Summer School - Number Theory for Cryptography

F. Morain

Tutorial, 2013/06/25

1. Implement the AMR test.

2. Find a (probable) family of composite integers N satisfying $F(N)=\varphi(N) / 4$.

Answer. This is taken from a paper by Beauchemin, Brassard, Crpeau and Goutier at CRYPTO'86.
Let us decide to find a family of numbers with two prime factors only. Write $N=p_{1} p_{2}$ with $p_{1}=2^{s_{1}} t_{1}+1$, $p_{2}=2^{s_{2}} t_{2}+1$ with $1 \leq s_{1} \leq s_{2}$. Note that $\varphi(N)=2^{s_{1}+s_{2}} t_{1} t_{2}$. Monier's formula gives us

$$
F(N)=\left[1+\frac{2^{2 s_{1}}-1}{2^{2}-1}\right] T_{1} T_{2}
$$

with $T_{i}=\operatorname{gcd}\left(p_{i}-1, N-1\right)$. We decide to try to have maximal odd part for $T_{1} T_{2}$ by forcing $T_{i}=t_{i}$, which means that $t_{i} \mid N-1$. But

$$
N-1=\left(1+2^{s_{1}} t_{1}\right)\left(1+2^{s_{2}} t_{2}\right)-1=2^{s_{2}} t_{2}+2^{s_{1}} t_{1}+2^{s_{1}+s_{2}} t_{1} t_{2}
$$

The only possibility for $t_{1} \mid N-1$ is to have $t_{1} \mid t_{2}$. The same being true for t_{2}, we must have $t_{1}=t_{2}$. Monier's formula now reads

$$
F(N)=\left[1+\frac{2^{2 s_{1}}-1}{2^{2}-1}\right] t_{1} t_{2}=\left[1+\frac{2^{2 s_{1}}-1}{2^{2}-1}\right] \frac{\varphi(N)}{2^{s_{1}+s_{2}}}
$$

The last thing to do is solve

$$
\left[1+\frac{2^{2 s_{1}}-1}{2^{2}-1}\right] \frac{1}{2^{s_{1}+s_{2}}}=\frac{1}{4}
$$

or

$$
\left[1+\frac{2^{2 s_{1}}-1}{3}\right]=2^{s_{1}+s_{2}-2}
$$

equivalently

$$
2^{2 s_{1}-1}+1=3 \cdot 2^{s_{1}+s_{2}-3}
$$

If $s_{1}>1$, the left hand side is odd, which implies $s_{1}+s_{2}=3$. Since $1<s_{1} \leq s_{2}$, this is impossible. Now, we have $s_{1}=1$ and this implies $s_{2}=2$, or the family $(2 t+1)(4 t+1)$ with both terms prime.

We need $\pm t+1 \not \equiv 0 \bmod 3$, leading to $t \not \equiv \pm 1 \bmod 3$, or $3 \mid t$. Remembering that t should be odd, we get $t=6 m+3$, leading to $N=(12 m+7)(24 m+13)$ with both factors simultaneously prime. This is the heuristic part, since we cannot prove that there exists an infinite number of m 's leading to simultaneous prime values. However, examples are easy to find : $(m, N)=(0,7 \times 13),(1,19 \times 37),(2,31 \times 61) ; m=6,11,16 \ldots$.

It might be possible to prove this is the only possible family, with more work.
3. Prove Pocklington's theorem.
4. a) Implement the $N-1$ and find proven primes of the form $2 \cdot k!+1$.
b) Same question with the $N+1$ test and the family $2 \cdot k!-1$.
5. We consider the equation $k \varphi(N)=N-1$ for integers k and N.
a) solve the equation when $k=1$.

Answer. $\varphi(N)=N-1$ is only possible for prime N 's.

From now on, fix some $k>1$.
b) Give elementary properties of N 's satisfying the equation.

Answer. N is a Carmichael number, hence odd, squarefree and for all $p_{i} \mid N$, one has $p_{j} \not \equiv 1 \bmod p_{i}$. Moreover, N has at least three (distinct) prime factors.
c) Find non-trivial bounds on the number of prime divisors t of a solution N to the equation.

Answer. We already know that $t \geq 3$. Let us give some results already obtained by Lehmer in his 1932 paper. We will often use the easy property that
Lemma. $x \mapsto x /(x-1)$ is decreasing.
Prop. (Lehmer) If $3 \leq t \leq 6$, then $k=2$.
Proof: write

$$
k=\prod_{i=1}^{t} \frac{p_{i}}{p_{i}-1}-\frac{1}{\varphi(N)}
$$

We have $N \geq 105$ and $\varphi(N) \geq 48$ so that $k<3$.
Prop. (Lehmer) If $k=3$, then $t>32$.
Proof: $(N, 3)=1$ implies $p_{1} \geq 5$. Then $N \geq 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$ and $\varphi(N) \geq 18247680$ and

$$
3=\prod_{i=1}^{t} \frac{p_{i}}{p_{i}-1}-\frac{1}{\varphi(N)}
$$

leading to

$$
\prod_{i=1}^{t} \frac{p_{i}}{p_{i}-1} \geq 3+\frac{1}{18247680}>3.000000054
$$

leading to the result, since the first larger value has 3.013375475 for $p_{33}=149$, the previous one having value 2.993151479 .

Until today, no non-trivial solution is known. Some are known for $k \varphi(N)=N+1$, as for some other $N-a$. Some further properties can be found in recent papers (key word: Lehmer totient problem).
5. a) Implement the AKS algorithm and prove that 89 is prime.
b) Implement Berrizbeitia's variant and find some proven primes.

