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I. Introduction

Input: an integer N;

Output: N =
∏k

i=1 pαi
i with pi (proven) prime.

Major impact: estimate the security of RSA cryptosystems.

Also: primitive for a lot of number theory problems.

How do we test and compare algorithms?
• Cunningham project,
• RSA Security (partitions, RSA keys) – though abandoned?
• Decimals of π.
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What is the factorization of a random number?

N = N1N2 · · ·Nr with Ni prime, Ni ≥ Ni+1.

Prop. r ≤ log2 N; r = log log N.

Size of the factors: Dk = limN→+∞ log Nk/ log N exists and

k Dk

1 0.62433
2 0.20958
3 0.08832

“On average”

N1 ≈ N0.62, N2 ≈ N0.21, N3 ≈ N0.09.

⇒ an integer has one “large” factor, a medium size one and a bunch
of small ones.
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II. Smoothness testing

Def. a B-smooth number has all its prime factors ≤ B.

B-smooth numbers are the heart of all efficient fac-
torization or discrete logarithm algorithms.

De Bruijn’s function: ψ(x, y) = #{z ≤ x, z is y− smooth}.

Thm. (Candfield, Erdős, Pomerance) ∀ ε > 0, uniformly in
y ≥ (log x)1+ε, as x→∞

ψ(x, y) =
x

uu(1+o(1))

with u = log x/ log y.

Rem. Algorithms for computing ψ(x, y) by Bernstein, Sorenson, etc.
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B-smooth numbers (cont’d)

Prop. Let L(x) = exp
(√

log x log log x
)
. For all real α > 0, β > 0, as

x→∞
ψ(xα,L(x)β) =

xα

L(x)
α
2β +o(1) .

Ordinary interpretation:

a number ≤ xα is L(x)β-smooth with probability

ψ(xα,L(x)β)
xα

= L(x)−
α
2β +o(1).

F. Morain – École polytechnique – Warwick Summer School – June 2013 5/43

Trial division

Algorithm: divide x ≤ X by all p ≤ B, say {p1, p2, . . . , pm}.

Cost: all p ≤ B costs you π(B) divisions steps. More precisely∑
p≤B

T(x, p) = O(m lg X lg B).

Implementation: use any method to compute and store all primes
≤ 232 (one char per (pi+1 − pi)/2; see Brent).

Useful generalization: given x1, x2, . . . , xn ≤ X, can we find the
B-smooth part of the xi’s more rapidly than repeating the above in
O(nm lg B lg X)?

Yes: use product trees and fast arithmetic.
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III. Pollard’s RHO method

Prop. Let f : E → E, #E = m; Xn+1 = f (Xn) with X0 ∈ E.

X0 X1 X2 Xµ−1

Xµ

Xµ+1

Xµ+λ−1

Thm. (Flajolet, Odlyzko, 1990) When m→∞

λ ∼ µ ∼
√
πm
8
≈ 0.627

√
m.
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Epact

Prop. There exists a unique e > 0 (epact) s.t. µ ≤ e < λ+ µ and
X2e = Xe. It is the smallest non-zero multiple of λ that is ≥ µ: if µ = 0,
e = λ and if µ > 0, e = dµλeλ.

Floyd’s algorithm:

X <- X0; Y <- X0; e <- 0;
repeat

X <- f(X); Y <- f(f(Y)); e <- e+1;
until X = Y;

Thm. e ∼
√

π5m
288 ≈ 1.03

√
m.
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Application to the factorization of N

Idea: suppose p | N and we have a random f mod N s.t. f mod p is
“random”.

function f(x, N) return (x2 + 1) mod N; end.
function rho(N)
1. [initialization] x:=1; y:=1;
2. [loop]

repeat
x:=f(x, N); y:=f(f(y, N), N);
g:=gcd(x-y, N);

until g > 1;
3. return g;
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Theoretical results

Conjecture. RHO finds p | N using O(
√

p) iterations.

Thm. (Bach, 1991) Proba RHO with f (x) = x2 + 1 finding p | N after k
iterations is at least (k

2

)
p

+ O(p−3/2)

when p goes to infinity.
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Practice

• Choosing f :
I some choices are bad, as x 7→ x2 et x 7→ x2 − 2.
I Tables exist for given f ’s.

• Trick: compute gcd(
∏

i(x2i − xi),N), using backtrack whenever
needed.

• Improvements: reducing the number of evaluations of f , the
number of comparisons (see Brent, Montgomery).
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IV. Pollard’s p− 1 method

History:
• Invented by Pollard in 1974.

• Williams: p + 1.

• Bach and Shallit: Φk factoring methods.

• Shanks, Schnorr, Lenstra, etc.: quadratic forms.

• Lenstra (1985): ECM.
Overall scheme:
• First phase is generic.
• Second phases:

I generic: standard, Brent;
I adapted to finite fields: BSGS + fast convolutions.
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First phase

Idea: assume p | N and a is prime to p. Then

(p | ap−1 − 1 and p | N)⇒ p | gcd(ap−1 − 1,N).

Generalization: if R is known s.t. p− 1 | R,

gcd((aR mod N)− 1,N)

will yield a factor.

How do we find R? Only reasonable hope is that p− 1 | B1! for
some (small) B1. In other words, p− 1 is B1-smooth.

Algorithm: R =
∏

pα≤B1
pα = lcm(2, . . . ,B1).

Rem. (usual trick) we compute gcd(
∏

k((ark − 1) mod N),N).
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Second phase: the classical one

Let b = aR mod N and gcd(b− 1,N) = 1.
Hyp. p− 1 = Qs with Q | R and s prime, B1 < s ≤ B2.

Test: is gcd(bs − 1,N) > 1 for some s.

sj = j-th prime. In practice all sj+1 − sj are small (Cramer’s conjecture
implies sj+1 − sj ≤ (log B2)2).

• Precompute cδ ≡ bδ mod N for all possible δ (small);
• Compute next value with one multiplication

bsj+1 = bsj csj+1−sj mod N.

Cost: O((log B2)2) + O(log s1) + (π(B2)− π(B1)) multiplications
+(π(B2)− π(B1)) gcd’s. When B2 � B1, π(B2) dominates.

Rem. We need a table of all primes < B2; memory is O(B2).

Record. Nohara (66dd of 960119 − 1, 2006; see
http://www.loria.fr/~zimmerma/records/Pminus1.html).
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Second phase: using the birthday paradox

Consider B = 〈b mod p〉; s := #B.

If we draw ≈ √s elements at random in B, then we have a collision
(birthday paradox).

Algorithm: build (bi) with b0 = b, and

bi+1 =
{

b2
i mod N with proba 1/2,

b2
i b mod N with proba 1/2.

We gather r ≈ √s values and compute

r∏
i=1

∏
j 6=i

(bi − bj) = Disc(P(X)) =
∏

i

P′(bi) where P(X) =
r∏

i=1

(X − bi).

Using fast polynomial algorithmes takes O(M(r) log r) operations
modulo N.
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V. ECM

• Due to Lenstra in 1985.

• Improvements: Chudnovsky & Chudnovsky; Brent;
Montgomery; Suyama; Atkin-FM; etc.

• Powerful method since complexity depends on p | N: 30dd
factors easy; record 79dd (2012), see http:
//wwwmaths.anu.edu.au/~brent/ftp/champs.txt.

• Reference implementation: GMP-ECM (P. Zimmermann); see
Zimmermann & Dodson.
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A) Pseudo-addition

Let gcd(4a3 + 27b2,N) = 1 and

EN = { (x, y, z), y2z ≡ x3 + axz2 + bz3 mod N } ∪ { ON },

Reduction for p | N

πp : EN → Ep

ON 7→ Op

(x, y, z) 7→ (x mod p, y mod p, z mod p).

It is possible to define properly a group law on EN (Bosma &
Lenstra).

Or: add M1 and M2 as if N were prime and wait for something to
happen.
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B) Factoring with elliptic curves: theory
Ex. Let N = 143. Consider P = (0, 1, 1) on

EN : y2 ≡ x3 + x + 1 mod N.

Computing [3!]P:

P Q = [2]P [2]Q [2]Q⊕ Q = [6]P
N (0, 1, 1) (36, 124, 1) (127, 71, 1)
11 (0, 1, 1) (3, 3, 1) (6, 5, 1) (0, 10, 1)
13 (0, 1, 1) (10, 7, 1) (10, 6, 1) (0, 1, 0)

From the last line, we add two opposite points mod 13 and

λ = (124− 71)× (36− 127)−1 mod 143.

but the inverse leads to

gcd(36− 127, 143) = gcd(52, 143) = 13.

Verification: #E11 = 14 (resp. #E13 = 18 = 2× 32); ord(P11) = 7
(resp. ord(P13) = 6).
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The algorithm

procedure ECM_PLAIN(N, J)
1. d:=1;
2. choose random x0,y0,a in [0..N-1];
3. b:=(y0^2-x0^3-a*x0) mod N;
4. Delta:=gcd(4*a^3+27*b^2, N);
5. if Delta=N then goto 2; // bad luck!
6. if 1 < Delta < N then

return Delta; // incredible luck!
7. P:=(x0,y0);
// we operate on EN : y2 = x3 + ax + b mod N containing P
8. for j:=2..J do

P:=[j]P;
if some factor d is found then return d;

9. if d=1 then goto 2; // same player try again

Rem. the easiest way to have (E,P) is the one given, since we
cannot compute

√
z modulo N.

Question: what is selecting an Edwards pair (E,P) at random?
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Analysis of ECM_PLAIN

Conj. (H. W. Lenstra, Jr.) ECM finds p | N in average time
K(p)(log N)2 where K(x) is s.t.

K(x) = exp
(√

(2 + o(1)) log x log log x
)

= L(x)
√

2+o(1)

when x→ +∞, using L(p)1/
√

2+o(1) curves.
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Proof sketch

ECM_PLAIN succeeds whenever #Ep | J! for some J.

Heuristically: #Ep ≈ p⇒ #Ep behaves like a random number ≈ p
⇒ proba #Ep | J! ≈ 1

pψ(p, J).

Choosing J = L(p)β yields

1
p
ψ(p, J) = L(p)−1/(2β)+o(1)

⇒ we need L(p)1/(2β) elliptic curves.

Running time: computing [J!]P is O(J log J) = O(L(p)β+o(1)) so total
time is

O(L(p)β+1/(2β)+o(1))

minimized for β = 1/
√

2. �
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In practice

First factorizations at the end of 1985.

Equations and addition laws: all are possible, with different merits:

• Chudnovsky & Chudnovsky;
• Montgomery: by2 = x3 + ax2 + x, special multiplication algorithm

(PRAC);
• Edwards, Kohel, etc.

Algorithmic improvements: phase 1 (addition-subtraction chains),
phase 2 (fast polynomial arithmetic).

F. Morain – École polytechnique – Warwick Summer School – June 2013 22/43

C) Advanced ECM

Thm. (Lenstra 1987, Howe 1993) Fix p. Then

ProbaE/Fp(`
a | #E(Fp)) ≈

{
1

`a−1(`−1) if p 6≡ 1 mod `c,
`b+1+`b−1
`a+b−1(`2−1) if p ≡ 1 mod `c

where b = ba/2c, c = da/2e.

(Proof depends on properties of the modular curve X0(`)).

Ex. For ` = 2, (x, y) is of order 2 iff y = 0, hence look at roots of
x3 + ax + b, that can be 0, 1 or 3, hence in 2 cases out of 3.
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Another probability model

(Barbulescu, Bos, Bouvier, Kleinjung, Montgomery, ANTS X)

In real life: start from E/Q and study its reduction modulo p as p
varies.

Thm. Proba(E(Fp)[`] ∼ Z/`Z× Z/`Z) = 1/#Gal(Q(E[`])/Q).

Ex. E1 : y2 = x3 + 5x + 7, for which [Q(E1[3]) : Q] = 48. One
computes proba = 1/48 (compared to 20/48 for Z/3Z).

Moreover, (complicated) formulas for Proba(`k | #E(Fp)), showing
that it is > 1/`k.
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D) Curves with large torsion groups for ECM

Thm. E(Fp) = E1 × E2, m1 | m2, m1 | p− 1.

In general: m1 � m2, so P ∈ E2. What really matters is the
smoothness of ord(P) | m2.

Goal: increase smoothness of m2, either forcing m1 to be large, or
m2 to have a given divisor.

What can be done:
• (D0) Find some E s.t. Etors(K) contains some (large)
T = Z/M1Z× Z/M2Z, in which case E mod p will have M1 | m1,
M2 | m2 (if (p) splits in K).

• (E∞) Find an infinite family ditto.
• (P∞) ditto plus a point P of infinite order.
• Impose some model (Weierstrass, Edwards); sometimes

models impose themselves.
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The big picture

General problem: given K ⊂ Q, what are the possible torsion
groups for E(K)?

Thm. (Mazur, 1977) finite list for Q.

Thm. (Merel, 1996) Let E/K where K has degree d > 1. If E(K) has
a point of order p, then p < d3d2

.

⇒ study the modular curves X1(M1,M2).

Def. X1(M1,M2) with M1 | M2; X1(M) = X1(1,M), X1(M,M) = X(M).

Rem. X1(M1,M2) enjoys a so-called modular interpretation, but we
do not need it in this talk.
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X1(M) by hand

M = 2: 	P = P⇐⇒ Y = X3 + AX + B = 0.
M = 3: [2]P = 	P is equivalent to

[2]x = X ⇐⇒ (−12 XY2 + 9 X4 + 6 X2A + A2) ,
[2]y = −Y ⇐⇒ (

3 X2 + A
) (−12 XY2 + 9 X4 + 6 X2A + A2) .

⇒ 3 X4 + 6 X2A− A2 + 12 XB = 0.

Making A = 3k,B = 2k gives 3 X4 + 18 X2k − 9 k2 + 24 Xk = 0

> algcurves[genus](%, X, k);
0

> algcurves[parametrization](curv,X,k,t);
# van Hoeij

(X, k) =

(
−2

(2 + t) t
t2 − 3

,−4/3
t3 (2 + t)

(t2 − 3)2

)
.

Finish with k = j/(1728− j).

F. Morain – École polytechnique – Warwick Summer School – June 2013 27/43

X1(M) as a curve

(Kim and Koo, Bull. Austral. Math. Soc. 54, 1996) g(X1(M)) = 0 for
1 ≤ M ≤ 4 and

g(X1(M)) = 1 +
M2

24

∏
p|M

(
1− 1

p2

)
− 1

4

∑
d|M,d>0

ϕ(d)ϕ(M/d).

Rem. g(X1(`)) = (`− 5)(`− 7)/24.

Ex. this is an integer for all prime ` ≥ 5.

Coro. g(X1(M)) = 0 for 1 ≤ M ≤ 10, 12.
g(X1(M)) = 1 for M ∈ {11, 14, 15}.

More computations:

• By hand: Reichert (Math. Comp. 1986), Sutherland (Math.
Comp. 2012).

• Using modular forms: Baaziz (Math. Comp. 2010).
• More properties: Rabarison 2010.
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The situation over Q

Thm. (Mazur, 1977): the only possible torsion groups for E(Q) are{
Z/MZ; M = 1, 2, . . . , 10 or 12,
Z/2Z× Z/M2Z; M2 = 2, 4, 6, 8.

All these X1(M1,M2) have genus 0 and Kubert gave Weierstrass
parametrizations for them (→ E∞).

Montgomery: X1(12) (for P∞).

Atkin, M.: (P∞) for X1(M2) with M2 ∈ {5, 7, 9, 10} and X1(2, 8).

BeBiLaPe09: things redone for Edwards form.

See also Rabarison 2010 for X1(2, 4) and X1(2, 6) (for E∞).
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The situation for quadratic fields (1/2)

Thm. (Kenku/Momose; Kamienny) Let K be a quadratic field. The
only possible torsion groups for Etors(K) are among

Z/MZ, 1 ≤ M ≤ 18,M 6= 17,

Z/2Z× Z/M2Z,M2 ∈ {2, 4, 6, 8, 10, 12},
Z/3Z× Z/3Z,Z/3Z× Z/6Z, Z/4Z× Z/4Z.

Given K, not all possible T ’s can actually been found!

Thm. (Najman, 2010–2011)
1) For K = Q(ζ4), Mazur + Z/4Z× Z/4Z.
2) For K = Q(ζ3), Mazur + Z/3Z× Z/3Z, Z/3Z× Z/6Z.

For a given K, see the methods in Kamienny/Najman, 2012.
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The situation for quadratic fields (2/2)

M1 M2 g E∞ P∞
3 3 0 Q(ζ3),Brier/Clavier
4 4 0 Q(ζ4),Brier/Clavier
3 6 0 Q(ζ3),Brier/Clavier
1 11 1 many Q(

√
d),Rabarison some

1 14 1 many Q(
√

d),Rabarison some
1 15 1 many Q(

√
d),Rabarison some

1 13 2 some Q(
√

d),Rabarison
1 16 2 some Q(

√
d),Rabarison

1 18 2 some Q(
√

d),Rabarison
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The case Z/3Z× Z/3Z

Hessian form:
U3 + V3 + W3 = 3DUVW,

with D3 6= 1.

Three points at∞: Ωr = (1 : −ωr : 0), 0 ≤ r < 3, where
ω2 + ω + 1 = 0. Take OE = Ω0.

Nice addition law: same code for ⊕ and [2] and 	, since

	[u : v : w] = [v : u : w]

Also:
[2]P = OE ⇐⇒ P = [u : u : 1].

[3]P = OE ⇐⇒ u = 0 or v = 0.

Action: [u : v : w]ζ3 = [ζ3u : ζ2
3 v : w].
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The case Z/4Z× Z/4Z (Brier/Clavier)

Start from: Z/2Z× Z/2Z: Y2 = (X − u)(X − v)(X + u + v).

P = (x, y) = [2]Q⇐⇒ x− u, x− v and x + u + v are squares.

a = −27λ4(τ 8 + 14τ 4 + 1), b = 54λ6(τ 12 − 33τ 8 − 33τ 4 + 1).

Point of infinite order:

τ =
ν2 + 3

2ν
, λ = 8ν3.

See BrCl10 (Nancy) for more.

Rem. Can be put in Montgomery form.

Use: p ≡ 1 mod 4 for p | N | b2r + 1 (more later).
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Higher degree number fields

Particular cases:
• Cubic: Jeon, Kim, Schweizer (AA 2004),

Z/MZ for 1 ≤ M ≤ 20, M 6= 17, 19,
Z/2Z× Z/M2Z for 1 ≤ M2/2 ≤ 7 (conjecturally).
See also Jeon/Kim/Lee 2011.

• Quartic: Jeon, Kim, Park (JLMS 2006),
Z/MZ for 1 ≤ M ≤ 24, M 6= 19, 23,
Z/2Z× Z/M2Z for 1 ≤ M2/2 ≤ 9,
Z/3Z× Z/M2Z for 1 ≤ M2/3 ≤ 3,
Z/4Z× Z/M2Z for 1 ≤ M2/4 ≤ 2,
Z/5Z× Z/5Z, Z/6Z× Z/6Z (conjecturally).
See also Jeon/Kim/Lee 2012, 2013.

Implications for ECM: scarce, since these are families with varying
field Kt.
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JeKiLe12

Z/2Z× Z/14Z, Z/2Z× Z/16Z, Z/2Z× Z/18Z: over some
Q(
√

At + Bt
√

dt).

Z/3Z× Z/9Z: Q(
√

3t(4− t3),
√−3).

Z/4Z× Z/8Z: Q(
√−1,

√
4it2 + 1).

Z/6Z× Z/6Z: Q(
√−3,

√
8t3 + 1).
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The case Z/5Z× Z/5Z

(See, e.g., Kohel11)

Model for X1(5):

a(u) = −(u4 − 228u3 + 494u2 + 228u + 1)/48;

b = (u6 + 522u5 − 10005u4 − 10005u2 − 522u + 1)/864;

Prop. Let u = t5. Then Et : Y2 = X3 + a(t5)X + b(t5) has full 5-torsion
over K5 = Q(ζ5) (model for X(5)).

Interesting for p = 1 mod 5; e.g., p | N | b5n − 1.

Faster step 2 with optimal degree.

Pb: no point of infinite order known on Q(t).
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X(5): cont’d

tU2
0 + U2U3 − U1U4 = 0,

tU0U1 + U2U4 − U2
3 = 0,

U2
1 + U0U2 − U3U4 = 0,

U1U2 + U0U3 − U2
4 = 0,

U2
2 − U1U3 + tU0U4 = 0.

Base point: OE = (0 : 1 : 1 : 1 : 1).

Projection to (U0 : U1 : U4):

U5
1 + U5

4 − (t − 3)U2
1U2

4U0 + (2t − 1)U1U4U3
0 − tU5

0 = 0.
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Back to quadratic fields: Rabarison’s thesis

Gives parametrizations for all X1(M) of small genera.

Largest example of g = 1: X1(15) : s2 + ts + s = t3 + t2.

a = 1− c =
(t2 − t)s + (t5 + 5t4 + 9t3 + 7t2 + 4t + 1)

(t + 1)3(t2 + t + 1)
,

b =
t(t4 − 2t2 − t − 1)s + t3(t + 1)(t3 + 3t2 + t + 1)

(t + 1)6(t2 + t + 1)
.

General form of an elliptic curve with a 15-torsion point (namely
P0 = (0, 0)):

E : y2 + axy + by = x3 + bx2
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X1(15) as a curve

Prop. X1(15)(Q) has rank 0 and X1(15)(Q)tors = Z/4Z.

Prop. If K is quadratic, then

X1(15)(K)tors =


Z/2Z× Z/4Z if K = Q(

√−15),
Z/8Z if K = Q(

√−3) or Q(
√

5),
Z/4Z otherwise.
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X1(15) in ECM

Letting d vary, we can hit K = Q(
√

d) for which X1(15)(K) has rank 1
and explicit point PX of infinite order.⇒ we obtain an infinite family of
curves defined over Q(

√
d) having torsion group Z/15Z.

Algorithm build(d, PX)
1. compute (t, s) = [k]PX.
2. deduce a and b.

For instance, d = 3 yields t = −1/2, s = −(1 +
√

3)/4.
Usable when

√
3 mod N is known.

With non-zero proba, we get Z/30Z modulo p or Z/2Z× Z/30Z
modulo p.

Implementation in GMP-ECM: all cases X1(M) of genus 1 + table
of precomputed d,PX for |d| ≤ 100. Would be easy to enlarge (with
Denis Simon’s pari program, Magma).
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A new project

Big numbers? Cunningham numbers too difficult to harvest, ditto
for many other tables.

Test numbers: X2k = 22k − 3 for the special case d = 3 and all
2k ≤ 1200.

With only 10 curves per number, B1 = 108:
1288377494293776070458041778724723574112719 | X1110.

ord(P)=[ <2, 1>, <3, 2>, <5, 1>, <101, 1>,
<2383, 1>, <6373, 1>, <216127, 1>, <2387303, 1>,
<34875647, 1>, <518647684813, 1> ]

Hope for more!
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Atkin’s trick

Pb. What if we do know a point of infinite order over E mod N?

Lemma. (AtMo93) Let λ ≡ x3
0 + ax0 + b mod N. Then (λx0, λ

2) is a
point on Eλ : Y2 = X3 + aλ2X + bλ3.

If (λ/p) = +1 for p | N, then Eλ will have the desired torsion.

⇒ try several values of x0.
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Conclusions

• The quest for large torsion over Q is bound to finish. Result so
far: some extra families.

• Same work to be done for HECM???

More stuff in the dev version GMP-ECM, not discussed earlier:
• More ec forms.
• Addition-subtraction chains.
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