## Pairing Computation on Jacobi's Elliptic Curve

Sylvain Duquesne<br>University of Rennes 1

## Symposium on Number Theory Warwick, 2 July 2013

Joint work with E. Fouotsa and N. ElMrabet

Institut de recherche mathématique de Rennes
IRMAR - UMR 6625 du CNRS

## Pairings in cryptography

Pairings are bilinear maps from $\left(G_{1},+\right) \times\left(G_{2},+\right)$ to $\left(G_{3}, \times\right)$
Destructive use (mid 90's)

- Transfer of discrete $\log$ from $G_{1}$ to $G_{3}$
- Decisional Diffie-Hellman is easy


## Constructive use (since 2000)

- Short signatures
- ID-based cryptography
- Broadcast encryption
- ...

Such bilinear maps are available on elliptic curves

## Realization of pairings

## Context

- $E$ elliptic curve defined over $\mathbb{F}_{p}$ ( $p$ prime) with neutral element $P_{\infty}$.
- $P \in E\left(\mathbb{F}_{p}\right)$ of prime order $r$.
- $k$ the embedding degree (smallest integer such that $r \mid p^{k}-1$ ).
- $Q \in E\left(\mathbb{F}_{p^{k}}\right)$ of order $r$

Let $f_{P}$ be the function on the curve such that $\operatorname{Div}\left(f_{P}\right)=r P-r P_{\infty}$.

$$
e(P, Q)=f_{P}(Q)^{\frac{p^{k}-1}{r}} \in \mathbb{F}_{p^{k}}
$$

## Examples

- Supersingular curves ( $k \leq 2$ in large characteristic)
- MNT curves $(k=6)$, optimal for 80 bits security
- Barreto-Naherig curves $(k=12)$, optimal for 128 bits security
- Other ordinary curves with prescribed embedding degrees


## Basic block for the computation of $f_{P}$

Let $f_{i, P}$ s.t. $\operatorname{Div}\left(f_{i, P}\right)=i P-[i] P-(i-1) P_{\infty}$. We have

$$
f_{i+j, P}=f_{i, P} f_{j, P} h_{[i] P,[j] P}
$$

where $h_{R, S}$ is the rational function involved in the sum $U$ of $R$ and $S$

$$
\operatorname{Div}\left(h_{R, S}\right)=R+S-U-P_{\infty}
$$

## Example

In the case of Weierstrass elliptic curves, $h_{R, S}=\frac{\ell_{R, S}}{v_{U}}$ where $\ell_{R, S}$ is the line passing trough $R$ and $S$ and $v_{U}$ is the vertical line passing by $U$

As a consequence, $f_{P}\left(=f_{r, P}\right)$ can be computed via any addition chain

## Tate pairing computation

## The Miller loop (computation of $f_{P}(Q)$ )

- $T \leftarrow P, f \leftarrow 1$
- for each bit of $r$ do $f \leftarrow f^{2} . h_{T, T}(Q)$ and $T \leftarrow 2 T$
if the bit is 1 do $f \leftarrow f . h_{T, P}(Q)$ and $T \leftarrow T+P$
where $h_{R, S}$ is the function involved in the sum of $R$ and $S$.

The final exponentiation (computation of $f^{\frac{p^{k}-1}{r}}$ )
Split in an easy part (use of Frobenius) and a difficult part. Difficult part is roughly $f^{s}$ with $s \approx p$ and even $p^{\frac{1}{2}}(\mathrm{MNT})$ or $p^{\frac{3}{4}}(\mathrm{BN})$.

## Using twists

A twist $\tilde{E}$ of degree $d$ of a curve $E / \mathbb{F}_{q}$ is isomorphic to $E$ over $\mathbb{F}_{q^{d}}$. $\rightarrow$ variant of the Tate pairing with $G_{2}=\tilde{E}\left(\mathbb{F}_{p^{k / d}}\right)$.
In practice : isomorphism between $E$ and $\tilde{E} \Rightarrow$ special form for $Q$ in the classical Tate pairing definition.

## Consequences

- Work on smaller fields $\left(\mathbb{F}_{p^{k / d}}\right)$
- Elimination of subfield factors thanks to the final exponentiation


## Example of quadratic twist

If $\nu$ is not a square in $\mathbb{F}_{p^{k / 2}}$, we have the twisted curves

$$
E: y^{2}=x^{3}+a x+b \quad \tilde{E}: \nu y^{2}=x^{3}+a x+b
$$

The isomorphism from $\tilde{E}$ to $E$ is $\varphi((x, y))=(x, y \sqrt{\nu})$

$$
\rightarrow Q=(x, y \sqrt{\nu}) \text { with } x, y \in \mathbb{F}_{p^{k / 2}}
$$

Remark : the degree $d$ can only be $2,3,4$ or 6 .

## Alternatives to the Weierstrass model

Introduced in cryptography for

- efficiency reasons
- security reasons


## Alternatives models

- Montgomery form $b y^{2}=x^{3}+a x^{2}+x$
- Hessian form $x^{3}+y^{3}+1=c x y$
- Jacobi form $y^{2}=d x^{4}+2 \mu x^{2}+1$
- Edwards form $u^{2}+v^{2}=c^{2}\left(1+d u^{2} v^{2}\right)$
- Huff form $a x\left(y^{2}-1\right)=\operatorname{by}\left(x^{2}-1\right)$


## Drawbacks

- 2 or 3 rational torsion
- only twists of degree 2 in certain cases


## Jacobi quartic curves

Defined by equation of the form

$$
E_{d, \mu}: y^{2}=d x^{4}+2 \mu x^{2}+1
$$

$E_{d, \mu}$ has a rational point of order 2

## Group law

- The neutral element is $O=(0,1)$
- The opposite of $\left(x_{1}, y_{1}\right)$ is $\left(-x_{1}, y_{1}\right)$
- The sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\left(\frac{x_{1}^{2}-x_{2}^{2}}{x_{1} y_{2}-y_{1} x_{2}}, \frac{\left(x_{1}-x_{2}\right)^{2}}{\left(x_{1} y_{2}-y 1 x_{2}\right)^{2}}\left(y_{1} y_{2}+1+d x_{1}^{2} x_{2}^{2}\right)-1\right)
$$

- The doubling of $\left(x_{1}, y_{1}\right)$ is given by

$$
\left(\frac{2 y_{1}}{2-y_{1}^{2}} x_{1}, \frac{2 y_{1}}{2-y_{1}^{2}}\left(\frac{2 y_{1}}{2-y_{1}^{2}}-y 1\right)-1\right)
$$

## functions involved in the group law

## Opposite

$-P_{1}=\left(-x_{1}, y_{1}\right)$ but the function $h_{-P_{1}, P_{1}}$ involved is not $y-y_{1}$.

$$
\operatorname{Div}\left(\frac{c}{l_{0}^{2}}\right)=P+(-P)-2 O
$$

where $c$ is the conic passing through $P$ and $O^{\prime}=(0,-1)\left(2\right.$ times) and $I_{0}$ is the line passing through $O$ and $O^{\prime}\left(I_{0}=x\right)$

## Addition

The function $h_{P_{1}, P_{2}}$ involved in $P_{1}+P_{2}=P_{3}$ is given by

$$
\operatorname{Div}\left(\frac{C_{P_{1}, P_{2}}}{h_{-P_{3}, P_{3} I_{0}^{3}}}\right)=P_{1}+P_{2}-P_{3}-O
$$

where $C_{P_{1}, P_{2}}$ is the cubic passing through $P_{1}, P_{2}$ and $O^{\prime}$ (3 times). Same idea for doubling.

Formulas for these functions are obtained by solving systems

## Twist of Jacobi quartic curves

Assuming $k$ is divisible by $4, E_{d, \mu}$ has a twist of order 4 iff $\mu=0$. It is defined over $\mathbb{F}_{p^{k / 4}}$ by

$$
\tilde{E_{d, 0}}: y^{2}=d \omega^{4} x^{4}+1
$$

where $\left\{1, \omega, \omega^{2}, \omega^{3}\right\}$ is a basis of $\mathbb{F}_{p^{k}} / \mathbb{F}_{p^{k / 4}}$.
The isomorphism between $\tilde{E_{d, 0}}$ and $E_{d, 0}$ is $\varphi(x, y)=(x \omega, y)$

## Consequence

The second input of the Tate pairing can be chosen in the form $\left(x_{Q} \omega, y_{Q}\right)$ with $x_{Q}, y_{Q} \in \mathbb{F}_{p^{k / 4}}$
$\Rightarrow$ All the factors involving only $x_{Q}, y_{Q}, P, \omega^{2}$ are cancelled by the final exponentiation

This is the case for $I_{0}^{2}, h_{P,-P}(Q)$ and other terms involved in the cubic equation defining the group law

## Doubling step of Miller algorithm

$$
h_{T, T}^{\prime}(Q)=B\left(\frac{y_{Q}+1}{x_{Q}^{2} \omega^{4}}\right) \omega^{2}+D\left(\frac{y_{Q}+1}{x_{Q}^{3} \omega^{4}}\right) \omega+A
$$

- $h^{\prime}$ is $h$ up to subfield factors
- $\left(\frac{y_{Q}+1}{x_{Q}^{2} \omega^{4}}\right)$ and $\left(\frac{y_{Q}+1}{x_{Q}^{3} \omega^{4}}\right)$ precomputed in $\mathbb{F}_{p^{4}}$
- $A, B$ and $D \in \mathbb{F}_{p}$ are quantities involved in the classical doubling of $T$

$$
\begin{aligned}
A & =Y\left(Y+Z^{2}\right) \\
B & =-X^{2}\left(Y+2 Z^{2}\right) \\
D & =2 X^{3} Z
\end{aligned}
$$

## Remarks

- We use the coordinates $\left(X, Y, Z, X^{2}, Z^{2}\right)$ with $x=X / Z, y=Y / Z^{2}$
- No term in $\omega^{3}$ and constant term in $\mathbb{F}_{p} \Rightarrow f^{2} . h_{T, T}^{\prime}(Q)$ is faster
- Only $A, B$ and $D$ are different for the addition step


## Comparison with previous results for the doubling step

$k=8$

- With schoolbook arithmetic for $\mathbb{F}_{p^{8}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 79 | 79 | 59 |

- With Karatsuba arithmetic for $\mathbb{F}_{p^{8}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 42 | 42 | 37 |

$k=16$

- With schoolbook arithmetic for $\mathbb{F}_{p^{16}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 271 | 275 | 163 |

- With Karatsuba arithmetic for $\mathbb{F}_{p^{16}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 100 | 100 | 81 |

## The Ate pairing

Let $\pi_{p}$ be the Frobenius map on the curve : $\pi_{p}(x, y)=\left(x^{p}, y^{p}\right)$. $\pi_{p}$ has trace $t$ and its eigenvalues are 1 and $p$.
$\rightarrow$ choose the proper spaces as $G_{1}$ and $G_{2}$

## The Ate pairing and its variants

$$
e_{A}(P, Q)=f_{t-1, Q}(P)^{\frac{p^{k}-1}{r}}
$$

is a pairing (in fact a power of the Tate pairing)

- The trace $t$ is twice shorter than $r$
- The role of $P$ and $Q$ are swapped : arithmetic on the elliptic curve is performed over extension field
- Using twists allows $Q$ to have a special form and then to work on subfields (less expensive, discard subfield factors)
- Can be generalized to obtain smaller loop length (optimal pairing)


## Computing the (optimal-)Ate pairing for Jacobi curves

The formulas must be rewriting assumming

- The point $T$ is in $\mathbb{F}_{p^{k}}$ but has the form $(X \omega, Y, Z)$ with $X, Y, Z \in \mathbb{F}_{p^{k / 4}}$
- The function are evaluated in $P=\left(x_{P}, y_{P}\right) \in E\left(\mathbb{F}_{p}\right)$
- All the factors lying in a proper subfield of $\mathbb{F}_{p^{k}}$ can be discarded

$$
\text { We obtain } h_{T, T}^{\prime}(P)=B\left(\frac{y_{P}+1}{x_{P}^{2}}\right) \omega^{3}+A \omega+D \omega^{4}\left(\frac{y_{P}+1}{x_{P}^{3}}\right)
$$

## Remarks

- $A, B$ and $D$ are the same as for the Tate pairing (but $\in \mathbb{F}_{p^{k / 4}}$ )
- No term in $\omega^{2}$
- Same for addition

The situation is very similar to the Tate pairing

## Comparison with Weierstrass form for the doubling step

$k=8$

- With schoolbook arithmetic for $\mathbb{F}_{p^{8}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 101 | - | 85 |

- With Karatsuba arithmetic for $\mathbb{F}_{p^{8}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 62 | - | 59 |

$k=16$

- With schoolbook arithmetic for $\mathbb{F}_{p^{16}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 377 | - | 313 |

- With Karatsuba arithmetic for $\mathbb{F}_{p^{16}}$

| Method | Weierstrass 2010 | Jacobi 2011 | This work |
| :---: | :---: | :---: | :---: |
| Mult in $\mathbb{F}_{p}$ | 180 | - | 171 |

## Working example

- A curve with embedding degree 8 can be obtained via Brezing-Weng like method.

$$
\begin{aligned}
x & =24000000000010394 \\
r & =82 x^{4}+108 x^{3}+54 x^{2}+12 x+1 \\
p & =379906 x^{6}+\ldots
\end{aligned}
$$

- An optimal pairing is obtained using Vercauteren lattice based method

$$
e_{o}(Q, P)=\left(f_{x, Q}^{3 p^{3}+1}(P) \cdot h\right)^{\frac{p^{8}-1}{r}}
$$

where $h$ is the product of 3 functions of the form $h_{R, S}$

- No timing but the result is bilinear ;-)


## Conclusion

- We obtained the best complexities to date for curves with twists of order 4
- A careful implementation is missing to provide timings
- To have more interest for reasonable security levels (say 96-110 bits), it would be very useful to find prime curves with $k=8$ (at least $\log (r) \equiv \log (p))$
- Adapt other improvements known for BN curves (clever factorisation of $\frac{p^{8}-1}{r}$, fast formulas for squaring during the final exponentiation, ...)


## Conclusion

- We obtained the best complexities to date for curves with twists of order 4
- A careful implementation is missing to provide timings
- To have more interest for reasonable security levels (say 96-110 bits), it would be very useful to find prime curves with $k=8$ (at least $\log (r) \equiv \log (p))$
- Adapt other improvements known for BN curves (clever factorisation of $\frac{p^{8}-1}{r}$, fast formulas for squaring during the final exponentiation, ...)


## Thank you for your attention

