MPRI - Cours 2.12.2

F. Morain

Lecture II: Integer factorization

2013/06/26

\qquad
I. Introduction.
II. Smoothness testing.
III. Pollard's RHO method.
IV. Pollard's $p-1$ method.
V. ECM.
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad 1/43
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad

II. Smoothness testing

Def. a B-smooth number has all its prime factors $\leq B$.

> | B-smooth numbers are the heart of all efficient fac- |
| :--- |
| torization or discrete logarithm algorithms. |

De Bruijn's function: $\psi(x, y)=\#\{z \leq x, z$ is $y-$ smooth $\}$.
Thm. (Candfield, Erdős, Pomerance) $\forall \varepsilon>0$, uniformly in $y \geq(\log x)^{1+\varepsilon}$, as $x \rightarrow \infty$

$$
\psi(x, y)=\frac{x}{u^{u(1+o(1))}}
$$

with $u=\log x / \log y$.
Rem. Algorithms for computing $\psi(x, y)$ by Bernstein, Sorenson, etc.

B-smooth numbers (cont'd)

Prop. Let $L(x)=\exp (\sqrt{\log x \log \log x})$. For all real $\alpha>0, \beta>0$, as $x \rightarrow \infty$

$$
\psi\left(x^{\alpha}, L(x)^{\beta}\right)=\frac{x^{\alpha}}{L(x)^{\frac{\alpha}{2 \beta}+o(1)}}
$$

Ordinary interpretation:

a number $\leq x^{\alpha}$ is $L(x)^{\beta}$-smooth with probability

$$
\frac{\psi\left(x^{\alpha}, L(x)^{\beta}\right)}{x^{\alpha}}=L(x)^{-\frac{\alpha}{2 \beta}+o(1)} .
$$

III. Pollard's RHO method

Prop. Let $f: E \rightarrow E, \# E=m ; X_{n+1}=f\left(X_{n}\right)$ with $X_{0} \in E$.

Thm. (Flajolet, Odlyzko, 1990) When $m \rightarrow \infty$

$$
\bar{\lambda} \sim \bar{\mu} \sim \sqrt{\frac{\pi m}{8}} \approx 0.627 \sqrt{m} .
$$

Trial division

Algorithm: divide $x \leq X$ by all $p \leq B$, say $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$.
Cost: all $p \leq B$ costs you $\pi(B)$ divisions steps. More precisely

$$
\sum_{p \leq B} T(x, p)=O(m \lg X \lg B) .
$$

Implementation: use any method to compute and store all primes $\leq 2^{32}$ (one char per $\left(p_{i+1}-p_{i}\right) / 2$; see Brent).

Useful generalization: given $x_{1}, x_{2}, \ldots, x_{n} \leq X$, can we find the B-smooth part of the x_{i} 's more rapidly than repeating the above in $O(n m \lg B \lg X)$?

Yes: use product trees and fast arithmetic.
F. Morain -École polytechnique - Warwick Summer School - June 2013

Epact

Prop. There exists a unique $e>0$ (epact) s.t. $\mu \leq e<\lambda+\mu$ and $X_{2 e}=X_{e}$. It is the smallest non-zero multiple of λ that is $\geq \mu$: if $\mu=0$, $e=\lambda$ and if $\mu>0, e=\left\lceil\frac{\mu}{\lambda}\right\rceil \lambda$.

Floyd's algorithm:

```
X<- X0; Y <- X0; e <- 0;
repeat
    X <- f(X); Y <- f(f(Y)); e <- e+1;
until X = Y;
```

Thm. $\bar{e} \sim \sqrt{\frac{\pi^{5} m}{288}} \approx 1.03 \sqrt{m}$.

Application to the factorization of N

Idea: suppose $p \mid N$ and we have a random $f \bmod N$ s.t. $f \bmod p$ is "random".

```
function f (x, N) return ( }\mp@subsup{x}{}{2}+1)\operatorname{mod}N\mathrm{ ; end.
```

function f (x, N) return (}\mp@subsup{x}{}{2}+1)\operatorname{mod}N\mathrm{ ; end.
function rho(N)
function rho(N)

1. [initialization] x:=1; y:=1;
2. [initialization] x:=1; y:=1;
3. [loop]
4. [loop]
repeat
repeat
x:=f(x, N); y:=f(f(y, N), N);
x:=f(x, N); y:=f(f(y, N), N);
g:=gcd(x-y, N);
g:=gcd(x-y, N);
until g > 1;
until g > 1;
5. return g;
```
3. return g;
```

F. Morain - École polytechnique - Warwick Summer School - June 2013

Practice

- Choosing f :

- some choices are bad, as $x \mapsto x^{2}$ et $x \mapsto x^{2}-2$.
- Tables exist for given f 's.
- Trick: compute $\operatorname{gcd}\left(\prod_{i}\left(x_{2 i}-x_{i}\right), N\right)$, using backtrack whenever needed.
- Improvements: reducing the number of evaluations of f, the number of comparisons (see Brent, Montgomery).

Conjecture. RHO finds $p \mid N$ using $O(\sqrt{p})$ iterations.
Thm. (Bach, 1991) Proba RHO with $f(x)=x^{2}+1$ finding $p \mid N$ after k iterations is at least

$$
\frac{\binom{k}{2}}{p}+O\left(p^{-3 / 2}\right)
$$

when p goes to infinity.

Theoretical results

F. Morain - École polytechnique - Warwick Summer School - June 2013

IV. Pollard's $p-1$ method

History:

- Invented by Pollard in 1974.
- Williams: $p+1$.
- Bach and Shallit: Φ_{k} factoring methods.
- Shanks, Schnorr, Lenstra, etc.: quadratic forms.
- Lenstra (1985): ECM.

Overall scheme:

- First phase is generic.
- Second phases:
- generic: standard, Brent;
- adapted to finite fields: BSGS + fast convolutions.

First phase

Idea: assume $p \mid N$ and a is prime to p. Then

$$
\left(p \mid a^{p-1}-1 \text { and } p \mid N\right) \Rightarrow p \mid \operatorname{gcd}\left(a^{p-1}-1, N\right) .
$$

Generalization: if R is known s.t. $p-1 \mid R$,

$$
\operatorname{gcd}\left(\left(a^{R} \bmod N\right)-1, N\right)
$$

will yield a factor.
How do we find R ? Only reasonable hope is that $p-1 \mid B_{1}$! for some (small) B_{1}. In other words, $p-1$ is B_{1}-smooth.

Algorithm: $R=\prod_{p^{\alpha} \leq B_{1}} p^{\alpha}=\operatorname{lcm}\left(2, \ldots, B_{1}\right)$.
Rem. (usual trick) we compute $\operatorname{gcd}\left(\prod_{k}\left(\left(a^{r_{k}}-1\right) \bmod N\right), N\right)$.

Second phase: the classical one

Let $b=a^{R} \bmod N$ and $\operatorname{gcd}(b-1, N)=1$.
Hyp. $p-1=Q s$ with $Q \mid R$ and s prime, $B_{1}<s \leq B_{2}$.
Test: is $\operatorname{gcd}\left(b^{s}-1, N\right)>1$ for some s.
$s_{j}=j$-th prime. In practice all $s_{j+1}-s_{j}$ are small (Cramer's conjecture implies $\left.s_{j+1}-s_{j} \leq\left(\log B_{2}\right)^{2}\right)$.

- Precompute $c_{\delta} \equiv b^{\delta} \bmod N$ for all possible δ (small);
- Compute next value with one multiplication $b^{s_{i+1}}=b^{s_{i}}{c_{s_{j+1}}-s_{j}}^{\bmod N}$.

Cost: $O\left(\left(\log B_{2}\right)^{2}\right)+O\left(\log s_{1}\right)+\left(\pi\left(B_{2}\right)-\pi\left(B_{1}\right)\right)$ multiplications $+\left(\pi\left(B_{2}\right)-\pi\left(B_{1}\right)\right)$ gcd's. When $B_{2} \gg B_{1}, \pi\left(B_{2}\right)$ dominates.
Rem. We need a table of all primes $<B_{2}$; memory is $O\left(B_{2}\right)$.
Record. Nohara (66dd of $960^{119}-1,2006$; see

F. Morain - École polytechnique - Warwick Summer School - June 2013
V. ECM

- Due to Lenstra in 1985.
- Improvements: Chudnovsky \& Chudnovsky; Brent; Montgomery; Suyama; Atkin-FM; etc.
- Powerful method since complexity depends on $p \mid N$: 30dd factors easy; record 79dd (2012), see http:
//wwwmaths.anu.edu.au/~brent/ftp/champs.txt.
- Reference implementation: GMP-ECM (P. Zimmermann); see Zimmermann \& Dodson.
A) Pseudo-addition

Let $\operatorname{gcd}\left(4 a^{3}+27 b^{2}, N\right)=1$ and

$$
E_{N}=\left\{(x, y, z), y^{2} z \equiv x^{3}+a x z^{2}+b z^{3} \bmod N\right\} \cup\left\{O_{N}\right\}
$$

Reduction for $p \mid N$

$$
\begin{aligned}
& \pi_{p}: \quad E_{N} \quad \rightarrow \quad E_{p} \\
& O_{N} \mapsto O_{p} \\
& (x, y, z) \mapsto(x \bmod p, y \bmod p, z \bmod p) \text {. }
\end{aligned}
$$

It is possible to define properly a group law on E_{N} (Bosma \& Lenstra).

Or: add M_{1} and M_{2} as if N were prime and wait for something to happen.

The algorithm

procedure ECM_PLAIN(N, J)

1. $\mathrm{d}:=1$;
2. choose random $x 0, y 0$, a in [0..N-1];
3. $b:=\left(y 0^{\wedge} 2-x 0^{\wedge} 3-a * x 0\right) \bmod N$;
4. Delta: $=\operatorname{gcd}\left(4 * a^{\wedge} 3+27 * b^{\wedge} 2, N\right)$;
5. if Delta=N then goto 2; // bad luck!

6 . if $1<$ Delta < N then
return Delta; // incredible luck!
7. $P:=(x 0, y 0)$;
// we operate on $E_{N}: y^{2}=x^{3}+a x+b \bmod N$ containing P
8. for $\mathrm{j}:=2 . \mathrm{J}$ do

P:=[j]P;
if some factor d is found then return d;
9. if $d=1$ then goto 2; // same player try again

Rem. the easiest way to have (E, P) is the one given, since we cannot compute $\sqrt{2}$ modulo N.
Question: what is selecting an Edwards pair (E, P) at random?
B) Factoring with elliptic curves: theory

Ex. Let $N=143$. Consider $P=(0,1,1)$ on

$$
E_{N}: y^{2} \equiv x^{3}+x+1 \bmod N
$$

Computing [3! $] P$:

	P	$Q=[2] P$	$[2] Q$	$[2] Q \oplus Q=[6] P$
N	$(0,1,1)$	$(36,124,1)$	$(127,71,1)$	
11	$(0,1,1)$	$(3,3,1)$	$(6,5,1)$	$(0,10,1)$
13	$(0,1,1)$	$(10,7,1)$	$(10,6,1)$	$(0,1,0)$

From the last line, we add two opposite points mod 13 and

$$
\lambda=(124-71) \times(36-127)^{-1} \bmod 143
$$

but the inverse leads to

$$
\operatorname{gcd}(36-127,143)=\operatorname{gcd}(52,143)=13
$$

Verification: $\# E_{11}=14$ (resp. $\# E_{13}=18=2 \times 3^{2}$); $\operatorname{ord}\left(P_{11}\right)=7$ (resp. $\left.\operatorname{ord}\left(P_{13}\right)=6\right)$.
F. Morain - École polytechnique - Warwick Summer School - June 2013

Analysis of ECM_PLAIN

Conj. (H. W. Lenstra, Jr.) ECM finds $p \mid N$ in average time $K(p)(\log N)^{2}$ where $K(x)$ is s.t.

$$
K(x)=\exp (\sqrt{(2+o(1)) \log x \log \log x})=L(x)^{\sqrt{2}+o(1)}
$$

when $x \rightarrow+\infty$, using $L(p)^{1 / \sqrt{2}+o(1)}$ curves.

Proof sketch

ECM_PLAIN succeeds whenever $\# E_{p} \mid J$! for some J.
Heuristically: $\# E_{p} \approx p \Rightarrow \# E_{p}$ behaves like a random number $\approx p$ \Rightarrow proba $\# E_{p} \left\lvert\, J!\approx \frac{1}{p} \psi(p, J)\right.$.

Choosing $J=L(p)^{\beta}$ yields

$$
\frac{1}{p} \psi(p, J)=L(p)^{-1 /(2 \beta)+o(1)}
$$

\Rightarrow we need $L(p)^{1 /(2 \beta)}$ elliptic curves.
Running time: computing $[J!] P$ is $O(J \log J)=O\left(L(p)^{\beta+o(1)}\right)$ so total time is

$$
O\left(L(p)^{\beta+1 /(2 \beta)+o(1)}\right)
$$

minimized for $\beta=1 / \sqrt{2}$.

C) Advanced ECM

Thm. (Lenstra 1987, Howe 1993) Fix p. Then

$$
\operatorname{Proba}_{E / \mathbb{F}_{p}}\left(\ell^{a} \mid \# E\left(\mathbb{F}_{p}\right)\right) \approx \begin{cases}\frac{1}{\ell^{a-1}(\ell-1)} & \text { if } p \not \equiv 1 \bmod \ell^{c} \\ \frac{\ell^{+1}+1+\ell^{b}-1}{\ell^{a+b-1}\left(\ell^{2}-1\right)} & \text { if } p \equiv 1 \bmod \ell^{c}\end{cases}
$$

where $b=\lfloor a / 2\rfloor, c=\lceil a / 2\rceil$.
(Proof depends on properties of the modular curve $X_{0}(\ell)$).
Ex. For $\ell=2,(x, y)$ is of order 2 iff $y=0$, hence look at roots of $x^{3}+a x+b$, that can be 0,1 or 3 , hence in 2 cases out of 3 .

In practice

First factorizations at the end of 1985.
Equations and addition laws: all are possible, with different merits:

- Chudnovsky \& Chudnovsky;
- Montgomery: $b y^{2}=x^{3}+a x^{2}+x$, special multiplication algorithm (PRAC);
- Edwards, Kohel, etc.

Algorithmic improvements: phase 1 (addition-subtraction chains), phase 2 (fast polynomial arithmetic).

Another probability model

(Barbulescu, Bos, Bouvier, Kleinjung, Montgomery, ANTS X)

In real life: start from E / \mathbb{Q} and study its reduction modulo p as p varies.

Thm. $\operatorname{Proba}\left(E\left(\mathbb{F}_{p}\right)[\ell] \sim \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}\right)=1 / \# \operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q})$.
Ex. $E_{1}: y^{2}=x^{3}+5 x+7$, for which $\left[\mathbb{Q}\left(E_{1}[3]\right): \mathbb{Q}\right]=48$. One computes proba $=1 / 48$ (compared to $20 / 48$ for $\mathbb{Z} / 3 \mathbb{Z}$).

Moreover, (complicated) formulas for $\operatorname{Proba}\left(\ell^{k} \mid \# E\left(\mathbb{F}_{p}\right)\right)$, showing that it is $>1 / \ell^{k}$.

D) Curves with large torsion groups for ECM

Thm. $E\left(\mathbb{F}_{p}\right)=E_{1} \times E_{2}, m_{1}\left|m_{2}, m_{1}\right| p-1$.
In general: $m_{1} \ll m_{2}$, so $P \in E_{2}$. What really matters is the smoothness of $\operatorname{ord}(P) \mid m_{2}$.
Goal: increase smoothness of m_{2}, either forcing m_{1} to be large, or m_{2} to have a given divisor.

What can be done:

- $\left(D_{0}\right)$ Find some E s.t. $E_{\text {tors }}(K)$ contains some (large) $\mathcal{T}=\mathbb{Z} / M_{1} \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z}$, in which case $E \bmod p$ will have $M_{1} \mid m_{1}$, $M_{2} \mid m_{2}$ (if (p) splits in K).
- $\left(E_{\infty}\right)$ Find an infinite family ditto.
- $\left(P_{\infty}\right)$ ditto plus a point P of infinite order.
- Impose some model (Weierstrass, Edwards); sometimes models impose themselves.

The big picture

General problem: given $K \subset \overline{\mathbb{Q}}$, what are the possible torsion groups for $E(K)$?

Thm. (Mazur, 1977) finite list for \mathbb{Q}.
Thm. (Merel, 1996) Let E / K where K has degree $d>1$. If $E(K)$ has a point of order p, then $p<d^{3 d^{2}}$.
\Rightarrow study the modular curves $X_{1}\left(M_{1}, M_{2}\right)$.
Def. $X_{1}\left(M_{1}, M_{2}\right)$ with $M_{1} \mid M_{2} ; X_{1}(M)=X_{1}(1, M), X_{1}(M, M)=X(M)$.
Rem. $X_{1}\left(M_{1}, M_{2}\right)$ enjoys a so-called modular interpretation, but we do not need it in this talk.
$X_{1}(M)$ by hand
$M=2: \ominus P=P \Longleftrightarrow Y=X^{3}+A X+B=0$.
$M=3:[2] P=\ominus P$ is equivalent to

$$
\begin{aligned}
{[2]_{x}=X } & \Longleftrightarrow\left(-12 X Y^{2}+9 X^{4}+6 X^{2} A+A^{2}\right), \\
{[2]_{y}=-Y } & \Longleftrightarrow\left(3 X^{2}+A\right)\left(-12 X Y^{2}+9 X^{4}+6 X^{2} A+A^{2}\right) . \\
& \Rightarrow 3 X^{4}+6 X^{2} A-A^{2}+12 X B=0 .
\end{aligned}
$$

Making $A=3 k, B=2 k$ gives $3 X^{4}+18 X^{2} k-9 k^{2}+24 X k=0$
> algcurves[genus] (\%, X, k);
0
> algcurves[parametrization] (curv, X,k,t);
\# van Hoeij

$$
(X, k)=\left(-2 \frac{(2+t) t}{t^{2}-3},-4 / 3 \frac{t^{3}(2+t)}{\left(t^{2}-3\right)^{2}}\right)
$$

Finish with $k=j /(1728-j)$.

$X_{1}(M)$ as a curve

(Kim and Koo, Bull. Austral. Math. Soc. 54, 1996) $g\left(X_{1}(M)\right)=0$ for $1 \leq M \leq 4$ and

$$
g\left(X_{1}(M)\right)=1+\frac{M^{2}}{24} \prod_{p \mid M}\left(1-\frac{1}{p^{2}}\right)-\frac{1}{4} \sum_{d \mid M, d>0} \varphi(d) \varphi(M / d)
$$

Rem. $g\left(X_{1}(\ell)\right)=(\ell-5)(\ell-7) / 24$.
Ex. this is an integer for all prime $\ell \geq 5$.
Coro. $g\left(X_{1}(M)\right)=0$ for $1 \leq M \leq 10,12$.
$g\left(X_{1}(M)\right)=1$ for $M \in\{11,14,15\}$.

More computations:

- By hand: Reichert (Math. Comp. 1986), Sutherland (Math. Comp. 2012).
- Using modular forms: Baaziz (Math. Comp. 2010).
- More properties: Rabarison 2010.

The situation over \mathbb{Q}

Thm. (Mazur, 1977): the only possible torsion groups for $E(\mathbb{Q})$ are

$$
\begin{cases}\mathbb{Z} / M \mathbb{Z} ; & M=1,2, \ldots, 10 \text { or } 12 \\ \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z} ; & M_{2}=2,4,6,8\end{cases}
$$

All these $X_{1}\left(M_{1}, M_{2}\right)$ have genus 0 and Kubert gave Weierstrass parametrizations for them $\left(\rightarrow E_{\infty}\right)$.

Montgomery: $X_{1}(12)$ (for $\left.P_{\infty}\right)$.
Atkin, M.: $\left(P_{\infty}\right)$ for $X_{1}\left(M_{2}\right)$ with $M_{2} \in\{5,7,9,10\}$ and $X_{1}(2,8)$.
BeBiLaPe09: things redone for Edwards form.
See also Rabarison 2010 for $X_{1}(2,4)$ and $X_{1}(2,6)$ (for E_{∞}).

The situation for quadratic fields (1/2)

Thm. (Kenku/Momose; Kamienny) Let K be a quadratic field. The only possible torsion groups for $E_{\text {tors }}(K)$ are among

$$
\begin{gathered}
\mathbb{Z} / M \mathbb{Z}, 1 \leq M \leq 18, M \neq 17 \\
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z}, M_{2} \in\{2,4,6,8,10,12\} \\
\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}, \quad \mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}
\end{gathered}
$$

Given K, not all possible \mathcal{T} 's can actually been found!
Thm. (Najman, 2010-2011)

1) For $K=\mathbb{Q}\left(\zeta_{4}\right)$, Mazur $+\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.
2) For $K=\mathbb{Q}\left(\zeta_{3}\right)$, Mazur $+\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$.

For a given K, see the methods in Kamienny/Najman, 2012.

Morain -École polytechnique - Warwick Summer School - June 2013
The situation for quadratic fields (2/2)

M_{1}	M_{2}	g	E_{∞}	P_{∞}
3	3	0		$\mathbb{Q}\left(\zeta_{3}\right)$, Brier/Clavier
4	4	0		$\mathbb{Q}\left(\zeta_{4}\right)$, Brier/Clavier
3	6	0	$\mathbb{Q}\left(\zeta_{3}\right)$, Brier/Clavier	
1	11	1	many $\mathbb{Q}(\sqrt{d})$, Rabarison	some
1	14	1	many $\mathbb{Q}(\sqrt{d})$, Rabarison	some
1	15	1	many $\mathbb{Q}(\sqrt{d})$, Rabarison	some
1	13	2	some $\mathbb{Q}(\sqrt{d})$, Rabarison	
1	16	2	some $\mathbb{Q}(\sqrt{d})$, Rabarison	
1	18	2	some $\mathbb{Q}(\sqrt{d})$, Rabarison	

The case $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$

Hessian form:

$$
U^{3}+V^{3}+W^{3}=3 D U V W
$$

with $D^{3} \neq 1$.
Three points at $\infty: \Omega_{r}=\left(1:-\omega^{r}: 0\right), 0 \leq r<3$, where $\omega^{2}+\omega+1=0$. Take $O_{E}=\Omega_{0}$.
Nice addition law: same code for \oplus and [2] and \ominus, since

$$
\ominus[u: v: w]=[v: u: w]
$$

Also:

$$
\begin{aligned}
& {[2] P=O_{E} \Longleftrightarrow P=[u: u: 1] .} \\
& {[3] P=O_{E} \Longleftrightarrow u=0 \text { or } v=0 .}
\end{aligned}
$$

Action: $[u: v: w]^{\zeta_{3}}=\left[\zeta_{3} u: \zeta_{3}^{2} v: w\right]$.

The case $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ (Brier/Clavier)

Start from: $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}: Y^{2}=(X-u)(X-v)(X+u+v)$.
$P=(x, y)=[2] Q \Longleftrightarrow x-u, x-v$ and $x+u+v$ are squares.

$$
a=-27 \lambda^{4}\left(\tau^{8}+14 \tau^{4}+1\right), b=54 \lambda^{6}\left(\tau^{12}-33 \tau^{8}-33 \tau^{4}+1\right) .
$$

Point of infinite order:

$$
\tau=\frac{\nu^{2}+3}{2 \nu}, \quad \lambda=8 \nu^{3}
$$

See BrCl10 (Nancy) for more.
Rem. Can be put in Montgomery form.
Use: $p \equiv 1 \bmod 4$ for $p|N| b^{2 r}+1$ (more later).
F. Morain - École polytechnique - Warwick Summer School - June 2013

JeKiLe12

$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 14 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 16 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 18 \mathbb{Z}$: over some $\mathbb{Q}\left(\sqrt{A_{t}+B_{t} \sqrt{d_{t}}}\right)$.
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}: \mathbb{Q}\left(\sqrt{3 t\left(4-t^{3}\right)}, \sqrt{-3}\right)$.
$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}: \mathbb{Q}\left(\sqrt{-1}, \sqrt{4 i t^{2}+1}\right)$.
$\mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}: \mathbb{Q}\left(\sqrt{-3}, \sqrt{8 t^{3}+1}\right)$.

Higher degree number fields

Particular cases:

- Cubic: Jeon, Kim, Schweizer (AA 2004),
$\mathbb{Z} / M \mathbb{Z}$ for $1 \leq M \leq 20, M \neq 17,19$,
$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z}$ for $1 \leq M_{2} / 2 \leq 7$ (conjecturally).
See also Jeon/Kim/Lee 2011.
- Quartic: Jeon, Kim, Park (JLMS 2006),
$\mathbb{Z} / M \mathbb{Z}$ for $1 \leq M \leq 24, M \neq 19,23$,
$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z}$ for $1 \leq M_{2} / 2 \leq 9$,
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z}$ for $1 \leq M_{2} / 3 \leq 3$,
$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / M_{2} \mathbb{Z}$ for $1 \leq M_{2} / 4 \leq 2$,
$\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$ (conjecturally).
See also Jeon/Kim/Lee 2012, 2013.
Implications for ECM: scarce, since these are families with varying field K_{t}.

The case $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$
(See, e.g., Kohel11)
Model for $X_{1}(5)$:

$$
\begin{gathered}
a(u)=-\left(u^{4}-228 u^{3}+494 u^{2}+228 u+1\right) / 48 \\
b=\left(u^{6}+522 u^{5}-10005 u^{4}-10005 u^{2}-522 u+1\right) / 864 ;
\end{gathered}
$$

Prop. Let $u=t^{5}$. Then $E_{t}: Y^{2}=X^{3}+a\left(t^{5}\right) X+b\left(t^{5}\right)$ has full 5 -torsion over $K_{5}=\mathbb{Q}\left(\zeta_{5}\right)$ (model for $X(5)$).
Interesting for $p=1 \bmod 5$; e.g., $p|N| b^{5 n}-1$.
Faster step 2 with optimal degree.
Pb : no point of infinite order known on $\mathbb{Q}(t)$.

$$
\begin{aligned}
& t U_{0}^{2}+U_{2} U_{3}-U_{1} U_{4}=0, \\
& t U_{0} U_{1}+U_{2} U_{4}-U_{3}^{2}=0, \\
& U_{1}^{2}+U_{0} U_{2}-U_{3} U_{4}=0, \\
& U_{1} U_{2}+U_{0} U_{3}-U_{4}^{2}=0, \\
& U_{2}^{2}-U_{1} U_{3}+t U_{0} U_{4}=0 .
\end{aligned}
$$

Base point: $O_{E}=(0: 1: 1: 1: 1)$.
Projection to $\left(U_{0}: U_{1}: U_{4}\right)$:

$$
U_{1}^{5}+U_{4}^{5}-(t-3) U_{1}^{2} U_{4}^{2} U_{0}+(2 t-1) U_{1} U_{4} U_{0}^{3}-t U_{0}^{5}=0
$$

F. Morain - École polytechnique - Warwick Summer School - June 2013
$X_{1}(15)$ as a curve

Prop. $X_{1}(15)(\mathbb{Q})$ has rank 0 and $X_{1}(15)(\mathbb{Q})_{\text {tors }}=\mathbb{Z} / 4 \mathbb{Z}$.
Prop. If K is quadratic, then

$$
X_{1}(15)(K)_{\text {tors }}= \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z} & \text { if } K=\mathbb{Q}(\sqrt{-15}) \\ \mathbb{Z} / 8 \mathbb{Z} & \text { if } K=\mathbb{Q}(\sqrt{-3}) \text { or } \mathbb{Q}(\sqrt{5}) \\ \mathbb{Z} / 4 \mathbb{Z} & \text { otherwise }\end{cases}
$$

Gives parametrizations for all $X_{1}(M)$ of small genera.
Largest example of $g=1: X_{1}(15): s^{2}+t s+s=t^{3}+t^{2}$.

$$
\begin{gathered}
a=1-c=\frac{\left(t^{2}-t\right) s+\left(t^{5}+5 t^{4}+9 t^{3}+7 t^{2}+4 t+1\right)}{(t+1)^{3}\left(t^{2}+t+1\right)} \\
b=\frac{t\left(t^{4}-2 t^{2}-t-1\right) s+t^{3}(t+1)\left(t^{3}+3 t^{2}+t+1\right)}{(t+1)^{6}\left(t^{2}+t+1\right)}
\end{gathered}
$$

General form of an elliptic curve with a 15-torsion point (namely $\left.P_{0}=(0,0)\right)$:

$$
E: y^{2}+a x y+b y=x^{3}+b x^{2}
$$

Letting d vary, we can hit $K=\mathbb{Q}(\sqrt{d})$ for which $X_{1}(15)(K)$ has rank 1 and explicit point P_{X} of infinite order. \Rightarrow we obtain an infinite family of curves defined over $\mathbb{Q}(\sqrt{d})$ having torsion group $\mathbb{Z} / 15 \mathbb{Z}$.

Algorithm build $\left(d, P_{X}\right)$

1. compute $(t, s)=[k] P_{X}$.
2. deduce a and b.

For instance, $d=3$ yields $t=-1 / 2, s=-(1+\sqrt{3}) / 4$.
Usable when $\sqrt{3} \bmod N$ is known.
With non-zero proba, we get $\mathbb{Z} / 30 \mathbb{Z}$ modulo p or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 30 \mathbb{Z}$ modulo p.

Implementation in GMP-ECM: all cases $X_{1}(M)$ of genus $1+$ table of precomputed d, P_{X} for $|d| \leq 100$. Would be easy to enlarge (with Denis Simon's pari program, Magma).

A new project

Big numbers? Cunningham numbers too difficult to harvest, ditto for many other tables.

Test numbers: $X_{2 k}=2^{2 k}-3$ for the special case $d=3$ and all $2 k \leq 1200$.

With only 10 curves per number, $B_{1}=10^{8}$:
$1288377494293776070458041778724723574112719 \mid X_{1110}$.
$\operatorname{ord}(\mathrm{P})=[<2,1>,<3,2>,<5,1>,<101,1>$, <2383, 1>, <6373, 1>, <216127, 1>, <2387303, 1>, <34875647, $1>, \quad<518647684813, \quad 1>$]

Hope for more!

Atkin's trick

Pb . What if we do know a point of infinite order over $E \bmod N$?
Lemma. (AtMo93) Let $\lambda \equiv x_{0}^{3}+a x_{0}+b \bmod N$. Then $\left(\lambda x_{0}, \lambda^{2}\right)$ is a point on $E_{\lambda}: Y^{2}=X^{3}+a \lambda^{2} X+b \lambda^{3}$.

If $(\lambda / p)=+1$ for $p \mid N$, then E_{λ} will have the desired torsion. \Rightarrow try several values of x_{0}.

Conclusions

- The quest for large torsion over $\overline{\mathbb{Q}}$ is bound to finish. Result so far: some extra families.
- Same work to be done for HECM???

More stuff in the dev version GMP-ECM, not discussed earlier:

- More ec forms.
- Addition-subtraction chains.

