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[. Introduction

Input: an integer N;

Output: N = ]_[f.‘zlpf” with p; (proven) prime.

1

Major impact: estimate the security of RSA cryptosystems.

Also: primitive for a lot of number theory problems.

How do we test and compare algorithms?
e Cunningham project,
e RSA Security (partitions, RSA keys) — though abandoned?
e Decimals of .
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What is the factorization of a random number?

N = NN, - - - N, with N; prime, N; > Nit1.
Prop. r <log, N; 7 = loglogN.

Size of the factors: Dy = limy_, 1 log N/ log N exists and

Dy,
0.62433
0.20958
0.08832

W N ==

“On average”
Ny~ N%2 Ny~ NO N3 =~ NOO°.

= an integer has one “large” factor, a medium size one and a bunch
of small ones.
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Il. Smoothness testing

Def. a B-smooth number has all its prime factors < B.

B-smooth numbers are the heart of all efficient fac-
torization or discrete logarithm algorithms.

De Bruijn’s function: ¢ (x,y) = #{z < x,zis y — smooth}.

Thm. (Candfield, Erdds, Pomerance) V € > 0, uniformly in
y > (logx)'*¢, as x — co

X
YY) = ey

with u = logx/log y.

Rem. Algorithms for computing v (x, y) by Bernstein, Sorenson, etc.
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B-smooth numbers (cont'd)

Prop. Let L(x) = exp (y/logxloglogx). For all real a > 0, 8 > 0, as

X — OO
xOé

Y(x, L(x)7) = L) 5o

Ordinary interpretation:

a number < x® is L(x)?-smooth with probability

P (x*, L(x)?) _ L(x) B,

x(X
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Trial division

Algorithm: divide x < X by all p < B, say {p1,p2,---,Pm}-

Cost: all p < B costs you 7(B) divisions steps. More precisely

Z T(x,p) = O(mlgXlgB).

p<B

Implementation: use any method to compute and store all primes
< 2% (one char per (p;1 — pi)/2; see Brent).

Useful generalization: given x;, x,, ... ,x, < X, can we find the
B-smooth part of the x;’'s more rapidly than repeating the above in
O(nmlgBlgX)?

Yes: use product trees and fast arithmetic.
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lIl. Pollard’s RHO method

Prop. Letf : E — E, #E = m; X,+1 = f(X,,) with X, € E.

Xyt

Xo Xi X> Xu—1
X,u—i—)\—l

Thm. (Flajolet, Odlyzko, 1990) When m — oo

Xwﬁwd%%&&ﬂ/ﬁ
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Epact

Prop. There exists a unique e > 0 (epact) s.t. p < e < XA+ p and
X5, = X,. Itis the smallest non-zero multiple of A that is > u:if u =0,
e=Xandif u>0,e=[£]\

Floyd’s algorithm:
X <—= X0; Y <—- X0; e <- 0;
repeat
X <= £(X); Y <= £(£(Y)); e <- e+l;
until X = Y;

Thm.z ~ /2% ~ 1.03,/m.
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Application to the factorization of N

Idea: suppose p | N and we have a random f mod N s.t. f mod p is
“random”.

function f (x, N) return (x> +1) mod N; end.
function rho (N)
1. [initialization] x:=1; y:=1;
2. [loop]
repeat
x:=f(x, N); y:=f(£(y, N), N);
g:=gcd (x-y, N);
until g > 1;
3. return g;
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Theoretical results

Conjecture. RHO finds p | N using O(,/p) iterations.

Thm. (Bach, 1991) Proba RHO with f(x) = x*> + 1 finding p | N after k
iterations is at least .
()

~2yo(p3?
, TowT)

when p goes to infinity.
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Practice

e Choosing f:

» some choices are bad, as x — x> et x — x> — 2.
» Tables exist for given f’s.

e Trick: compute ged(] [ (x> — x;), N), using backtrack whenever
needed.

¢ Improvements: reducing the number of evaluations of f, the
number of comparisons (see Brent, Montgomery).
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IV. Pollard’s p — 1 method

History:
e Invented by Pollard in 1974.

e Williams: p + 1.
e Bach and Shallit: ¢, factoring methods.
e Shanks, Schnorr, Lenstra, etc.: quadratic forms.

e Lenstra (1985): ECM.
Overall scheme:
¢ First phase is generic.

e Second phases:

» generic: standard, Brent;
» adapted to finite fields: BSGS + fast convolutions.
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First phase

Idea: assume p | N and a is prime to p. Then
(pla”' —1landp|N)=p|ged(@ ' —1,N).
Generalization: if R is known s.t. p — 1 | R,
gcd((a® mod N) — 1,N)

will yield a factor.

How do we find R? Only reasonable hope is that p — 1 | B;! for
some (small) B;. In other words, p — 1 is B;-smooth.

Algorithm: R =[] ,ap p® =lem(2,...,B)).

Rem. (usual trick) we compute ged([[,((a™ — 1) mod N), N).
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Second phase: the classical one

Let b = a® mod N and ged(b — 1,N) = 1.
Hyp. p — 1 = Qs with O | R and s prime, B; < s < B,.

Test: is gcd(b* — 1,N) > 1 for some s.
s; = j-th prime. In practice all s;+; — s; are small (Cramer’s conjecture
implies ;.1 —s; < (log B2)?).

e Precompute c¢s = b° mod N for all possible § (small);

e Compute next value with one multiplication
b+t = bYcy,, 5 mod N,

Cost: O((log B,)?) + O(log s;) + (7(B,) — 7(By)) multiplications
+(m(B2) — 7(By)) gcd’s. When B, > By, 7(B,) dominates.
Rem. We need a table of all primes < B,; memory is O(B,).
Record. Nohara (66dd of 960'"° — 1, 2006; see

http://www.loria.fr/~zimmerma/records/Pminusl. html) .
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Second phase: using the birthday paradox

Consider B = (b mod p); s := #B.

If we draw ~ /s elements at random in B, then we have a collision
(birthday paradox).

Algorithm: build (b;) with by = b, and

boi b? mod N with proba 1/2,
#17 b?bmod N with proba 1/2.

We gather r = /s values and compute

r

f[ [[®: — ;) = Disc(P(x)) = | P'(5:) where P(X) = [ [ (X — b))

i=1 ji i=1

Using fast polynomial algorithmes takes O(M(r) log r) operations
modulo N.
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V. ECM

e Due to Lenstra in 1985.

¢ Improvements: Chudnovsky & Chudnovsky; Brent;
Montgomery; Suyama; Atkin-FM; etc.

e Powerful method since complexity depends on p | N: 30dd
factors easy; record 79dd (2012), see http:
//wwwmaths.anu.edu.au/~brent/ftp/champs.txt.

¢ Reference implementation: GMP-ECM (P. Zimmermann); see
Zimmermann & Dodson.
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A) Pseudo-addition

Let ged(4a® + 27b*,N) = 1 and
Ey={(x,y,2), Yz=x +axz>+ bz’ mod N } U{ Oy },
Reduction for p | N
Tp - EN — Ep
ON = Op
(x,y,z) + (xmod p,y mod p,z mod p).

It is possible to define properly a group law on Ey (Bosma &
Lenstra).

Or: add M, and M, as if N were prime and wait for something to
happen.
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B) Factoring with elliptic curves: theory
Ex. Let N = 143. Consider P = (0,1, 1) on

Ey:y*=x"+x+ 1 modN.

Computing [3!]P:

P 0=[2lP 2]0 20 ® 0 =[6]P
N [ (0,1,1) | (36,124,1) | (127,71, 1)
11| 0,1,1)| (3,3,1) (6,5,1) (0,10,1)
13 (0,1,1)| (10,7,1) | (10,6,1) (0,1,0)

From the last line, we add two opposite points mod 13 and
A= (124 —71) x (36 — 127) " mod 143.

but the inverse leads to
ged(36 — 127, 143) = ged(52, 143) = 13.

Verification: #E;; = 14 (resp. #E;3 = 18 =2 x 3%); ord(Py;) = 7
(resp. ord(Py3) = 6).
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The algorithm

procedure ECM_PLAIN(N, J)

1. d:=1;
2. choose random x0,y0,a in [0..N-1];
3. b:=(y072-x0%3-a*x0) mod N;
4. Delta:=gcd(4*xa~3+27xb*2, N);
5. if Delta=N then goto 2; // bad luck!
6. if 1 < Delta < N then

return Delta; // incredible luck!
7. P:=(x0,y0);

// we operate on Ey:y> =x’+ax+bmod N containing P
8. for j:=2..J do

P:=[j]1P;

if some factor d is found then return d;
9. if d=1 then goto 2; // same player try again

Rem. the easiest way to have (E, P) is the one given, since we
cannot compute ,/z modulo N.

Question: what is selecting an Edwards pair (E, P) at random?
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Analysis of ECM_PLAIN

Conj. (H. W. Lenstra, Jr.) ECM finds p | N in average time
K(p)(logN)> where K(x) is s.t.

K(x) = exp (\/(2 +o(1)) logxloglogx> = L(x)ﬁ"‘”(l)

when x — 400, using L(p)'/v2+°() curves.
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Proof sketch

ECM_PLAIN succeeds whenever #E, | J! for some J.

Heuristically: #E, ~ p = #E, behaves like a random number ~ p
= proba #E, | J! ~ 14(p,J).

Choosing J = L(p)? yields
lqb(p,]) - L(p)—l/(Zﬁ)Jrv(l)
p

= we need L(p)'/??) elliptic curves.

Running time: computing [J!]P is O(JlogJ) = O(L(p)?+°(")) so total
time is

O(L@)BH/(M)-*—O(I))
minimized for 8 = 1/v/2. 0
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In practice

First factorizations at the end of 1985.

Equations and addition laws: all are possible, with different merits:

e Chudnovsky & Chudnovsky;

e Montgomery: by* = x* + ax? + x, special multiplication algorithm
(PRAC);

e Edwards, Kohel, etc.

Algorithmic improvements: phase 1 (addition-subtraction chains),
phase 2 (fast polynomial arithmetic).

F. Morain — Ecole polytechnique — Warwick Summer School — June 2013

22/43

C) Advanced ECM

Thm. (Lenstra 1987, Howe 1993) Fix p. Then

if pZ£ 1 mod /¢¢,
if p =1 mod ¢¢

1
ol b

Probag x, (¢ | #E(F),)) ~ { WY
g(z+b—l(€2_l)

where b = |a/2], c = [a/2].
(Proof depends on properties of the modular curve X,(¢)).

Ex. For ¢ =2, (x,y) is of order 2 iff y = 0, hence look at roots of
x> + ax + b, that can be 0, 1 or 3, hence in 2 cases out of 3.
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Another probability model

(Barbulescu, Bos, Bouvier, Kleinjung, Montgomery, ANTS X)

In real life: start from E/Q and study its reduction modulo p as p
varies.

Thm. Proba(E(F,)[{] ~ Z/(Z x Z,/{Z) = 1/#Gal(Q(E[(])/Q).

Ex. E; : y* = x* + 5x + 7, for which [Q(E;[3]) : Q] = 48. One
computes proba = 1/48 (compared to 20/48 for Z/3Z).

Moreover, (complicated) formulas for Proba(¢* | #E(F,)), showing
that it is > 1/¢.
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D) Curves with large torsion groups for ECM

Thm. E(F,) = E; x Ey, m; | my, my | p — 1.

In general: m; < m,, so P € E,. What really matters is the
smoothness of ord(P) | m,.

Goal: increase smoothness of m,, either forcing m; to be large, or
my to have a given divisor.

What can be done:

e (Dy) Find some E s.t. E,,(K) contains some (large)
T =7/M\Z x Z/M,Z, in which case E mod p will have M, | m;,
M, | my (if (p) splits in K).

¢ (E.) Find an infinite family ditto.

e (P) ditto plus a point P of infinite order.

¢ Impose some model (Weierstrass, Edwards); sometimes
models impose themselves.
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The big picture

General problem: given K C Q, what are the possible torsion
groups for E(K)?

Thm. (Mazur, 1977) finite list for Q.

Thm. (Merel, 1996) Let E/K where K has degree d > 1. If E(K) has
a point of order p, then p < @>¢.

= study the modular curves X, (M, M,).

Def. X](M],Mz) with M, ’ Mz,Xl(M) :Xl(l,M), X](M,M) = X(M)

Rem. X;(M,, M,) enjoys a so-called modular interpretation, but we
do not need it in this talk.
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X1 (M) by hand

M=260P=P<—=Y=X+AX+B=0.
M = 3: [2]P = ©P is equivalent to

2], =X < (—12XY> +9X* + 6 X°A + A?),

2, =Y <= 3X* +A) (—12XY* +9X* + 6 X’A + A?) .
=3X*+6X°A—A’+12XB=0.
Making A = 3k, B = 2k gives 3X* + 18 X%k — 9k* + 24 Xk = 0

> algcurves[genus] (%, X, k);

0
> algcurves [parametrization] (curv,X,k,t);
# van Hoeij

_ (2+1)t £ 2+1)
(X, k) = (—2 S A/ (t2—3)2> .

Finish with k = j/(1728 — ).
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Xi(M) as a curve

(Kim and Koo, Bull. Austral. Math. Soc. 54, 1996) g(X,(M)) = 0 for
1<M<4and

M? 1 1
st =1+ 5T (1- %) 3 3 etaoisa)
plM p d|M,d>0
Rem. g(X;(¢)) = (¢ —=5)(¢ —7)/24.
Ex. this is an integer for all prime ¢ > 5.
Coro. g(X;(M)) =0for1 <M < 10, 12.
g(Xi(M)) =1forM e {11, 14, 15}.
More computations:

¢ By hand: Reichert (Math. Comp. 1986), Sutherland (Math.
Comp. 2012).

e Using modular forms: Baaziz (Math. Comp. 2010).
e More properties: Rabarison 2010.

F. Morain — Ecole polytechnique — Warwick Summer School — June 2013 28/43




The situation over Q

Thm. (Mazur, 1977): the only possible torsion groups for E(Q) are

7./MZ; M=1,2,...100r 12,
7.)27 x /JM>Z; M, = 2,4,6,8.

All these X, (M, M,) have genus 0 and Kubert gave Weierstrass
parametrizations for them (— E.).

Montgomery: X;(12) (for P.).

Atkin, M.: (P..) for X;(M,) with M, € {5,7,9,10} and X, (2, 8).
BeBiLaPe09: things redone for Edwards form.

See also Rabarison 2010 for X,(2,4) and X, (2, 6) (for EL).
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The situation for quadratic fields (1/2)

Thm. (Kenku/Momose; Kamienny) Let K be a quadratic field. The
only possible torsion groups for E,,(K) are among

Z/MZ,1 <M < 18,M # 17,
7.)27 x 7.JMyZ,M, € {2,4,6,8,10,12},
7.)37 x 7.3, 7.)37 x 7./6Z, ZLJAZ x T7./4Z.
Given K, not all possible 7”’s can actually been found!

Thm. (Najman, 2010-2011)
1) For K = Q(¢4), Mazur + Z/4Z x Z7./AZ.
2) For K = Q((3), Mazur + Z/37 x 7./3Z, 7./3Z x 7/6Z.

For a given K, see the methods in Kamienny/Najman, 2012.
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The situation for quadratic fields (2/2)

M, [ M> | g Ex P
31310 Q(¢), Brier/Clavier
4 1410 Q(C4), Brier/Clavier
301610 Q(G), Brier/Clavier
1 | 11 | 1| many Q(v/d),Rabarison some
1 | 14 | 1 | many Q(v/d), Rabarison some
1 | 15 | 1 | many Q(v/d), Rabarison some
1 | 13 | 2 | some Q(+/d), Rabarison
1 | 16 | 2 | some Q(v/d), Rabarison
1 | 18 | 2 | some Q(v/d), Rabarison
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The case Z /37 x 7./3Z

Hessian form:
U+ V3 + W =3DUVW,

with D3 # 1.

Three points at co: 2, = (1 : —w": 0), 0 < r < 3, where
w4+ w+1=0.Take Oz = Q.

Nice addition law: same code for © and [2] and &, since
Olu:viwl = u:w

Also:
RIP=0p<=P=[u:u:ll.

B|JP=0p<=u=00rv=0.

Action: [u:v:w|® = [Gu: Gv:wl.
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The case 7Z/47 x 7./47 (Brier/Clavier)

Start from: Z /27 x Z./27: Y> = (X —u)(X —v)(X + u +v).

P = (x,y) = [2]Q <= x — u,x — v and x + u + v are squares.
a=—=2TX"(7* 4+ 147" +1),b = 54\°(7"* = 337° = 337* 4 1).

Point of infinite order:

V243
v

T= =87,
See BrCI10 (Nancy) for more.
Rem. Can be put in Montgomery form.

Use: p = 1 mod 4 for p | N | b + 1 (more later).
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Higher degree number fields

Particular cases:

e Cubic: Jeon, Kim, Schweizer (AA 2004),
Z/MZfor1 <M <20,M # 17,19,
)27 x Z./M,yZ for 1 < M, /2 < 7 (conjecturally).
See also Jeon/Kim/Lee 2011.

e Quartic: Jeon, Kim, Park (JLMS 2006),
Z/MZfor 1 <M <24, M # 19,23,
Z/ZZ X Z/MzZ for 1 < M2/2 <9,
737 x Z/MyZ for 1 < M, /3 < 3,
Z/4Z X Z/MzZ for 1 < M2/4 <2,
Z7)57 x 7./57., 7.]67Z x Z.]6Z (conjecturally).
See also Jeon/Kim/Lee 2012, 2013.

Implications for ECM: scarce, since these are families with varying
field K;.
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JeKiLe12

7.)27. x 7J147Z, 7.)27, % 7./16Z, 7./27. x 7,/187: over some

Q(VA + Bi/d,).

Z/3Z x Z/9Z: Q(\/3t(4 — £), V=3).
ZJAZ x 7.)87: Q(v/—1,/4ir® + 1).
Z/6Z x 7/6Z: Q(v/—3, V8 + 1).
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The case Z /57 x 7./5Z

(See, e.g., Kohel11)

Model for X (5):
a(u) = —(u* — 228u® + 494u* 4 228u + 1) /48;

b = (u® + 5221 — 10005u* — 10005u> — 522u + 1)/864;

Prop. Letu = . Then E, : Y> = X3 + a()X + b(#°) has full 5-torsion
over Ks = Q(¢s) (model for X(5)).

Interesting for p = 1 mod 5;e.g., p | N | b — 1.
Faster step 2 with optimal degree.

Pb: no point of infinite order known on Q(z).
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X(5): contd

tUE + UyUs — U Uy = 0,

tUoUy + Uy Uy — U3 = 0,

U? + UpU, — U3Uy = 0,

UU, + UpgUs — U2 =0,

U3 — U Us + tUyUy = 0.
Base point: Oy = (0:1:1:1:1).

Projection to (Uy : U, : Uy):

U + U — (t = 3)UIUUy + (2t — WU ULUG — tU3 = 0.
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Back to quadratic fields: Rabarison’s thesis

Gives parametrizations for all X;(M) of small genera.

Largest example of g = 1: X, (15) : 82 +ts +5 = £3 + 2.

d=1—c— (2 —t)s+ (P +54+92 + 72 +4t+ 1)
- - (t+ 132 +14+1) )
p M =22~ Ds+ P+ (432 +141)
= <l+ 1)6([2 —|—l—|— 1) .
General form of an elliptic curve with a 15-torsion point (namely
Py = (0,0)):

E:y* 4+ axy + by = x* + bx*
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X:(15) as a curve

Prop. X;(15)(Q) has rank 0 and X;(15)(Q)rs = Z/4Z.
Prop. If K is quadratic, then
Z)27 % LJAZ if K = Q(v/—15),

Xl(ls)(K)tors = { Z/SZ if K = Q(\/j) or Q(\/§)7
ZJAZ otherwise.
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X,(15) in ECM

Letting d vary, we can hit K = Q(+/d) for which X;(15)(K) has rank 1
and explicit point Py of infinite order. = we obtain an infinite family of
curves defined over Q(+/d) having torsion group Z/15Z.

Algorithm build(d, Px)
1. compute (1,s) = [k]|Px.
2. deduce a and b.

For instance, d =3 yields r = —1/2, s = —(1 + /3) /4.

Usable when v/3 mod N is known.

With non-zero proba, we get Z/30Z modulo p or Z/2Z x Z/30Z
modulo p.

Implementation in GMP-ECM: all cases X, (M) of genus 1 + table

of precomputed d, Px for |d| < 100. Would be easy to enlarge (with
Denis Simon’s pari program, Magma).
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A new project

Big numbers? Cunningham numbers too difficult to harvest, ditto
for many other tables.

Test numbers: X,, = 2%f — 3 for the special case d = 3 and all
2k < 1200.

With only 10 curves per number, B; = 108:
1288377494293776070458041778724723574112719 | Xi110-

ord(P)=[ <2, 1>, <3, 2>, <5, 1>, <101, 1>,
<2383, 1>, <6373, 1>, <216127, 1>, <2387303, 1>,
<34875647, 1>, <518647684813, 1> ]

Hope for more!
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Atkin’s trick

Pb. What if we do know a point of infinite order over E mod N?

Lemma. (AtM093) Let A = xj + axo + b mod N. Then (Ax, \?) is a
pointon Ey : Y2 = X3 4+ a\>X + bA3.

If (\/p) = +1for p | N, then E, will have the desired torsion.

= try several values of x;.
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Conclusions

o The quest for large torsion over Q is bound to finish. Result so
far: some extra families.

e Same work to be done for HECM?7??

More stuff in the dev version GMP-ECM, not discussed earlier:
e More ec forms.
e Addition-subtraction chains.
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