MPRI - Cours 2.12.2
F. Morain

Lecture I: Primality

2013/06/25

The slides are available on http: //www lix. polytechnique fr/Labo/Francois. Morain/MPRI/2012
I. Compositeness tests.
II. Primality tests.
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad $1 / 30$
F. Morain -École polytechnique - Warwick Summer School - June 2013

My view of randomized algorithms

Def. A Monte Carlo algorithm for deciding that $X \in \mathbb{A}$ returns yes or I don't know:
Proba("yes" $\mid X \notin \mathbb{A})=0$
Proba("I don't know" $\mid X \in \mathbb{A}) \leq 1-\delta$, for absolute $0<\delta<1$.
Def. A decision problem is in RP if there exists a polynomial time Monte Carlo algorithm that solves it.

Rem. \neq error on the answer; or a failure in the computer.

Def. A Las Vegas algorithm answers yes, no or I don't know:
Proba("yes" $\mid X \notin \mathbb{A})=0$,
Proba("no" $\mid X \in \mathbb{A})=0$
Proba("l don't know") $<1-\delta$.

Def. $\mathrm{ZPP}=\mathrm{RP} \cap \mathbf{c o}-\mathrm{RP}$.

Compositeness test: deciding that N is composite.
Primality test: deciding that N is prime.

A) Fermat

Idea: if $\operatorname{gcd}(a, N)=1$, then $a^{N-1} \equiv 1 \bmod N$.
But: $2^{340} \equiv 1 \bmod 341:$ pseudoprime to base $2(\mathrm{psp}-2)$.
Thm. There exists an infinite number of psp-2 numbers.
Thm. (Pomerance) For $x \geq x_{0}: x^{2 / 7} \ll P_{2}(x) \ll x L(x)^{-1 / 2}$ with $L(x)=\exp \{\log x \log \log \log x / \log \log x\}$.

Def. $P(N)=\#\left\{a \in(\mathbb{Z} / N \mathbb{Z})^{*}, a^{N-1} \equiv 1 \bmod N\right\}$.
Thm. If $N=\prod_{i} p_{i}^{\alpha_{i}}, P(N)=\prod_{i} \operatorname{gcd}\left(p_{i}-1, N-1\right)$.
Proof:

Morain - Ecole polytechnique - Warwick Summer School - June 2013

Carmichael numbers

Def. composite N s.t. $P(N)=\varphi(N)$.
Ex. 541.
Rem. $P(N) /(N-1)=\varphi(N) /(N-1)$ close to 1 .
Thm.(Alford, Granville, Pomerance, 1992) There are infinitely many Carmichael numbers.

More properties of Carmichael numbers:

1. N is squarefree.
2. For all $p|N, p-1| N-1$ (equivalently $\lambda(N) \mid N-1$).
3. N has at least three prime factors.

The test

function isComposite(N)

1. Choose a at random in $\mathbb{Z} / N \mathbb{Z}-\{0\}$.
2. Compute $g=\operatorname{gcd}(a, N)$; if $g>1$, then return (yes, $g \mid N)$.
3. if $a^{N-1} \not \equiv 1 \bmod N$, then return (yes, a)
otherwise return I don't know.
Cost. $O((\log N) \mathrm{M}(\log N))$; typically $O\left((\log N)^{3}\right)$, asymptotically $\tilde{O}\left((\log N)^{2}\right)$.

Prop. Proba("I don't know") $=P(N) /(N-1)$.
Proof. Probability of yes is:

$$
\left(1-\frac{\varphi(N)}{N-1}\right)+\frac{\varphi(N)}{N-1}\left(1-\frac{P(N)}{\varphi(N)}\right) . \square
$$

Rem. if N is prime, proba is $1 \ldots$!
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad
B) Euler and Solovay-Strassen

Idea: (Euler) if N is prime and $\operatorname{gcd}(a, N)=1$, then $a^{(N-1) / 2} \equiv\left(\frac{a}{N}\right) \bmod N$.
$\mathrm{Pb}: 2^{(1105-1) / 2} \equiv\left(\frac{2}{1105}\right) \bmod 1105$; this is an Euler pseudoprime to base 2 (epsp-2). There are an infinite number of them.

Prop. $E_{2}(x) \leq P_{2}(x)$.
Def. $\mathcal{E}(N)=\left\{a \in(\mathbb{Z} / N \mathbb{Z})^{*}, a^{(N-1) / 2} \equiv\left(\frac{a}{N}\right) \bmod N\right\} ; E(N)=\# \mathcal{E}(N)$.
Prop. $\mathcal{E}(N)$ is proper subgroup of $(\mathbb{Z} / N \mathbb{Z})^{*}$.
Coro. $E(N) / \varphi(N) \leq 1 / 2$.

The exact value of $E(N)$

Thm. (Monier) Write $N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ where p_{i} are distinct odd primes, $\alpha_{i} \geq 1$. Write $N=1+2^{s} t$ with t odd and $p_{i}=1+2^{s_{i}} t_{i}$ with t_{i} odd.
Assume $s_{1} \leq s_{2} \leq \cdots \leq s_{k}$ and put $T_{i}=\operatorname{gcd}\left(t, t_{i}\right)$,
$n_{i}=\operatorname{gcd}\left((N-1) / 2, p_{i}-1\right)$ and $\mathcal{N}=\prod_{i} n_{i}$. Then

$$
E(N)=\delta(N) \mathcal{N}
$$

where

$$
\delta(N)= \begin{cases}2 & \text { if } s=s_{1} \\ 1 / 2 & \text { if } \exists i, \alpha_{i} \text { odd and } s_{i}<s \\ 1 & \text { otherwise. }\end{cases}
$$

Proof. exercise.

The test

function isComposite2(N)

1. Choose a at random in $\mathbb{Z} / N \mathbb{Z}-\{0\}$.
2. Compute $g=\operatorname{gcd}(a, N)$; if $g>1$, then return (yes, $g \mid N$).
3. If $a^{(N-1) / 2} \not \equiv\left(\frac{a}{N}\right) \bmod N$ then return (yes, a)
else return I don't know.
Prop. Proba("I don't know") $=E(N) /(N-1) \leq 1 / 2$.
Coro. isComposite? $\in \mathbf{R P}$ (hence isPrime $? \in \mathbf{c o}-\mathbf{R P}$).
Miller (1975): $a=2,3, \ldots$; Ankeny-Montgomery-Lenstra-Bach: if an adequate Riemann hypothesis is true, then the smallest witness is $<2(\log N)^{2}$, yielding a deterministic $O\left((\log N)^{3} \mathrm{M}(\log N)\right)$ algorithm.

C) Artjuhov-Miller-Rabin

The test

function isComposite3(N)

1. Choose a at random in $\mathbb{Z} / N \mathbb{Z}-\{0\}$.
2. Compute $g=\operatorname{gcd}(a, N)$; if $g>1$, then return (yes, $g \mid N)$.
3. If $\left(A M R_{a}\right)$ then return (yes, a)
else return I don't know.
Thm. spsp- $a \Rightarrow \operatorname{epsp}-a$.
Def. $F(N)=\#\left\{a \in(\mathbb{Z} / N \mathbb{Z})^{*},\left(A M R_{a}\right)\right.$ is satisfied $\}$.
Thm. (Monier)

$$
F(N)=\left[1+\frac{2^{k s_{1}}-1}{2^{k}-1}\right] \prod_{i=1}^{k} T_{i} .
$$

Coro. $F(N) /(N-1) \leq 1 / 4$.

Numerical tables

Building primes?

x	$P_{2}(x)$	$E_{2}(x)$	$F_{2}(x)$	$C(x)$	$\pi(x)$
10^{4}	22	12	5	7	1229
10^{5}	78	36	16	16	9592
10^{6}	245	114	46	43	78498
10^{7}	750	375	162	105	664579
10^{8}	2057	1071	488	255	5761455
10^{9}	5597	2939	1282	646	50847534
10^{10}	14884	7706	3291	1547	455052511
25×10^{9}	21853	11347	4842	2163	1091987405
10^{11}	38975	20417	8607	3605	4118054813
10^{12}	101629	53332	22407	8241	37607912018
10^{13}	264239	139597	58897	19279	346065536839
10^{14}				44706	3204941750802
10^{15}				105212	29844570422669
10^{16}				246683	279238341033925

F. Morain - École polytechnique - Warwick Summer School - June 2013

Other tests
function randomProbablePrime (b)
repeat
choose odd N at random in $\left[2^{b-1}, 2^{b}[\right.$
until N passes k tests.
$p_{b, k}=\operatorname{Proba}\left(X=N\right.$ is composite $\mid Y_{k}=N$ passes k tests $)=?$
Rem. What we know is
$\operatorname{Proba}\left(Y_{k}=N\right.$ passes k tests $\mid X=N$ is composite $) \leq(1 / 4)^{k}$.
Thm. (Burthe, 1996) $\forall b \geq 2, \forall k \geq 1, p_{b, k} \leq 4^{-k}$.

Goal: reduce the non-answer probability while keeping the computations fast.

- Algebraic extensions: Lucas (degree 2), Adams \& Shanks, Gurak.
- Elliptic curves: Gordon.
- Combinations of the preceding: no examples known of spsp- a and Lucas pseudoprime, for instance.
- Frobenius pseudoprimes à la Grantham: $\leq 1 / 7710$. Cf. also Zhang.

II. Primality tests

A) Fermat
B) En route for \mathbf{P}
C) Agrawal, Kayal, Saxena.

A) Fermat

Thm. N is prime if and only if $(\mathbb{Z} / N \mathbb{Z})^{*}$ is cyclic of ordre $N-1$:

$$
\left.\begin{array}{l}
a^{N-1} \equiv 1 \bmod N \\
\forall p \mid N-1, a^{\frac{N-1}{p}} \not \equiv 1 \bmod N
\end{array}\right\} \Rightarrow N \text { is prime }
$$

Certificate: $(N,\{p \mid N-1\}, a) \Rightarrow$ isPrime? $\in \mathbf{N P}$.
Thm. (Pocklington, 1914) Let s s.t. $s \mid N-1$

$$
\left.\begin{array}{l}
a^{N-1} \equiv 1 \bmod N \\
\forall q \text { prime } \mid s, \operatorname{gcd}\left(a^{\frac{N-1}{q}}-1, N\right)=1
\end{array}\right\} \Rightarrow \forall p \mid N, p \equiv 1 \bmod s
$$

Coro. $s>\sqrt{N} \Rightarrow N$ is prime.
Rem. factorisation is not polynomial time in the classical world (see later), but polynomial quantic; search for a is not either (except if Riemann is true or randomized approach).

Example of use

Hyp. We know how to find all prime factors <20.

$$
\begin{array}{ll}
N_{0}=100003, & N_{0}-1=2 \times 3 \times 7 \times N_{1}, \\
N_{1}= & 2381,
\end{array} N_{1}-1=2^{2} \times 5 \times 7 \times 17
$$

p	2	5	7	17
$3^{\left(N_{1}-1\right) / p} \bmod N_{1}$	2380	1347	1944	949

$\Rightarrow N_{1}$ is prime

$$
\begin{gathered}
s=N_{1}>\sqrt{N_{0}} \\
2^{N_{0}-1} \equiv 1 \bmod N_{0}, \operatorname{gcd}\left(2^{\left(N_{0}-1\right) / N_{1}}-1, N_{0}\right)=1
\end{gathered}
$$

$\Rightarrow N_{0}$ is prime
Rem. We have got a (recursive) primality proof of depth $O(\log N)$.

Morain - École polytechnique - Warwick Summer School - June 2013

\qquad 17/30
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad

The $N+1$ test

For a_{0} and a_{1} integers, let:

$$
A_{N}=A_{N}\left(a_{0}, a_{1}\right)=\mathbb{Z} / N \mathbb{Z}[T] /\left(T^{2}+a_{1} T+a_{0}\right)
$$

and $\Delta=a_{1}^{2}-4 a_{0}$.
Elements of A_{N} are $u+v \alpha$ with u, v dans $\mathbb{Z} / N \mathbb{Z}$, computations made using $\alpha^{2}=-a_{1} \alpha-a_{0}$.
Thm. Let p be a prime $\nmid \Delta$.

- if $(\Delta / p)=-1$, then $A_{p} \sim \mathbb{F}_{p^{2}}$;
- if $(\Delta / p)=+1$, then $A_{p} \sim \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.

Proof: If $(\Delta / p)=-1, T^{2}+a_{1} T+a_{0}$ is irreducible, hence we recover the classical construction of $\mathbb{F}_{p^{2}}$.
If $(\Delta / p)=+1, T^{2}+a_{1} T+a_{0}=(T-u)(T-v)$ with $u \not \equiv v \bmod p$.
Therefore

$$
\left.\left.A_{p} \sim(\mathbb{Z} / p \mathbb{Z})[T] /(T-u)\right) \times(\mathbb{Z} / p \mathbb{Z})[T] /(T-v)\right) \sim \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} . \square
$$

Thm. Let N be an odd integer. Assume that we found a_{0}, a_{1} s.t.
$\Delta=a_{1}^{2}-4 a_{0}$ satisfies $(\Delta / N)=-1$. Write $N+1=\prod_{i} q_{i}^{\beta_{i}}$. Suppose we have found $\theta \in A_{N}=A_{N}\left(a_{0}, a_{1}\right)$ s.t.

$$
\theta^{N+1}=1 \operatorname{in} A_{N}
$$

and for all i :

$$
\theta^{(N+1) / q_{i}}=u_{i}+v_{i} \alpha \text { with }\left(u_{i}-1, v_{i}, N\right)=1
$$

Then N is prime.
Proof : assume N is composite and let $p \mid N$ with $p \leq \sqrt{N}$.
Reduce $A_{N} \bmod p$ towards A_{p} :

$$
\tau=\theta \bmod p=(u \bmod p)+(v \bmod p) \alpha .
$$

We get

$$
\tau^{N+1}=1 \text { in } A_{p}
$$

and

$$
\tau^{(N+1) / q_{i}} \neq 1 \text { in } A_{p}
$$

which proves τ has ordre $N+1$ in $\left(A_{p}\right)^{*}$.
Hence $N+1 \leq \# A_{p}=p^{2}$, contradiction. \square

Remarks

Choosing θ : using $\bar{\alpha}=-a_{1}-\alpha$ (conjugate), enough to choose

$$
\theta=\frac{\alpha+m}{\bar{\alpha}+m}=\frac{\left(m^{2}-a_{0}\right)+\left(2 m-a_{1}\right) \alpha}{m\left(m-a_{1}\right)+a_{0}}
$$

for varying m.
Ex. Consider $N=101$; $N+1=2 \times 3 \times 17$. Take $a_{1}=-2$, $a_{0}=-1$,
$\Delta=8$ and $\left(\frac{8}{101}\right)=\left(\frac{2}{101}\right)=-1$. Take $\theta=1+2 \alpha$ (using $\left.m=1\right)$

$$
\begin{gathered}
\theta^{102}=1, \theta^{102 / 2}=100, \operatorname{gcd}(100-1, N)=1 \\
\theta^{102 / 3}=47 T+3, \operatorname{gcd}(3-1,47, N)=1 \\
\theta^{102 / 17}=23 T+85, \operatorname{gcd}(85-1,23, N)=1
\end{gathered}
$$

F.Morain - Ecole polytecchnique - Wanvick Summer School - June 2013 \qquad
\qquad

- Gauss and Jacobi sums: L. Adleman, C. Pomerance, S. Rumely (1980, 1983); H. Cohen, H. W. Lenstra, Jr (1981-1984) ; H. Cohen, A. K. Lenstra (1982, 1987). W. Bosma \& M.-P. van der Hulst (1990) ; P. Mihăilescu (1998). deterministic $O\left((\log N)^{c_{1} \log \log \log N}\right)$.
- almost RP: Goldwasser and Kilian using elliptic curves (1986); practical algorithm by Atkin (1986; later FM).
- RP: Adleman and Huang using hyperelliptic curves (1986ff)
- Pocklington-like theorems exist.
- Deduce from this the degree 2 pseudoprimes.
- All this can be reformulated in terms of Lucas sequences.
- Lucas-Lehmer: $M_{m}=2^{m}-1$ is prime iff for $L_{0}=4$, $L_{n+1}=L_{n}^{2}-2 \bmod M_{m}$, one has $L_{m-2}=0[$ using $\sqrt{3}]$.
\Rightarrow largest known primes, e.g., $M_{43112609}$ with $12,978,189$ decimal digits.

Lower bound (?) for primality proving algorithms $O\left((\log N) \mathrm{M}\left(M_{p}\right)\right)$ (super fast arithmetic!).
C) Agrawal, Kayal, Saxena (AKS)

First idea: (Agrawal, Biswas - 1999)
Prop. N is prime iff $P(X)=(X+1)^{N}-X^{N}-1 \equiv 0 \bmod N$.
In pratice: choose $Q(X) \in \mathbb{Z} / N \mathbb{Z}[X]$ at random of degree $O(\log N)$. If

$$
(X+1)^{N} \not \equiv X^{N}+1 \bmod (Q(X), N)
$$

then N is composite.
The probability of failure is bounded by $1-1 /(4 \log N)$.

Conjecture: If N is composite, there exists $1 \leq r \leq \log N$ s.t. $P(X)$ is not divisible by $X^{r}-1$ modulo N.

Agrawal, Kayal, Saxena

Thm. Let N, s be integers, r a prime number and $q=P(r-1)$. If: (0)

$$
\binom{q-1+s}{s}>N^{2\lfloor\sqrt{r}\rfloor}
$$

(i) $N \neq M^{k}, k>1$;
(ii) N has no prime factor $\leq s$;
(iii) $N^{(r-1) / q} \bmod r \notin\{0,1\}$;
(iv) $\forall a, 1 \leq a \leq s,(X-a)^{N} \equiv X^{N}-a \bmod \left(X^{r}-1, N\right)$;
then N is prime.
For a proof, see FM's Bourbaki article.

Analysis

Cost: s computations of X^{N} modulo ($X^{r}-1, N$); one computation costs $O(\log N)$ products of degree r polynomials, hence:

$$
O\left(s(\log N) \mathrm{M}_{P}(r) \mathrm{M}(\log N)\right)
$$

Prop. If $s=\lfloor 2\lfloor\sqrt{r}\rfloor \log N / \log 2\rfloor+1$ and $q \geq 2 s$, then

$$
\binom{q-1+s}{s}>N^{2\lfloor\sqrt{r}\rfloor}
$$

Proof:

$$
\binom{q-1+s}{s}>(q / s)^{s} \geq 2^{s}>N^{2\lfloor\sqrt{r}\rfloor}
$$

Coro. $O\left((\log N)^{2} r^{1 / 2} \mathrm{M}_{P}(r) \mathrm{M}(\log N)\right)$.
Analytical number theory: we can find $r=(\log N)^{2 /(2 \delta-1)}$ for $\delta \in] 0.5,0.676]$.

What next?

- cf. D. Bernstein homepage for more on the history of improvements to the basic test.
- Including: H. W. Lenstra, Jr. $\left(\tilde{O}_{e f f}\left((\log N)^{12}\right)\right.$ or $\left.\tilde{O}\left((\log N)^{8}\right)\right)$, S. David.
- Cleaner version of AKS: $\tilde{O}_{e f f}\left((\log N)^{10.5}\right)$ or $\tilde{O}\left((\log N)^{7.5}\right)$.
- H. W. Lenstra, C. Pomerance : $\tilde{O}_{\text {eff }}\left((\log N)^{6}\right)$.
- P. Berrizbeitia / Q. Cheng :

Let r prime s.t. $r^{\alpha} \| N-1, r \geq \log ^{2} N ; 1<a<N$ s.t. $a^{r^{\alpha}} \equiv 1 \bmod N, \operatorname{gcd}\left(a^{r^{\alpha-1}}-1, N\right)=1$,
$(X+1)^{N}=X^{N}+1 \bmod \left(X^{r}-a, N\right)$, then N is prime. Heuristic complexity would be $O\left((\log N)^{4}\right)$ for these numbers.

- D. Bernstein, P. Mihăilescu: use $e \mid N^{d}-1$; inject cyclotomic ideas, $\tilde{O}\left((\log N)^{4}\right)$.
- D. Bernstein has an AKS example for $2^{1024}+643$ (13 hours on $800 \mathrm{MHz} \mathrm{PC}, 200 \mathrm{Mb}$ memory).

Rem. Non effective.

V. Conclusions for primality

Which algorithm?

- easy to understand / implement, fast: compositeness tests;
- fast, proven: Jacobi;
- fast, heuristic: ECPP;
- certificate: ECPP;
- deterministic polynomial: AKS.

Some records:

14/07/03: FM, 7000dd with mpifastECPP.
19/08/03: Franke/Kleinjung/Wirth, 10000dd.
06/06: FM, 20,562 dd with mpifastECPP.
15/10/10: FM, 25,050 dd with mpifastECPP (2000 CPU days).
11/12/12: Franke/Kleinjung/Decker/Grosswendt, 30,008 using CIDE.

What's left to be done?

Open questions:

- Is $\tilde{O}\left((\log N)^{4}\right)$ the best running time for all numbers? Compare: $O\left((\log N)^{2}\right)$ for Fermat or Mersenne numbers.

Claim (Lukes, Patterson, Williams): $\tilde{O}\left((\log N)^{3}\right)$ under GRH? (pseudosquares or pseudocubes).

- Combination of tests?

