical Tate pairing de�nition.

Consequences

Work on smaller �elds (Fpk/d )
Elimination of sub�eld factors thanks to the �nal exponentiation

Example of quadratic twist

If ν is not a square in Fpk/2 , we have the twisted curves

E : y2 = x3 + ax + b Ẽ : νy2 = x3 + ax + b

The isomorphism from Ẽ to E is ϕ((x , y)) = (x , y
√
ν)

→ Q = (x , y
√
ν) with x , y ∈ Fpk/2

Remark : the degree d can only be 2, 3, 4 or 6.
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Alternatives to the Weierstrass model

Introduced in cryptography for

e�ciency reasons

security reasons

Alternatives models

Montgomery form by2 = x3 + ax2 + x

Hessian form x3 + y3 + 1 = cxy

Jacobi form y2 = dx4 + 2µx2 + 1

Edwards form u2 + v2 = c2(1+ du2v2)

Hu� form ax(y2 − 1) = by(x2 − 1)

Drawbacks

2 or 3 rational torsion

only twists of degree 2 in certain cases
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Jacobi quartic curves

De�ned by equation of the form

Ed ,µ : y2 = dx4 + 2µx2 + 1

Ed ,µ has a rational point of order 2

Group law

The neutral element is O = (0, 1)

The opposite of (x1, y1) is (−x1, y1)
The sum of (x1, y1) and (x2, y2) is given by(

x21 − x22
x1y2 − y1x2

,
(x1 − x2)

2

(x1y2 − y1x2)2
(y1y2 + 1+ dx21 x

2
2 )− 1

)
The doubling of (x1, y1) is given by(

2y1

2− y21
x1,

2y1

2− y21

(
2y1

2− y21
− y1

)
− 1

)
Not su�cient for computing pairings
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functions involved in the group law

Opposite

−P1 = (−x1, y1) but the function h−P1,P1 involved is not y − y1.

Div

(
c

l20

)
= P + (−P)− 2O

where c is the conic passing through P and O ′ = (0,−1) (2 times) and l0
is the line passing through O and O ′ (l0 = x)

Addition

The function hP1,P2 involved in P1 + P2 = P3 is given by

Div

(
CP1,P2

h−P3,P3 l
3
0

)
= P1 + P2 − P3 − O

where CP1,P2 is the cubic passing through P1,P2 and O ′ (3 times).

Same idea for doubling.

Formulas for these functions are obtained by solving systems
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Twist of Jacobi quartic curves

Assuming k is divisible by 4, Ed ,µ has a twist of order 4 i� µ = 0.

It is de�ned over Fpk/4 by

˜Ed ,0 : y
2 = dω4x4 + 1

where {1, ω, ω2, ω3} is a basis of Fpk/Fpk/4 .
The isomorphism between ˜Ed ,0 and Ed ,0 is ϕ(x , y) = (xω, y)

Consequence

The second input of the Tate pairing can be chosen in the form (xQω, yQ)
with xQ , yQ ∈ Fpk/4

⇒ All the factors involving only xQ , yQ ,P, ω
2 are cancelled by the �nal

exponentiation

This is the case for l20 , hP,−P(Q) and other terms involved in the cubic

equation de�ning the group law
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Doubling step of Miller algorithm

h′T ,T (Q) = B

(
yQ + 1

x2Qω
4

)
ω2 + D

(
yQ + 1

x3Qω
4

)
ω + A

h′ is h up to sub�eld factors(
yQ+1

x2
Q
ω4

)
and

(
yQ+1

x3
Q
ω4

)
precomputed in Fp4

A,B and D ∈ Fp are quantities involved in the classical doubling of T

A = Y (Y + Z 2)

B = −X 2(Y + 2Z 2)

D = 2X 3Z

Remarks

We use the coordinates (X ,Y ,Z ,X 2,Z 2) with x = X/Z , y = Y /Z 2

No term in ω3 and constant term in Fp ⇒ f 2.h′T ,T (Q) is faster

Only A,B and D are di�erent for the addition step
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Comparison with previous results for the doubling step

k = 8

With schoolbook arithmetic for Fp8
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 79 79 59

With Karatsuba arithmetic for Fp8
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 42 42 37

k = 16

With schoolbook arithmetic for Fp16
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 271 275 163

With Karatsuba arithmetic for Fp16
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 100 100 81
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The Ate pairing

Let πp be the Frobenius map on the curve : πp(x , y) = (xp, yp).
πp has trace t and its eigenvalues are 1 and p.

→ choose the proper spaces as G1 and G2

The Ate pairing and its variants

eA(P,Q) = ft−1,Q(P)
pk−1
r

is a pairing (in fact a power of the Tate pairing)

The trace t is twice shorter than r

The role of P and Q are swapped : arithmetic on the elliptic curve is

performed over extension �eld

Using twists allows Q to have a special form and then to work on

sub�elds (less expensive, discard sub�eld factors)

Can be generalized to obtain smaller loop length (optimal pairing)
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Computing the (optimal-)Ate pairing for Jacobi curves

The formulas must be rewriting assumming

The point T is in Fpk but has the form (Xω,Y ,Z ) with
X ,Y ,Z ∈ Fpk/4
The function are evaluated in P = (xP , yP) ∈ E (Fp)
All the factors lying in a proper sub�eld of Fpk can be discarded

We obtain h′T ,T (P) = B

(
yP + 1

x2P

)
ω3 + Aω + Dω4

(
yP + 1

x3P

)

Remarks

A,B and D are the same as for the Tate pairing (but ∈ Fpk/4)
No term in ω2

Same for addition

The situation is very similar to the Tate pairing
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Comparison with Weierstrass form for the doubling step

k = 8

With schoolbook arithmetic for Fp8
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 101 - 85

With Karatsuba arithmetic for Fp8
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 62 - 59

k = 16

With schoolbook arithmetic for Fp16
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 377 - 313

With Karatsuba arithmetic for Fp16
Method Weierstrass 2010 Jacobi 2011 This work

Mult in Fp 180 - 171
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Working example

A curve with embedding degree 8 can be obtained via Brezing-Weng

like method.

x = 24000000000010394

r = 82x4 + 108x3 + 54x2 + 12x + 1

p = 379906x6 + ...

An optimal pairing is obtained using Vercauteren lattice based method

eo(Q,P) =
(
f
3p3+1
x ,Q (P).h

) p8−1
r

where h is the product of 3 functions of the form hR,S

No timing but the result is bilinear ;-)
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Conclusion

We obtained the best complexities to date for curves with twists of

order 4

A careful implementation is missing to provide timings

To have more interest for reasonable security levels (say 96-110 bits),

it would be very useful to �nd prime curves with k = 8 (at least

log(r) ≡log(p))
Adapt other improvements known for BN curves (clever factorisation

of p8−1
r

, fast formulas for squaring during the �nal exponentiation, ...)

Thank you for your attention
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