Lattice Signature Schemes

Vadim Lyubashevsky
INRIA / ENS Paris

LATTICE PROBLEMS

The Knapsack Problem

Given (\mathbf{A}, \mathbf{t}), find small s' such that $A s^{\prime}=t \bmod q$

Hardness of the Knapsack Problem

Hardness of the Knapsack Problem

Results

Signature based on SIS

Results extend to Ring-SIS and Ring-LWE

DIGITAL SIGNATURE SCHEMES

Digital Signatures

(sk,pk) \leftarrow KeyGen
Sign $\left(s k, m_{i}\right)=s_{i}$
Verify $\left(\mathrm{pk}, \mathrm{m}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}}\right)=$ YES $/ \mathrm{NO}$
Correctness: $\operatorname{Verify}\left(\mathrm{pk}, \mathrm{m}_{\mathrm{i}}, \operatorname{Sign}\left(\mathrm{sk}, \mathrm{m}_{\mathrm{i}}\right)\right)=\mathrm{YES}$
Security: Unforgeability

1. Adversary gets pk
2. Adversary asks for signatures of m_{1}, m_{2}, \ldots
3. Adversary outputs (m, s) where $m \neq m_{i}$ and wins if Verify $(\mathrm{pk}, \mathrm{m}, \mathrm{s})=\mathrm{YES}$

Signature Schemes

- Hash-and-Sign
- Requires a trap-door function
- Fiat-Shamir transformation
- Conversion from an identification scheme
- No trap-door function needed

HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS

 [GPV 2008]Lattice $L_{p}^{\perp}(A)=\{y: A y=0 \bmod p\}$

GPV Sampling

For any \mathbf{b}, it outputs a short \mathbf{s} such that $\mathbf{A s}=\mathbf{b} \bmod \mathrm{p}$
Distribution D of s only depends on the length of the vectors comprising \mathbf{T}

T is a basis for $L_{p}^{\perp}(A)$ and has "short" vectors

Lattice $L_{p}^{\perp}(A)=\{y: A y=0 \bmod p\}$
GPV Sampling

Properties Needed

1. Distribution D of s only depends on the length of the vectors comprising \mathbf{T}
2. The following produce the same distribution of (\mathbf{s}, \mathbf{b})
(a) Choose $\mathbf{s} \sim \mathrm{D}$. Set $\mathbf{b}=\mathbf{A s}$
(b) Choose random b. Use \mathbf{T} to find an \mathbf{s} such that $\mathbf{A s}=\mathbf{b}$.
(1) is guaranteed by the GPV algorithm
(2) is true if \boldsymbol{s} has enough entropy (to make As=b uniform $\bmod p$)

Hash-and-Sign Lattice Signature

Lattice $L_{p}^{\perp}(\mathbf{A})=\{\mathbf{y}: \mathbf{A} \mathbf{y}=\mathbf{0} \bmod \mathrm{p}\}$

T is a basis for $L_{p}^{\perp}(\mathbf{A})$ and has "short" vectors

Public Key: A
Secret Key: T
$\operatorname{Sign}(\mathbf{T}, \mathrm{m})$

1. $\mathbf{b}=\mathrm{H}(\mathrm{m})$
2. Use the GPV algorithm to find a short \mathbf{s} such that $\mathbf{A s}=\mathbf{b} \bmod p$
3. s is the signature of m

Verify(A,m,s)

1. check that \mathbf{s} is "short" and

$$
\mathbf{A s}=H(m) \bmod p
$$

Security Proof Sketch

Security Proof Sketch

Security Proof Sketch

Security Proof Sketch

if it's non-zero, then we have a solution to SIS

Properties Needed

1. Distribution D of s only depends on the length of the vectors comprising \mathbf{T}
2. The following produce the same distribution of (\mathbf{s}, \mathbf{b})
(a) Choose $\mathbf{s} \sim \mathrm{D}$. Set $\mathbf{b}=$ As
(b) Choose random \mathbf{b}. Use \mathbf{T} to find an s such that $\mathbf{A s}=\mathbf{b}$.
3. For a random \mathbf{b}, there is more than one likely possible output \mathbf{s} such that $\mathbf{b}=A \mathbf{s}$.
(1) is guaranteed by the GPV algorithm
(2) is true if \boldsymbol{s} has enough entropy (to make As=b uniform $\bmod p$)
(3) is true because the standard deviation of GPV is big

FIAT-SHAMIR SIGNATURE SCHEMES BASED ON SIS

 [L ‘09, L’12, DDLL '13]
Signature Scheme (Main Idea)

Secret Key:
Public Key: A, T=AS mod q

Sign (μ)
Pick a random
Compute $\mathrm{c}=\mathrm{H}(\mathbf{A y} \bmod \mathrm{q}, \mu)$
$z=S c+y$
Output(z,c)

Verify (z, c)
Check that z is "small"
and
$c=H(A z-T c \bmod q, \mu)$

Security Reduction Requirements

Secret Key:

Given the public key, the secret key is not unique
Public Key $\boldsymbol{A}, \mathbf{T}=\mathbf{A S}$ moda

Sign(μ)
Pick a random
Compute c=H(Ay mod q, μ)
z=Sc+y
Output(z, c)
Signature is independent of the secret key

Verify(z,c)
Check that z is "small" and
$c=H(\mathbf{A} z-\mathbf{T} c \bmod q, \mu)$

Security Reduction

Simulator

$$
\left(z_{i}, c_{i}\right)=\operatorname{Sign}\left(\mu_{i}\right)
$$

$$
\begin{aligned}
& \mathbf{A}\left(z-z^{\prime}\right)+\mathbf{T}\left(c^{\prime}-c\right)=\mathbf{0} \\
& \mathbf{A}\left(z-z^{\prime}+S c^{\prime}-S c\right)=\mathbf{t}
\end{aligned}
$$

$$
\mu,(z, c)
$$

If this is not 0 , then SIS is solved. Important for adversary to not know S.

Security Reduction

$\mathbf{A}\left(z-z^{\prime}+S c^{\prime}-S c\right)=\mathbf{0}$

Solution to SIS

We Want:

1. Signature (z, c) to be independent of S so that $z-z^{\prime}+S c^{\prime}-S c$ is not 0
2. $z-z^{\prime}+S c^{\prime}-S c$ to be small so that SIS is hard

INTERLUDE: BASING SCHEMES ON LWE INSTEAD OF SIS [L'12]

Security Reduction Requirements

Secret Key:
Given the public key, the secret key is not unique
Public Key: $\mathbf{A}, \mathbf{T}=\mathbf{A S} \bmod \mathrm{a}$

Sign(μ)
Pick a random
Compute c=H(Ay mod q, μ)
z=Sc+y
Output(z,c) (or reject)

Verify (z, c)
Check that z is "small" and
$c=H(\mathbf{A} z-\mathbf{T} c \bmod q, \mu)$

Security Reduction Requirements

Secret Key:

Given the public key, it's computationally
Sign (μ)
indistinguishable whether the secret key is unique
Pick a random
Compute c=H(Ay mod q, μ)
z=Sc+y
Output(z,c) (or reject)
Verify (z, c)
Check that z is "small"
and
$c=H(\mathbf{A} z-\mathbf{T} c \bmod q, \mu)$

Signature Hardness

Construction based on SIS

- Construction based on LWE

Signature Scheme

Secret Key:

Public Key: A, T=AS mod q

Sign(μ)
Pick a random y make y uniformly random $\bmod q$?
Compute $\mathrm{c}=\mathrm{H}(\mathbf{A} y \bmod \mathrm{q}, \mathrm{\mu})$
z=Sc+y
Output(z,C) then z is too big and SIS (and forging) is easy ©

Signature Scheme

Secret Key:

Public Key: A, T=AS mod q

Sign (μ)
Pick random y make y small?
Compute $\mathrm{c}=\mathrm{H}(\mathbf{A y}$ mod $\mathrm{q}, \mu)$
$z=S c+y$
Uutput(z,C) then \mathbf{z} will not be independent of S

Rejection Sampling

Secret Key: S

Public Key: A, T=AS mod q

Sign(μ)
Pick a random y make y small
Compute c=H(Ay mod q, μ)
z=Sc+y
Output(z,c) if z meets certain criteria, else repeat

Rejection Sampling

Have access to samples from $g(x) \quad g(x)$
Want $f(x)$

Rejection Sampling

Have access to samples from $g(x)$
Want $f(x)$

Sample from $g(x)$, accept x with probability $f(x) / M g(x) \leq 1$

$$
\operatorname{Pr}[x]=g(x) \cdot(f(x) / M g(x))=f(x) / M
$$

Something is output with probability $1 / \mathrm{M}$

Rejection Sampling

Impossible to tell whether $g(x)$ or $h(x)$ was the original distribution

Have access to samples from $g(x) \quad g(x)$

Want $\mathrm{f}(\mathrm{x})$

Sample from $\mathrm{g}(\mathrm{x})$, accept x with probability $\mathrm{f}(\mathrm{x}) / \mathrm{Mg}(\mathrm{x}) \leq 1$ or ... Sample from $h(x)$, accept x with probability $f(x) / M h(x) \leq 1$
$\operatorname{Pr}[x]=g(x) \cdot(f(x) / M g(x))=f(x) / M=h(x) \cdot(f(x) / M h(x))$
Something is output with probability $1 / \mathrm{M}$

Rejection Sampling

Pick a random y
Compute $c=H(\mathbf{A} y \bmod q, \mu)$
z=Sc+y
Output(z,c) w.p. ...

Normal Distribution

1-dimensional Normal distribution:

$$
\rho_{\sigma}(x)=1 /(\sqrt{2 \pi} \sigma) e^{-x^{2} / 2 \sigma^{2}}
$$

It is:
Centered at 0
Standard deviation: σ

Examples

Shifted Normal Distribution

1-dimensional shifted Normal distribution:

$$
\rho_{\sigma, v}(x)=1 /(\sqrt{2 \pi} \sigma) e^{-(x-v)^{2} / 2 \sigma^{2}}
$$

It is:
Centered at v
Standard deviation: σ

n-Dimensional Normal Distribution

 n-dimensional shifted Normal distribution:$$
\rho_{\sigma, v}(x)=1 /(\sqrt{2 \pi} \sigma)^{n} e^{-\|x-v\|^{2} / 2 \sigma^{2}}
$$

It is:
Centered at v
Standard deviation: σ

2-Dimensional Example

n-Dimensional Normal Distribution

 n-dimensional shifted Normal distribution:$$
\rho_{\sigma, v}(x)=1 /(\sqrt{2 \pi} \sigma)^{n} e^{-\|x-v\|^{2} / 2 \sigma^{2}}
$$

It is:
Centered at v
Standard deviation: σ

Discrete Normal: for \mathbf{x} in \mathbf{Z}^{n},

$$
D_{\sigma, v}(x)=\rho_{\sigma, v}(x) / \rho_{\sigma, v}\left(Z^{n}\right)
$$

Rejection Sampling

$$
v=\max \|S c\|
$$

for $\sigma=12 v$,

$$
D_{\sigma, 0}(z) /\left(M D_{\sigma, S c}(z)\right) \approx e / M
$$

Improving the Rejection Sampling

Pick a random y
Compute $\mathrm{c}=\mathrm{H}(\mathbf{A} y \bmod \mathrm{q}, \mu)$
z=Sc+y
Output(z,c) w.p. $D_{\sigma, 0}(z) /\left(M D_{\sigma, s c}(z)\right)$

Rejection Sampling from [Lyu12]

Bimodal Gaussians [DDLL '13]

Pick a random y
Compute $c=H(A y \bmod q, \mu)$
Pick a random b in $\{-1,1\}$ for $\sigma=\max \|S c\| / \sqrt{ } 2$

$$
D_{\sigma, 0}(z) / M\left(1 / 2 D_{\sigma, S c}(z)+1 / 2 D_{\sigma,-S c}(z)\right) \approx e / M
$$

z=bSc+y

Output(z,c) w.p. $D_{\sigma, 0}(z) / M\left(1 / 2 D_{\sigma, S c}(z)+1 / 2 D_{\sigma,-s c}(z)\right)$

Verify (z,c)
Check that z is "small" and
$c=H(A z-T c \bmod q, \mu)$
$\mathbf{A} z-\mathbf{T c}=\mathbf{A}(\mathrm{bSc}+\mathrm{y})-\mathbf{T c}=\mathrm{b} \mathbf{T} \mathrm{c}-\mathbf{T} \mathrm{c}+\mathbf{A} \mathrm{y}$

Want: $\mathbf{T c}=\mathbf{- T} \mathbf{c}$

Bimodal Signature Scheme

Secret Key:
Public Key: A s.t. qI=AS mod $2 q$

Sign (μ)
Pick a random
Compute $c=H(\mathbf{A} y \bmod 2 q, \mu)$
Choose random b in $\{-1,1\}$
$z=b S c+y$
Output(z,c) w.p. ...

Verify(z, c)
Check that z is "small"
and
$c=H(A z-q c \bmod 2 q, \mu)$

Security Reduction

Simulator

$\left(z_{i}, c_{i}\right) \sim$ correct distribution
Program $c=H\left(A z_{i}-q c_{i} \bmod 2 q, \mu_{i}\right)$

$A\left(z-z^{\prime}\right)+q\left(c^{\prime}-c\right)=0(\bmod 2 q)$

If z, z^{\prime} are not too small, $\mu,(z, c)$ then this is not 0 .

Optimizations

- Base problem on the hardness of the NTRU problem
- Compress the signature \rightarrow not all of z needs to be output if H only acts on the high order bits
- A few other small tricks

Performance of the Bimodal Lattlce Signature Scheme

Implementation	Security	Signature Size	SK Size	PK Size	Sign (ms)	Sign/s	Verify (ms)	Verify/s
BLISS-0	$\leqslant 60$ bits	3.3 kb	1.5 kb	3.3 kb	0.241	4k	0.017	59k
BLISS-I	128 bits	5.6 kb	2 kb	7 kb	0.124	8 k	0.030	33 k
BLISS-II	128 bits	5 kb	2 kb	7 kb	0.480	2 k	0.030	33 k
BLISS-III	160 bits	6 kb	3 kb	7 kb	0.203	5 k	0.031	32 k
BLISS-IV	192 bits	6.5 kb	3 kb	7 kb	0.375	2.5k	0.032	31k
RSA 1024	72-80 bits	1 kb	1 kb	1 kb	0.167	6 k	0.004	91k
RSA 2048	103-112 bits	2 kb	2 kb	2 kb	1.180	0.8 k	0.038	27 k
RSA 4096	$\geqslant 128$ bits	4 kb	4 kb	4 kb	8.660	0.1 k	0.138	7.5k
ECDSA $^{1} 160$	80 bits	0.32 kb	0.16 kb	0.16 kb	0.058	17k	0.205	5k
ECDSA 256	128 bits	0.5 kb	0.25 kb	0.25 kb	0.106	9.5 k	0.384	2.5 k
ECDSA 384	192 bits	0.75 kb	0.37 kb	0.37 kb	0.195	5 k	0.853	1 k

THANK YOU

