Lattice Signature Schemes

Vadim Lyubashevsky INRIA / ENS Paris

LATTICE PROBLEMS

Given (A,t), find small s' such that As'=t mod q

Hardness of the Knapsack Problem

Hardness of the Knapsack Problem

DIGITAL SIGNATURE SCHEMES

Digital Signatures

Correctness: Verify(pk, m_i, Sign(sk,m_i)) = YES Security: Unforgeability

- 1. Adversary gets pk
- 2. Adversary asks for signatures of $m_1, m_2, ...$
- Adversary outputs (m,s) where m ≠ m_i and wins if Verify(pk,m,s) = YES

Signature Schemes

- Hash-and-Sign
 - Requires a trap-door function
- Fiat-Shamir transformation
 - Conversion from an identification scheme
 - No trap-door function needed

HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS [GPV 2008]

Lattice $L_p^{\perp}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0} \mod p \}$

GPV Sampling

For any **b**, it outputs a short **s** such that **As=b** mod p

Distribution D of **s** only depends on the length of the vectors comprising **T**

T is a basis for $L_p^{\perp}(\mathbf{A})$ and has "short" vectors

Lattice $L_p^{\perp}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0} \mod p \}$

GPV Sampling

Properties Needed

- Distribution D of s only depends on the length of the vectors comprising T
- 2. The following produce the same distribution of (**s**,**b**)

- (1) is guaranteed by the GPV algorithm
- (2) is true if s has enough entropy (to make As=b uniform mod p)

Hash-and-Sign Lattice Signature

Lattice $L_p^{\perp}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0} \mod p \}$

	т	

T is a basis for $L_p^{\perp}(\mathbf{A})$ and has "short" vectors

Public Key: A Secret Key: T

Sign(T,m) 1. **b** = H(m)

2. Use the GPV algorithm to find a short **s** such that **As** = **b** mod p 3. **s** is the signature of m

Verify(**A**,m,**s**)

1. check that **s** is "short" and $As = H(m) \mod p$

if it's non-zero, then we have a solution to SIS

Properties Needed

- 2. The following produce the same distribution of (**s**,**b**)
 - (a) Choose **s** ~ D. Set **b**=As
 - (b) Choose random **b**. Use **T** to find an **s** such that **As=b**.

- 3. For a random **b**, there is more than one likely possible output **s** such that **b=As**.
 - (1) is guaranteed by the GPV algorithm
 - (2) is true if s has enough entropy (to make As=b uniform mod p)
 - (3) is true because the standard deviation of GPV is big

FIAT-SHAMIR SIGNATURE SCHEMES BASED ON SIS [L '09, L'12, DDLL '13]

Signature Scheme (Main Idea)

```
Secret Key: S
Public Key: A, T=AS mod q
```

Sign(μ)
Pick a random y
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c)

<u>Verify</u>(z,c) Check that z is "small" and c = H(Az – Tc mod q, μ)

Security Reduction Requirements

Security Reduction

Security Reduction

We Want:

1. Signature (z,c) to be independent of **S** so that z-z'+Sc'-Sc is not 0

2. z-z'+Sc'-Sc to be small so that SIS is hard

INTERLUDE: BASING SCHEMES ON LWE INSTEAD OF SIS [L '12]

Security Reduction Requirements

 $\frac{\text{Sign}(\mu)}{\text{Pick a random y}}$ $\text{Compute c=H(Ay mod q, \mu)}$ z=Sc+y Output(z,c) (or reject) $\frac{\text{Verify}(z,c)}{\text{Check that z is "small"}}$ and $c = H(Az - Tc mod q, \mu)$

Signature is independent of the secret key

Security Reduction Requirements

Secret Key: S
Public Key: A, T=AS mod q
Given the public key, it's computationally
indistinguishable whether the secret key is unique
Sign(
$$\mu$$
)
Pick a random y
Compute c=H(Ay mod q, μ)
z=Sc+y
Output(z,c) for reject)
Given the public key, it's computationally
indistinguishable whether the secret key is unique
Verify(z,c)
Check that z is "small"
and
c = H(Az - Tc mod q, μ)

Signature is independent of the secret key

Signature Hardness

Construction based on LWE

Signature Scheme

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)

Pick a random y make y uniformly random mod q?

Compute c=H(Ay mod q,μ)

z=Sc+y

Output(z,c) then z is too big and SIS (and forging) is easy 🔅
```

Signature Scheme

```
Secret Key: S
Public Key: A, T=AS mod q
```


Rejection Sampling

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
Sign(μ)
Pick a random y make y small
Compute c=H(Ay mod q,μ)
z=Sc+y
Output(z,c) if z meets certain criteria, else repeat
```

Rejection Sampling

Have access to samples from g(x) Want f(x)

Rejection Sampling g(x) Have access to samples from g(x)f(x)/MWant f(x) Sample from g(x), accept x with probability $f(x)/Mg(x) \le 1$

 $Pr[x] = g(x) \cdot (f(x)/Mg(x)) = f(x)/M$ Something is output with probability 1/M

Rejection Sampling

Impossible to tell whether g(x) or h(x) was the original distribution

Rejection Sampling

Normal Distribution

1-dimensional Normal distribution:

$$\rho_{\sigma}(\mathbf{x}) = 1/(\sqrt{2\pi}\sigma)e^{-\mathbf{x}^2/2\sigma^2}$$

It is:

Centered at 0

Standard deviation: σ

Examples

Shifted Normal Distribution

1-dimensional shifted Normal distribution:

$$\rho_{\sigma,v}(x) = 1/(\sqrt{2\pi}\sigma)e^{-(x-v)^2/2\sigma^2}$$

It is:

Centered at v

Standard deviation: σ

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

$$\rho_{\sigma,\mathbf{v}}(\mathbf{x}) = 1/(\sqrt{2\pi}\sigma)^{n} \mathrm{e}^{-||\mathbf{x}-\mathbf{v}||^{2}/2\sigma^{2}}$$

It is:

Centered at **v** Standard deviation: σ

2-Dimensional Example

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

$$\rho_{\sigma,\mathbf{v}}(\mathbf{x}) = 1/(\sqrt{2\pi}\sigma)^{n} \mathrm{e}^{-||\mathbf{x}-\mathbf{v}||^{2}/2\sigma^{2}}$$

It is:

Centered at \mathbf{v} Standard deviation: σ

Discrete Normal: for **x** in Z^n , $D_{\sigma,v}(\mathbf{x}) = \rho_{\sigma,v}(\mathbf{x}) / \rho_{\sigma,v}(Z^n)$

Rejection Sampling

Improving the Rejection Sampling

Pick a random y Compute $c=H(Ay \mod q,\mu)$ z=Sc+yOutput(z,c) w.p. $D_{\sigma,0}(z) / (MD_{\sigma,Sc}(z))$

Rejection Sampling from [Lyu12]

Bimodal Gaussians [DDLL '13]

Pick a random y for $\sigma = \max ||\mathbf{Sc}|| / \sqrt{2}$ Compute $c=H(Ay \mod q,\mu)$ $D_{\sigma,0}(z) / M(\frac{1}{2}D_{\sigma,Sc}(z) + \frac{1}{2}D_{\sigma,-Sc}(z)) \approx e / M$ Pick a random b in {-1,1} z=bSc+y Output(z,c) w.p. $D_{\sigma,0}(z) / M(\frac{1}{2}D_{\sigma,sc}(z) + \frac{1}{2}D_{\sigma,-sc}(z))$ <u>Verify(z,c)</u> Check that z is "small" (Sc)and $c = H(Az - Tc \mod q, \mu)$ Az - Tc = A(bSc+y) - Tc = bTc - Tc + Ay $\operatorname{Span}{\mathbf{Sc}}$ Want: Tc = - Tc

Bimodal Signature Scheme

Secret Key: **S** Public Key: **A** s.t. q**I=AS** mod 2q

Sign(μ)
Pick a random y
Compute c=H(Ay mod 2q,μ)
Choose random b in {-1,1}
z=bSc+y
Output(z,c) w.p. ...

<u>Verify</u>(z,c) Check that z is "small" and c = H(Az –qc mod 2q, μ)

Security Reduction

 $(z_i, c_i) \sim \text{correct distribution}$ Program $c = H(Az_i - qc_i \mod 2q, \mu_i)$

A(z-z')+q(c'-c)=0 (mod 2q) A(z-z')=0 mod q

If **z**, **z'** are not too small, then this is not 0.

Optimizations

- Base problem on the hardness of the NTRU problem
- Compress the signature → not all of z needs to be output if H only acts on the high order bits
- A few other small tricks

Performance of the Bimodal LattIce Signature Scheme

Implementation	Security	Signature Size	SK Size	PK Size	Sign (ms)	$\mathrm{Sign/s}$	Verify (ms)	Verify/s
BLISS-0	≤ 60 bits	$3.3 \mathrm{~kb}$	1.5 kb	3.3 kb	0.241	4k	0.017	59k
BLISS-I	128 bits	$5.6~{ m kb}$	2 kb	7 kb	0.124	8k	0.030	33k
BLISS-II	128 bits	5 kb	2 kb	7 kb	0.480	2k	0.030	33k
BLISS-III	160 bits	6 kb	3 kb	7 kb	0.203	5k	0.031	32k
BLISS-IV	192 bits	$6.5 \ \mathrm{kb}$	3 kb	$7 \mathrm{~kb}$	0.375	2.5k	0.032	31k
RSA 1024	72-80 bits	1 kb	1 kb	1 kb	0.167	6k	0.004	91k
RSA 2048	103-112 bits	2 kb	2 kb	2 kb	1.180	0.8k	0.038	27k
RSA 4096	≥ 128 bits	4 kb	4 kb	4 kb	8.660	0.1k	0.138	7.5k
$ECDSA^1$ 160	80 bits	0.32 kb	0.16 kb	$0.16 \mathrm{~kb}$	0.058	17k	0.205	5k
ECDSA 256	128 bits	$0.5 \ \mathrm{kb}$	0.25 kb	$0.25 \ \mathrm{kb}$	0.106	9.5k	0.384	2.5k
ECDSA 384	192 bits	$0.75 \ \mathrm{kb}$	$0.37 \mathrm{~kb}$	$0.37 \ \mathrm{kb}$	0.195	5k	0.853	1k

THANK YOU