
Lattice Signature Schemes

Vadim Lyubashevsky

INRIA / ENS Paris

LATTICE PROBLEMS

The Knapsack Problem

A

s

t =

A is random in Zq
n x m

s is a random “small” vector in Zq
m

t=As mod q

Given (A,t), find small s' such that

As'=t mod q

mod q

Hardness of the Knapsack Problem

hardness

||s||

“LWE” “SIS”

A

s

t = mod q

Hardness of the Knapsack Problem

hardness

||s||

“SIS”

A

s

t = mod q

For all t, there exists an s
such that As=t

In “classic” SIS, t=0

Results

hardness

||s||

“LWE” “SIS”

A

s

t = mod q

More efficient signature based on LWE

Signature based on SIS

Results extend to Ring-SIS and Ring-LWE

DIGITAL SIGNATURE SCHEMES

Digital Signatures

(sk,pk) KeyGen
Sign(sk,mi) = si
Verify(pk,mi,si) = YES / NO

Correctness: Verify(pk, mi, Sign(sk,mi)) = YES
Security: Unforgeability
1. Adversary gets pk
2. Adversary asks for signatures of m1, m2, …
3. Adversary outputs (m,s) where m ≠ mi and wins

if Verify(pk,m,s) = YES

Signature Schemes

• Hash-and-Sign

– Requires a trap-door function

• Fiat-Shamir transformation

– Conversion from an identification scheme

– No trap-door function needed

HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS
[GPV 2008]

Lattice L┴p(A) = { y : Ay = 0 mod p}

Cosets of Zm / L┴p(A)

A = 0 mod p A = mod p

GPV Sampling

A

T

T is a basis for L┴p(A) and has “short” vectors

b
s

=
For any b, it outputs a short s such that As=b mod p

Distribution D of s only depends on the length of the
vectors comprising T

Lattice L┴p(A) = { y : Ay = 0 mod p}

b =

A = mod p A = mod p

 -

short

GPV Sampling

Properties Needed

A b
s

=

T

1. Distribution D of s only depends on the length of the
vectors comprising T

2. The following produce the same distribution of (s,b)

 (a) Choose s ~ D. Set b=As
 (b) Choose random b. Use T to find an s such that As=b.

(1) is guaranteed by the GPV algorithm
(2) is true if s has enough entropy (to make As=b

uniform mod p)

Hash-and-Sign Lattice Signature

A

Lattice L┴p(A) = { y : Ay = 0 mod p}

T

T is a basis for L┴p(A) and has “short” vectors

b
s

= Public Key: A
Secret Key: T

Sign(T,m)
1. b = H(m)
2. Use the GPV algorithm to find a
short s such that As = b mod p
3. s is the signature of m

Verify(A,m,s)
1. check that s is “short” and
 As = H(m) mod p

Security Proof Sketch

A

pick from D

 = = H(mi)

program the random oracle

sign mi

Security Proof Sketch

A

pick from D

 = = H(mj)

program the random oracle

give me H(mj)

Security Proof Sketch

I will forge the
signature of m

To forge on m, the Adversary needs H(m)

So m is one of the mj he asked for H(mj)

Thus we know an sj such that Asj=H(mj)

A = A =

Security Proof Sketch

A
 -

 = 0

short and hopefully non-zero

if it’s non-zero, then we have a solution to SIS

Properties Needed

A b
s

=

T

1. Distribution D of s only depends on the length of the
vectors comprising T

2. The following produce the same distribution of (s,b)

 (a) Choose s ~ D. Set b=As
 (b) Choose random b. Use T to find an s such that As=b.

3. For a random b, there is more than one likely possible
 output s such that b=As.

(1) is guaranteed by the GPV algorithm
(2) is true if s has enough entropy (to make As=b

uniform mod p)
(3) is true because the standard deviation of GPV is big

FIAT-SHAMIR SIGNATURE SCHEMES BASED ON SIS
[L ‘09, L’12, DDLL ‘13]

Signature Scheme (Main Idea)

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c)

Verify(z,c)

 Check that z is “small”

 and

 c = H(Az – Tc mod q, μ)

Security Reduction Requirements

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c)

Verify(z,c)

 Check that z is “small”

 and

 c = H(Az – Tc mod q, μ)

Given the public key, the secret key is not unique

Signature is independent of the secret key

Security Reduction

A

Adversary Simulator

Pick random S A,AS

μi

(zi,ci)
(zi,ci)=Sign(μi)

μ, (z,c)

…

μ, (z’,c’)

A(z-z’)+T(c’-c)=0

If this is not 0, then SIS is solved.
Important for adversary to not know S.

A(z-z’+Sc’-Sc)=0

Security Reduction

A(z-z’+Sc’-Sc)=0

Solution to SIS

We Want:

 1. Signature (z,c) to be independent of S so that z-z’+Sc’-Sc is not 0

 2. z-z’+Sc’-Sc to be small so that SIS is hard

INTERLUDE: BASING SCHEMES ON LWE INSTEAD OF SIS
[L ‘12]

Security Reduction Requirements

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c) (or reject)

Verify(z,c)

 Check that z is “small”

 and

 c = H(Az – Tc mod q, μ)

Given the public key, the secret key is not unique

Signature is independent of the secret key

Security Reduction Requirements

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c) (or reject)

Verify(z,c)

 Check that z is “small”

 and

 c = H(Az – Tc mod q, μ)

Given the public key, the secret key is not unique

Signature is independent of the secret key

Given the public key, it’s computationally
indistinguishable whether the secret key is unique

hardness

hardness of finding

the secret key hardness of forging

signatures

a gap of ~ √n

a gap of ~ √n

Construction based on SIS

Construction based on LWE

Signature Hardness

||s||

Signature Scheme

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c)

make y uniformly random mod q?

then z is too big and SIS (and forging) is easy 

Signature Scheme

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c)

make y small?

then z will not be independent of S 

Rejection Sampling

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)

 Pick a random y

 Compute c=H(Ay mod q,μ)

 z=Sc+y

 Output(z,c) if z meets certain criteria, else repeat

make y small

Rejection Sampling

g(x)

f(x)
Have access to samples from g(x)

Want f(x)

Rejection Sampling

g(x)

f(x)/M
Have access to samples from g(x)

Want f(x)

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1

Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M
Something is output with probability 1/M

Rejection Sampling

h(x)

Have access to samples from g(x)

Want f(x)

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1
or … Sample from h(x), accept x with probability f(x)/Mh(x) ≤ 1
Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M = h(x)∙(f(x)/Mh(x))
Something is output with probability 1/M

g(x)

f(x)/M

Impossible to tell whether g(x) or h(x) was the original distribution

Rejection Sampling

Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c) w.p. …

f(y) f(y+Sc)

Normal Distribution

1-dimensional Normal distribution:

 ρσ(x) = 1/(√2πσ)e-x2/2σ2

It is:

 Centered at 0

 Standard deviation: σ

Examples

Shifted Normal Distribution

1-dimensional shifted Normal distribution:

 ρσ,v(x) = 1/(√2πσ)e-(x-v)2/2σ2

It is:

 Centered at v

 Standard deviation: σ

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2

It is:

 Centered at v

 Standard deviation: σ

2-Dimensional Example

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2

It is:

 Centered at v

 Standard deviation: σ

Discrete Normal: for x in Zn,

Dσ,v (x)= ρσ,v(x) / ρσ,v(Z
n)

Rejection Sampling

-v v

v=max ||Sc||

Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c) w.p. Dσ,0 (z) / (MDσ,Sc (z))

for σ = 12v,
 Dσ,0 (z) / (MDσ,Sc (z)) ≈ e/M

Improving the Rejection Sampling

Rejection Sampling from [Lyu12]

Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c) w.p. Dσ,0 (z) / (MDσ,Sc (z))

Bimodal Gaussians [DDLL ‘13]

Pick a random y
Compute c=H(Ay mod q,μ)
Pick a random b in {-1,1}
z=bSc+y
Output(z,c) w.p. Dσ,0 (z) / M(½Dσ,Sc (z) + ½Dσ,-Sc (z))

Verify(z,c)

 Check that z is “small”

 and

 c = H(Az – Tc mod q, μ)

Az – Tc = A(bSc+y) - Tc = bTc - Tc + Ay

Want: Tc = - Tc

for σ = max ||Sc|| / √2
 Dσ,0 (z) / M(½Dσ,Sc (z) + ½Dσ,-Sc (z)) ≈ e / M

Bimodal Signature Scheme

Secret Key: S
Public Key: A s.t. qI=AS mod 2q

Sign(μ)
 Pick a random y
 Compute c=H(Ay mod 2q,μ)
 Choose random b in {-1,1}
 z=bSc+y
 Output(z,c) w.p. …

Verify(z,c)

 Check that z is “small”

 and

 c = H(Az –qc mod 2q, μ)

Security Reduction

A

Adversary Simulator

A

μi

(zi,ci)
(zi,ci) ~ correct distribution

Program c = H(Azi –qci mod 2q, μi)

μ, (z,c)

…

μ, (z’,c’)

A(z-z’)+q(c’-c)=0 (mod 2q)

If z, z’ are not too small,
then this is not 0.

A(z-z’)=0 mod q

Optimizations

• Base problem on the hardness of the NTRU
problem

• Compress the signature  not all of z needs
to be output if H only acts on the high order
bits

• A few other small tricks

Performance of the
Bimodal LattIce Signature Scheme

THANK YOU

