Complex multiplication of elliptic curves
 Exercises

Andreas Enge

Warwick, 24 to 28 June 2013

1. Let \wp be the Weierstraß function associated to a lattice L. Show that the function $z \mapsto e^{\wp(z)}$ is holomorphic on $\mathbb{C} \backslash L$ and periodic modulo L, but not elliptic.
2. (a) Show that an elliptic function without poles, or an elliptic function without zeroes, is necessarily constant.
(b) If f is an even elliptic function and $2 a \in L$, then f has even order in a. Hint: Use the Taylor expansion of f at a, and look at $f(-z+2 a)$.
(c) The function $\wp(z)-\wp(a)$ has a simple zero in $\pm a$ if $2 a \notin L$ and a double zero otherwise.
(d) Show that the even elliptic functions are exactly the rational functions in \wp, that is, $\mathbb{C}(\wp)$, and that the field of elliptic functions is $\mathbb{C}\left(\wp . \wp^{\prime}\right)$.
3. Use the Laurent series of \wp and \wp^{\prime} to prove the differential equation

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-60 G_{2 \wp}-140 G_{3} .
$$

A computer algebra system comes in handy for the computations.
4. Let $G_{k}(L)=\sum_{\omega \in L}^{\prime} \frac{1}{\omega^{2 k}}$ be the Eisenstein series of weight $2 k$, with the convention $G_{1}=0$ and $G_{0}=-1$.
(a) Show that for $k \geq 3$,

$$
(2 k-1)(2 k-2)(2 k-3) G_{k}=6 \sum_{j=0}^{k}(2 j-1)(2 k-2 j-1) G_{j} G_{k-j} ;
$$

you may use $\wp^{\prime \prime}=6 \wp^{2}-30 G_{2}$.
(b) Show that

$$
G_{4}=\frac{3}{7} G_{2}^{2}, \quad G_{5}=\frac{5}{11} G_{2} G_{3}, \quad G_{6}=\frac{25}{143} G_{3}^{2}+\frac{18}{143} G_{2}^{3},
$$

and, more generally, that every Eisenstein series can be computed recursively as a polynomial in G_{2} and G_{3} via

$$
\left(4 k^{2}-1\right)(2 k-6) G_{k}=6 \sum_{j=2}^{k-2}(2 j-1)(2 k-2 j-1) G_{j} G_{k-j}
$$

(Beware of potential subtle errors in the formulæ above.)
5. Show that the following two assertions are equivalent for a lattice $L=\mathbb{Z}+\tau \mathbb{Z}$ and $\alpha \in \mathbb{C} \backslash \mathbb{Z}$:
(a) $\alpha L \subseteq L$
(b) $L=\frac{1}{A}\left(A, \frac{-B+\sqrt{D}}{2}\right)_{\mathbb{Z}}$ is a proper fractional ideal of an imaginary quadratic order $\mathcal{O}=\left(1, \frac{D+\sqrt{D}}{2}\right)_{\mathbb{Z}}$ and $\alpha \in \mathcal{O}$.
6. Let $r \in \mathbb{N}$, and consider a primitive matrix R of determinant r.
(a) Show that

$$
\Gamma_{R}=R^{-1} \Gamma R \cap \Gamma \supseteq \Gamma(r)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: a \equiv d \equiv 1, b \equiv c \equiv 0 \quad(\bmod r)\right\}
$$

(b) Show that

$$
\begin{aligned}
& \Gamma\left(\begin{array}{ll}
r & 0 \\
0 & 1
\end{array}\right)=\Gamma^{0}(r)=\{\ldots: b \equiv 0 \quad(\bmod r)\} \text { or } \\
& \Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & r
\end{array}\right)
\end{aligned}
$$

7. In your favourite language or computer algebra system, write a programme that takes as input an element $\tau \in \mathbb{H}$ and outputs its representative under $\Gamma=\mathrm{Sl}_{2}(\mathbb{Z})$ in the standard fundamental domain. What is the representative of $\frac{1+2 i}{100}$? Of $\frac{1+2 i}{1000}$? How many reduction steps does it take to bring them into the fundamental domain?
8. For a primitive matrix R show that $j_{R} \in \mathbb{C}_{\Gamma_{R}}$.
9. Once a class polynomial is computed using the floating point approach, how do you check (probabilistically) that it is correct?
10. Devise an algorithm to compute the class group of an imaginary-quadratic order with as a low a complexity as possible, and prove this complexity.
11. (a) Write a program in your favourite computer algebra system that upon input of a negative discriminant D outputs a list of the reduced binary quadratic forms $[A, B . C]$ of discriminant D.
What are the class numbers h_{D} of $D=-\left(10^{n}+8\right)$ for $n=2,3,4, \ldots$? Does the growth of the class numbers correspond to the theoretical predictions?
(b) For each of the discriminants D of (a), determine the corresponding fundamental discriminant Δ and its class number. Verify that the result is consistent with Kronecker's class number formula.
(c) For the same discriminants, compute the required (logarithmic) precisions as $p_{D}=\pi \sqrt{|D|} \sum \frac{1}{A}$. How does $\frac{p_{D}}{h_{D}}$ grow?
12. Programme the floating point algorithm for class polynomials. What is the class polynomial H_{-71} for $D=-71$?
13. Class invariants
(a) Factor $H_{-71}\left(Y^{3}\right)$, and let g be the factor of lowest degree. What do you deduce from the result? How large is the largest coefficient of g compared to that of H_{-71} ?
(b) Now factor $g\left(\frac{Z^{24}-16}{Z^{8}}\right)$. What do you observe?
14. Isogenies and non-maximal orders. Let D be an imaginary-quadratic discriminant and ℓ a prime such that the Legendre symbol satisfies $\left(\frac{\ell}{D}\right)=-1$. Let $R_{D}=$ $\mathbb{Q}[X] /\left(H_{D}(X)\right)$ and $R_{\ell^{2} D}=\mathbb{Q}[X] /\left(H_{\ell^{2} D}(X)\right)$ be the ring class fields attached to D and $\ell^{2} D$, respectively (or, to be precise, their real subfields).
(a) What is the degree of $R_{\ell^{2} D} / R_{D}$?
(b) Can you realise $R_{\ell^{2} D} / \mathbb{Q}$ as a tower of field extensions without computing $H_{\ell^{2} D}$?
(c) What can you do if $\left(\frac{\ell}{D}\right) \in\{0,-1\}$?
(d) Give equations for R_{-3479} and R_{-639} as field towers. Derive from these the class polynomials H_{-3479} and H_{-639} (hint: resultants).
