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LATTICE PROBLEMS 
 
 



The Knapsack Problem 

A  

s 

t = 

A is random in Zq
n x m 

s is a random “small” vector in Zq
m 

t=As mod q 

 

Given (A,t), find small s' such that  

As'=t mod q 

mod q 



Hardness of the Knapsack Problem 

hardness 

||s|| 

“LWE” “SIS” 

A  

s 

t = mod q 



Hardness of the Knapsack Problem 

hardness 

||s|| 

“SIS” 

A  

s 

t = mod q 

For all t, there exists an s 
such that As=t  
 
In “classic” SIS, t=0 



Results 

hardness 

||s|| 

“LWE” “SIS” 

A  

s 

t = mod q 

More efficient signature based on LWE 

Signature based on SIS 

Results extend to Ring-SIS and Ring-LWE 



DIGITAL SIGNATURE SCHEMES 
 
 



Digital Signatures 

(sk,pk) KeyGen 
Sign(sk,mi) = si 
Verify(pk,mi,si) = YES / NO 
 
Correctness: Verify(pk, mi, Sign(sk,mi)) = YES 
Security: Unforgeability 
1. Adversary gets pk 
2. Adversary asks for signatures of m1, m2, …  
3. Adversary outputs (m,s) where m ≠ mi and wins 

if Verify(pk,m,s) = YES  



Signature Schemes 

• Hash-and-Sign 

– Requires a trap-door function 

 

• Fiat-Shamir transformation 

– Conversion from an identification scheme 

– No trap-door function needed  



HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS 
[GPV 2008] 



Lattice  L┴p(A) = { y : Ay = 0 mod p} 

Cosets of  Zm / L┴p(A)  

A  =  0 mod p A  =  mod p 



GPV Sampling 

A 

T 

T is a basis for L┴p(A) and has “short” vectors  

b 
s 

= 
For any b, it outputs a short s such that As=b mod p 
 
Distribution D of s only depends on the length of the 
vectors comprising T 



Lattice  L┴p(A) = { y : Ay = 0 mod p} 

b =  

A  =  mod p A  =  mod p 

 -  

short 

GPV Sampling 



Properties Needed 

A b 
s 

= 

T 

1. Distribution D of s only depends on the length of the 
vectors comprising T 
 

2. The following produce the same distribution of (s,b)  
        
       (a) Choose s ~ D.  Set b=As        
       (b) Choose random b.  Use T to find an s such that As=b.  

(1) is guaranteed by the GPV algorithm 
(2) is true if s has enough entropy (to make As=b 

uniform mod p) 



Hash-and-Sign Lattice Signature 

A 

Lattice  L┴p(A) = { y : Ay = 0 mod p} 

T 

T is a basis for L┴p(A) and has “short” vectors  

b 
s 

= Public Key: A 
Secret Key: T 

 
Sign(T,m) 
1.  b = H(m) 
2. Use the GPV algorithm to find a 
short s such that As = b mod p 
3.  s is the signature of m 

 
Verify(A,m,s)  
1. check that s is “short” and  
 As = H(m) mod p 



Security Proof Sketch 

A 

pick          from D 

 =   =  H(mi)  

program the random oracle 

sign mi 



Security Proof Sketch 

A 

pick          from D 

 =   =  H(mj)  

program the random oracle 

give me H(mj) 



Security Proof Sketch 

I will forge the 
signature of m 

To forge on m, the Adversary needs H(m) 
 
So m is one of the mj he asked for H(mj) 
 
Thus we know an sj such that Asj=H(mj) 

A  =  A  =  



Security Proof Sketch 

A 
 -  

 =  0 

short and hopefully non-zero 

if it’s non-zero, then we have a solution to SIS 



Properties Needed 

A b 
s 

= 

T 

1. Distribution D of s only depends on the length of the 
vectors comprising T 
 

2. The following produce the same distribution of (s,b)  
        
       (a) Choose s ~ D.  Set b=As        
       (b) Choose random b.  Use T to find an s such that As=b. 
 
3.   For a random b, there is more than one likely possible  
 output s such that b=As. 

(1) is guaranteed by the GPV algorithm 
(2) is true if s has enough entropy (to make As=b 

uniform mod p) 
(3) is true because the standard deviation of GPV is big 



FIAT-SHAMIR SIGNATURE SCHEMES BASED ON SIS  
[L ‘09, L’12, DDLL ‘13] 



Signature Scheme (Main Idea) 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) 

 

Verify(z,c) 

 Check that z is “small” 

                and 

 c = H(Az – Tc mod q, μ) 



Security Reduction Requirements 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) 

 

Verify(z,c) 

 Check that z is “small” 

                and 

 c = H(Az – Tc mod q, μ) 

Given the public key, the secret key is not unique 

Signature is independent of the secret key 



Security Reduction 

A 

Adversary Simulator 

Pick random S A,AS 

μi 

(zi,ci) 
(zi,ci)=Sign(μi) 

μ, (z,c) 

…  

μ, (z’,c’) 
 

A(z-z’)+T(c’-c)=0 

If this is not 0, then SIS is solved. 
Important for adversary to not know S.  

A(z-z’+Sc’-Sc)=0 



Security Reduction 

A(z-z’+Sc’-Sc)=0 

Solution to SIS 
 

We Want: 
 

   1. Signature (z,c) to be independent of S so that z-z’+Sc’-Sc is not 0 
    
   2. z-z’+Sc’-Sc to be small so that SIS is hard   



INTERLUDE: BASING SCHEMES ON LWE INSTEAD OF SIS 
[L ‘12] 

 



Security Reduction Requirements 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) (or reject) 

 

Verify(z,c) 

 Check that z is “small” 

                and 

 c = H(Az – Tc mod q, μ) 

Given the public key, the secret key is not unique 

Signature is independent of the secret key 



Security Reduction Requirements 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) (or reject) 

 

Verify(z,c) 

 Check that z is “small” 

                and 

 c = H(Az – Tc mod q, μ) 

Given the public key, the secret key is not unique 

Signature is independent of the secret key 

Given the public key, it’s computationally 
indistinguishable whether the secret key is unique 



hardness 

hardness of finding 

the secret key hardness of forging 

signatures 

a gap of ~ √n 

a gap of ~ √n 

Construction based on SIS 

Construction based on LWE 

Signature Hardness 

||s|| 



Signature Scheme 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) 

 

make y uniformly random mod q? 

then z is too big and SIS (and forging) is easy   



Signature Scheme 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) 

 

make y small? 

then z will not be independent of S   



Rejection Sampling 

Secret Key: S 

Public Key: A, T=AS mod q 

 

Sign(μ) 

 Pick a random y 

 Compute c=H(Ay mod q,μ) 

 z=Sc+y 

 Output(z,c) if z meets certain criteria, else repeat 

 

make y small 



Rejection Sampling 

g(x) 

f(x) 
Have access to samples from g(x) 
 
Want f(x) 



Rejection Sampling 

g(x) 

f(x)/M 
Have access to samples from g(x) 
 
Want f(x) 

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1 
 
Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M 
Something is output with probability 1/M 



Rejection Sampling 

h(x) 

Have access to samples from g(x) 
 
Want f(x) 

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1 
or … Sample from h(x), accept x with probability f(x)/Mh(x) ≤ 1 
Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M = h(x)∙(f(x)/Mh(x)) 
Something is output with probability 1/M 

g(x) 

f(x)/M 

Impossible to tell whether g(x) or h(x) was the original distribution 



Rejection Sampling 

Pick a random y 
Compute c=H(Ay mod q,μ) 
z=Sc+y 
Output(z,c) w.p. … 

f(y) f(y+Sc) 



Normal Distribution 

1-dimensional Normal distribution: 

 ρσ(x) = 1/(√2πσ)e-x2/2σ2 

It is: 

 Centered at 0 

 Standard deviation: σ 

  

  

  

  



Examples 



Shifted Normal Distribution 

1-dimensional shifted Normal distribution: 

 ρσ,v(x) = 1/(√2πσ)e-(x-v)2/2σ2 

It is: 

 Centered at v 

 Standard deviation: σ 

  

  

  

  



n-Dimensional Normal Distribution 

n-dimensional shifted Normal distribution: 

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2 

It is: 

 Centered at v 

 Standard deviation: σ 

 

 

  

  

  

  



2-Dimensional Example 



n-Dimensional Normal Distribution 

n-dimensional shifted Normal distribution: 

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2 

It is: 

 Centered at v 

 Standard deviation: σ 

 

Discrete Normal: for x in Zn, 

Dσ,v (x)= ρσ,v(x) / ρσ,v(Z
n)  

 

  

  

  

  



Rejection Sampling 

-v v 

v=max ||Sc|| 

Pick a random y 
Compute c=H(Ay mod q,μ) 
z=Sc+y 
Output(z,c) w.p. Dσ,0 (z) / (MDσ,Sc (z)) 
 

for σ = 12v,  
           Dσ,0 (z) / (MDσ,Sc (z)) ≈ e/M 
 



Improving the Rejection Sampling 

Rejection Sampling from [Lyu12] 

Pick a random y 
Compute c=H(Ay mod q,μ) 
z=Sc+y 
Output(z,c) w.p. Dσ,0 (z) / (MDσ,Sc (z)) 
 



Bimodal Gaussians [DDLL ‘13] 

Pick a random y 
Compute c=H(Ay mod q,μ) 
Pick a random b in {-1,1} 
z=bSc+y 
Output(z,c) w.p. Dσ,0 (z) / M(½Dσ,Sc (z) + ½Dσ,-Sc (z)) 
 

Verify(z,c) 

 Check that z is “small” 

                and 

 c = H(Az – Tc mod q, μ) 

 

Az – Tc = A(bSc+y) - Tc = bTc - Tc + Ay 

 

Want: Tc = - Tc    

for σ = max ||Sc|| / √2 
           Dσ,0 (z) / M(½Dσ,Sc (z) + ½Dσ,-Sc (z)) ≈ e / M   



Bimodal Signature Scheme 

Secret Key: S 
Public Key: A s.t. qI=AS mod 2q 
 
Sign(μ) 
 Pick a random y 
 Compute c=H(Ay mod 2q,μ) 
 Choose random b in {-1,1} 
 z=bSc+y 
 Output(z,c) w.p. … 
 

Verify(z,c) 

 Check that z is “small” 

                and 

 c = H(Az –qc mod 2q, μ) 



Security Reduction 

A 

Adversary Simulator 

A 

μi 

(zi,ci) 
(zi,ci) ~ correct distribution 

Program c = H(Azi –qci mod 2q, μi)  
 

μ, (z,c) 

…  

μ, (z’,c’) 
 

A(z-z’)+q(c’-c)=0 (mod 2q) 

If z, z’ are not too small, 
then this is not 0.  

A(z-z’)=0 mod q 



Optimizations 

• Base problem on the hardness of the NTRU 
problem 

• Compress the signature  not all of z needs 
to be output if H only acts on the high order 
bits 

•  A few other small tricks 



Performance of the  
Bimodal LattIce Signature Scheme 



THANK YOU 


