MPRI – Cours 2.12.2

Lecture II: Integer factorization

2013/06/26

The slides are available on http://www.lix.polytechnique.fr/Labo/Francois.Morain/MPRI/2012

I. Introduction.

II. Smoothness testing.

III. Pollard's RHO method.

IV. Pollard's p - 1 method.

V. ECM.

F. Morain – École polytechnique – Warwick Summer School – June 2013

What is the factorization of a random number?

 $N = N_1 N_2 \cdots N_r$ with N_i prime, $N_i \ge N_{i+1}$.

Prop. $r \leq \log_2 N$; $\overline{r} = \log \log N$.

Size of the factors: $D_k = \lim_{N \to +\infty} \log N_k / \log N$ exists and

k	D_k
1	0.62433
2	0.20958
3	0.08832

"On average"

$N_1 \approx N^{0.62}, \quad N_2 \approx N^{0.21}, \quad N_3 \approx N^{0.09}.$

 \Rightarrow an integer has one "large" factor, a medium size one and a bunch of small ones.

I. Introduction

Input: an integer *N*;

Output: $N = \prod_{i=1}^{k} p_i^{\alpha_i}$ with p_i (proven) prime.

Major impact: estimate the security of RSA cryptosystems. Also: primitive for a lot of number theory problems.

How do we test and compare algorithms?

- Cunningham project,
- RSA Security (partitions, RSA keys) though abandoned?
- Decimals of π .

F. Morain – École polytechnique – Warwick Summer School – June 2013

II. Smoothness testing

Def. a *B*-smooth number has all its prime factors $\leq B$.

B-smooth numbers are the heart of all efficient factorization or discrete logarithm algorithms.

De Bruijn's function: $\psi(x, y) = \#\{z \le x, z \text{ is } y - \text{smooth}\}.$

Thm. (Candfield, Erdős, Pomerance) $\forall \epsilon > 0$, uniformly in $y \ge (\log x)^{1+\epsilon}$, as $x \to \infty$

$$\psi(x,y) = \frac{x}{u^{u(1+o(1))}}$$

with $u = \log x / \log y$.

Rem. Algorithms for computing $\psi(x, y)$ by Bernstein, Sorenson, etc.

F. Morain – École polytechnique – Warwick Summer School – June 2013

1/43

B-smooth numbers (cont'd)

Prop. Let $L(x) = \exp\left(\sqrt{\log x \log \log x}\right)$. For all real $\alpha > 0, \beta > 0$, as $x \to \infty$

$$\psi(x^{\alpha}, L(x)^{\beta}) = \frac{x^{\alpha}}{L(x)^{\frac{\alpha}{2\beta} + o(1)}}.$$

Ordinary interpretation:

a number $\leq x^{\alpha}$ is $L(x)^{\beta}$ -smooth with probability $\frac{\psi(x^{\alpha}, L(x)^{\beta})}{x^{\alpha}} = L(x)^{-\frac{\alpha}{2\beta} + o(1)}.$

F. Morain – École polytechnique – Warwick Summer School – June 2013

III. Pollard's RHO method

Prop. Let
$$f : E \to E$$
, $\#E = m$; $X_{n+1} = f(X_n)$ with $X_0 \in E$

Thm. (Flajolet, Odlyzko, 1990) When $m \to \infty$

$$\overline{\lambda} \sim \overline{\mu} \sim \sqrt{rac{\pi m}{8}} pprox 0.627 \sqrt{m}$$

Trial division

Algorithm: divide $x \leq X$ by all $p \leq B$, say $\{p_1, p_2, \ldots, p_m\}$.

Cost: all $p \leq B$ costs you $\pi(B)$ divisions steps. More precisely

$$\sum_{p \le B} T(x,p) = O(m \lg X \lg B)$$

Implementation: use any method to compute and store all primes $\leq 2^{32}$ (one char per $(p_{i+1} - p_i)/2$; see Brent).

Useful generalization: given $x_1, x_2, ..., x_n \le X$, can we find the *B*-smooth part of the x_i 's more rapidly than repeating the above in $O(nm \lg B \lg X)$?

Yes: use product trees and fast arithmetic.

F. Morain – École polytechnique – Warwick Summer School – June 2013

Epact

5/43

7/43

Prop. There exists a unique e > 0 (epact) s.t. $\mu \le e < \lambda + \mu$ and $X_{2e} = X_e$. It is the smallest non-zero multiple of λ that is $\ge \mu$: if $\mu = 0$, $e = \lambda$ and if $\mu > 0$, $e = \lceil \frac{\mu}{\lambda} \rceil \lambda$.

Floyd's algorithm:

Thm.
$$\overline{e} \sim \sqrt{rac{\pi^5 m}{288}} pprox 1.03 \sqrt{m}.$$

Application to the factorization of N

Idea: suppose $p \mid N$ and we have a random $f \mod N$ s.t. $f \mod p$ is "random".

```
function f(x, N) return (x<sup>2</sup> + 1) mod N; end.
function rho(N)
1. [initialization] x:=1; y:=1;
2. [loop]
    repeat
        x:=f(x, N); y:=f(f(y, N), N);
        g:=gcd(x-y, N);
        until g > 1;
3. return g;
```

F. Morain – École polytechnique – Warwick Summer School – June 2013

Practice

• Choosing *f*:

- some choices are bad, as $x \mapsto x^2$ et $x \mapsto x^2 2$.
- ► Tables exist for given *f*'s.
- Trick: compute $gcd(\prod_i(x_{2i} x_i), N)$, using backtrack whenever needed.
- **Improvements:** reducing the number of evaluations of *f*, the number of comparisons (see Brent, Montgomery).

Theoretical results

Conjecture. RHO finds $p \mid N$ using $O(\sqrt{p})$ iterations.

Thm. (Bach, 1991) Proba RHO with $f(x) = x^2 + 1$ finding $p \mid N$ after k iterations is at least

$$\frac{\binom{k}{2}}{p} + O(p^{-3/2})$$

when p goes to infinity.

F. Morain – École polytechnique – Warwick Summer School – June 2013 IV. Pollard's p-1 method

History:

9/43

11/43

- Invented by Pollard in 1974.
- Williams: p + 1.
- Bach and Shallit: Φ_k factoring methods.
- Shanks, Schnorr, Lenstra, etc.: quadratic forms.
- Lenstra (1985): ECM.

Overall scheme:

- First phase is generic.
- Second phases:
 - generic: standard, Brent;
 - adapted to finite fields: BSGS + fast convolutions.

First phase

Idea: assume $p \mid N$ and a is prime to p. Then

$$(p \mid a^{p-1} - 1 \text{ and } p \mid N) \Rightarrow p \mid \gcd(a^{p-1} - 1, N).$$

Generalization: if *R* is known s.t. $p - 1 \mid R$,

$$gcd((a^R \mod N) - 1, N)$$

will yield a factor.

How do we find *R***?** Only reasonable hope is that $p - 1 | B_1!$ for some (small) B_1 . In other words, p-1 is B_1 -smooth.

Algorithm: $R = \prod_{p^{\alpha} < B_1} p^{\alpha} = \operatorname{lcm}(2, \dots, B_1).$

Rem. (usual trick) we compute $gcd(\prod_{k} ((a^{r_k} - 1) \mod N), N)$.

F. Morain - École polytechnique - Warwick Summer School - June 2013

Second phase: using the birthday paradox

Consider $\mathcal{B} = \langle b \mod p \rangle$; $s := \#\mathcal{B}$.

If we draw $\approx \sqrt{s}$ elements at random in \mathcal{B} , then we have a collision (birthday paradox).

Algorithm: build (b_i) with $b_0 = b$, and

 $b_{i+1} = \begin{cases} b_i^2 \mod N & \text{with proba } 1/2, \\ b_i^2 b \mod N & \text{with proba } 1/2. \end{cases}$

We gather $r \approx \sqrt{s}$ values and compute

$$\prod_{i=1}^{r} \prod_{j \neq i} (b_i - b_j) = \text{Disc}(P(X)) = \prod_{i=1}^{r} P'(b_i) \text{ where } P(X) = \prod_{i=1}^{r} (X - b_i)$$

Using fast polynomial algorithmes takes $O(M(r) \log r)$ operations modulo N.

Second phase: the classical one

Let $b = a^R \mod N$ and gcd(b - 1, N) = 1. **Hyp.** p - 1 = Qs with $Q \mid R$ and s prime, $B_1 < s \leq B_2$.

Test: is $gcd(b^s - 1, N) > 1$ for some *s*.

 $s_i = j$ -th prime. In practice all $s_{i+1} - s_i$ are small (Cramer's conjecture implies $s_{i+1} - s_i \leq (\log B_2)^2$).

- Precompute $c_{\delta} \equiv b^{\delta} \mod N$ for all possible δ (small);
- Compute next value with one multiplication $b^{s_{j+1}} = b^{s_j} c_{s_{j+1}-s_j} \mod N.$

Cost: $O((\log B_2)^2) + O(\log s_1) + (\pi(B_2) - \pi(B_1))$ multiplications $+(\pi(B_2)-\pi(B_1))$ gcd's. When $B_2 \gg B_1$, $\pi(B_2)$ dominates.

Rem. We need a table of all primes $\langle B_2$; memory is $O(B_2)$.

Record. Nohara (66dd of $960^{119} - 1$, 2006; see

http://www.loria.fr/~zimmerma/records/Pminus1.html).

V. ECM

Due to Lenstra in 1985.

F. Morain – École polytechnique – Warwick Summer School – June 2013

- Improvements: Chudnovsky & Chudnovsky; Brent; Montgomery; Suyama; Atkin-FM; etc.
- Powerful method since complexity depends on *p* | *N*: 30dd factors easy; record 79dd (2012), see http: //wwwmaths.anu.edu.au/~brent/ftp/champs.txt.
- Reference implementation: GMP-ECM (P. Zimmermann); see Zimmermann & Dodson.

13/43

A) Pseudo-addition

Let $gcd(4a^3 + 27b^2, N) = 1$ and

$$E_N = \{ (x, y, z), y^2 z \equiv x^3 + axz^2 + bz^3 \mod N \} \cup \{ O_N \} \}$$

Reduction for $p \mid N$

$$\begin{aligned} \pi_p : & E_N & \to & E_p \\ & O_N & \mapsto & O_p \\ & & (x, y, z) & \mapsto & (x \bmod p, y \bmod p, z \bmod p). \end{aligned}$$

It is possible to define properly a group law on E_N (Bosma & Lenstra).

Or: add M_1 and M_2 as if N were prime and wait for something to happen.

F. Morain – École polytechnique – Warwick Summer School – June 2013

The algorithm

procedure ECM_PLAIN(N, J) 1. d:=1; 2. choose random x0,y0,a in [0..N-1]; 3. $b := (y0^2 - x0^3 - a + x0) \mod N;$ 4. Delta:=gcd(4*a^3+27*b^2, N); 5. if Delta=N then goto 2; // bad luck! 6. if 1 < Delta < N then return Delta; // incredible luck! 7. P := (x0, y0);// we operate on $E_N: y^2 = x^3 + ax + b \mod N$ containing P 8. for j:=2..J do P:=[i]P;if some factor d is found then return d; 9. if d=1 then goto 2; // same player try again **Rem.** the easiest way to have (E, P) is the one given, since we cannot compute \sqrt{z} modulo N.

Question: what is selecting an Edwards pair (E, P) at random?

B) Factoring with elliptic curves: theory

Ex. Let N = 143. Consider P = (0, 1, 1) on

$$E_N: y^2 \equiv x^3 + x + 1 \bmod N.$$

Computing [3!]*P*:

	P	Q = [2]P	[2]Q	$[2]Q \oplus Q = [6]P$
N	(0, 1, 1)	(36, 124, 1)	(127, 71, 1)	
11	(0, 1, 1)	(3, 3, 1)	(6, 5, 1)	(0, 10, 1)
13	(0, 1, 1)	(10, 7, 1)	(10, 6, 1)	(0, 1, 0)

From the last line, we add two opposite points mod 13 and

$$\lambda = (124 - 71) \times (36 - 127)^{-1} \mod 143$$

but the inverse leads to

17/43

19/43

$$gcd(36 - 127, 143) = gcd(52, 143) = 13.$$

Verification: $#E_{11} = 14$ (resp. $#E_{13} = 18 = 2 \times 3^2$); $ord(P_{11}) = 7$ (resp. $ord(P_{13}) = 6$).

F. Morain – École polytechnique – Warwick Summer School – June 2013

Analysis of ECM_PLAIN

Conj. (H. W. Lenstra, Jr.) ECM finds $p \mid N$ in average time $K(p)(\log N)^2$ where K(x) is s.t.

$$K(x) = \exp\left(\sqrt{(2+o(1))\log x \log \log x}\right) = L(x)^{\sqrt{2}+o(1)}$$

when $x \to +\infty$, using $L(p)^{1/\sqrt{2}+o(1)}$ curves.

Proof sketch

ECM_PLAIN succeeds whenever $\#E_p \mid J!$ for some J.

Heuristically: $\#E_p \approx p \Rightarrow \#E_p$ behaves like a random number $\approx p$ \Rightarrow proba $\#E_p \mid J! \approx \frac{1}{p}\psi(p, J)$.

Choosing $J = L(p)^{\beta}$ yields

$$\frac{1}{p}\psi(p,J) = L(p)^{-1/(2\beta) + o(1)}$$

 \Rightarrow we need $L(p)^{1/(2\beta)}$ elliptic curves.

Running time: computing [J!]P is $O(J \log J) = O(L(p)^{\beta+o(1)})$ so total time is

 $O(L(p)^{\beta+1/(2\beta)+o(1)})$

minimized for $\beta = 1/\sqrt{2}$. \Box

F. Morain – École polytechnique – Warwick Summer School – June 2013

C) Advanced ECM

Thm. (Lenstra 1987, Howe 1993) Fix p. Then

 $\operatorname{Proba}_{E/\mathbb{F}_p}(\ell^a \mid \#E(\mathbb{F}_p)) \approx \begin{cases} \frac{1}{\ell^{a-1}(\ell-1)} & \text{if } p \not\equiv 1 \mod \ell^c, \\ \frac{\ell^{b+1} + \ell^b - 1}{\ell^{a+b-1}(\ell^2-1)} & \text{if } p \equiv 1 \mod \ell^c \end{cases}$

where $b = \lfloor a/2 \rfloor$, $c = \lceil a/2 \rceil$.

(Proof depends on properties of the modular curve $X_0(\ell)$).

Ex. For $\ell = 2$, (x, y) is of order 2 iff y = 0, hence look at roots of $x^3 + ax + b$, that can be 0, 1 or 3, hence in 2 cases out of 3.

In practice

First factorizations at the end of 1985.

Equations and addition laws: all are possible, with different merits:

- Chudnovsky & Chudnovsky;
- Montgomery: $by^2 = x^3 + ax^2 + x$, special multiplication algorithm (PRAC);
- Edwards, Kohel, etc.

Algorithmic improvements: phase 1 (addition-subtraction chains), phase 2 (fast polynomial arithmetic).

Another probability model

F. Morain – École polytechnique – Warwick Summer School – June 2013

(Barbulescu, Bos, Bouvier, Kleinjung, Montgomery, ANTS X)

In real life: start from E/\mathbb{Q} and study its reduction modulo p as p varies.

Thm. Proba $(E(\mathbb{F}_p)[\ell] \sim \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}) = 1/\#\text{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}).$

Ex. $E_1 : y^2 = x^3 + 5x + 7$, for which $[\mathbb{Q}(E_1[3]) : \mathbb{Q}] = 48$. One computes *proba* = 1/48 (compared to 20/48 for $\mathbb{Z}/3\mathbb{Z}$).

Moreover, (complicated) formulas for $\operatorname{Proba}(\ell^k \mid \#E(\mathbb{F}_p))$, showing that it is $> 1/\ell^k$.

21/43

D) Curves with large torsion groups for ECM

Thm. $E(\mathbb{F}_p) = E_1 \times E_2, m_1 \mid m_2, m_1 \mid p - 1.$

In general: $m_1 \ll m_2$, so $P \in E_2$. What really matters is the smoothness of $ord(P) \mid m_2$.

Goal: increase smoothness of m_2 , either forcing m_1 to be large, or m_2 to have a given divisor.

What can be done:

- (D_0) Find some E s.t. $E_{tors}(K)$ contains some (large) $\mathcal{T} = \mathbb{Z}/M_1\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}$, in which case $E \mod p$ will have $M_1 \mid m_1$, $M_2 \mid m_2$ (if (p) splits in K).
- (E_{∞}) Find an infinite family *ditto*.
- (P_{∞}) ditto plus a point *P* of infinite order.
- Impose some model (Weierstrass, Edwards); sometimes models impose themselves.

F. Morain – École polytechnique – Warwick Summer School – June 2013

$X_1(M)$ by hand

M = 2: $\ominus P = P \iff Y = X^3 + AX + B = 0$. M = 3: $[2]P = \ominus P$ is equivalent to

$$[2]_{x} = X \iff \left(-12 X Y^{2} + 9 X^{4} + 6 X^{2} A + A^{2}\right),$$

$$[2]_{y} = -Y \iff (3X^{2} + A) (-12XY^{2} + 9X^{4} + 6X^{2}A + A^{2}).$$
$$\Rightarrow 3X^{4} + 6X^{2}A - A^{2} + 12XB = 0.$$

Making A = 3k, B = 2k gives $3X^4 + 18X^2k - 9k^2 + 24Xk = 0$

$$(X,k) = \left(-2 \frac{(2+t)t}{t^2 - 3}, -4/3 \frac{t^3 (2+t)}{(t^2 - 3)^2}\right).$$

Finish with k = j/(1728 - j).

The big picture

General problem: given $K \subset \overline{\mathbb{Q}}$, what are the possible torsion groups for E(K)?

Thm. (Mazur, 1977) finite list for \mathbb{Q} .

Thm. (Merel, 1996) Let E/K where *K* has degree d > 1. If E(K) has a point of order *p*, then $p < d^{3d^2}$.

 \Rightarrow study the modular curves $X_1(M_1, M_2)$.

Def. $X_1(M_1, M_2)$ with $M_1 \mid M_2$; $X_1(M) = X_1(1, M)$, $X_1(M, M) = X(M)$.

Rem. $X_1(M_1, M_2)$ enjoys a so-called modular interpretation, but we do not need it in this talk.

F. Morain – École polytechnique – Warwick Summer School – June 2013

$X_1(M)$ as a curve

25/43

27/43

(Kim and Koo, Bull. Austral. Math. Soc. 54, 1996) $g(X_1(M)) = 0$ for $1 \le M \le 4$ and

$$g(X_1(M)) = 1 + \frac{M^2}{24} \prod_{p|M} \left(1 - \frac{1}{p^2}\right) - \frac{1}{4} \sum_{d|M,d>0} \varphi(d)\varphi(M/d).$$

Rem. $g(X_1(\ell)) = (\ell - 5)(\ell - 7)/24.$

Ex. this is an integer for all prime $\ell \geq 5$.

Coro. $g(X_1(M)) = 0$ for $1 \le M \le 10$, 12. $g(X_1(M)) = 1$ for $M \in \{11, 14, 15\}$.

More computations:

- By hand: Reichert (Math. Comp. 1986), Sutherland (Math. Comp. 2012).
- Using modular forms: Baaziz (Math. Comp. 2010).
- More properties: Rabarison 2010.

The situation over \mathbb{Q}

Thm. (Mazur, 1977): the only possible torsion groups for $E(\mathbb{Q})$ are

 $\begin{cases} \mathbb{Z}/M\mathbb{Z}; & M = 1, 2, \dots, 10 \text{ or } 12, \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}; & M_2 = 2, 4, 6, 8. \end{cases}$

All these $X_1(M_1, M_2)$ have genus 0 and Kubert gave Weierstrass parametrizations for them ($\rightarrow E_{\infty}$).

Montgomery: $X_1(12)$ (for P_{∞}).

Atkin, M.: (P_{∞}) for $X_1(M_2)$ with $M_2 \in \{5, 7, 9, 10\}$ and $X_1(2, 8)$.

BeBiLaPe09: things redone for Edwards form.

See also Rabarison 2010 for $X_1(2,4)$ and $X_1(2,6)$ (for E_{∞}).

F. Morain – École polytechnique – Warwick Summer School – June 2013

The situation for quadratic fields (2/2)

M_1	M_2	g	E_{∞}	P_{∞}
3	3	0		$\mathbb{Q}(\zeta_3)$, Brier/Clavier
4	4	0		$\mathbb{Q}(\zeta_4)$, Brier/Clavier
3	6	0		$\mathbb{Q}(\zeta_3)$, Brier/Clavier
1	11	1	many $\mathbb{Q}(\sqrt{d})$, Rabarison	some
1	14	1	many $\mathbb{Q}(\sqrt{d})$, Rabarison	some
1	15	1	many $\mathbb{Q}(\sqrt{d})$, Rabarison	some
1	13	2	some $\mathbb{Q}(\sqrt{d})$, Rabarison	
1	16	2	some $\mathbb{Q}(\sqrt{d})$, Rabarison	
1	18	2	some $\mathbb{Q}(\sqrt{d})$, Rabarison	

The situation for quadratic fields (1/2)

Thm. (Kenku/Momose; Kamienny) Let *K* be a quadratic field. The only possible torsion groups for $E_{tors}(K)$ are among

 $\mathbb{Z}/M\mathbb{Z}, 1 \leq M \leq 18, M \neq 17,$

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}, M_2 \in \{2, 4, 6, 8, 10, 12\},$ $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, \quad \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}.$

Given K, not all possible T's can actually been found!

Thm. (Najman, 2010–2011) 1) For $K = \mathbb{Q}(\zeta_4)$, Mazur $+ \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. 2) For $K = \mathbb{Q}(\zeta_3)$, Mazur $+ \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

For a given K, see the methods in Kamienny/Najman, 2012.

F. Morain – École polytechnique – Warwick Summer School – June 2013

The case $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Hessian form:

 $U^3 + V^3 + W^3 = 3DUVW,$

with $D^3 \neq 1$.

Three points at ∞ : $\Omega_r = (1 : -\omega^r : 0), 0 \le r < 3$, where $\omega^2 + \omega + 1 = 0$. Take $O_E = \Omega_0$.

Nice addition law: same code for \oplus and [2] and \ominus , since

$$\ominus$$
[*u* : *v* : *w*] = [*v* : *u* : *w*]

Also:

$$[2]P = O_E \iff P = [u:u:1].$$
$$[3]P = O_E \iff u = 0 \text{ or } v = 0.$$

Action: $[u:v:w]^{\zeta_3} = [\zeta_3 u:\zeta_3^2 v:w].$

29/43

The case $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (Brier/Clavier)

Start from: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$: $Y^2 = (X - u)(X - v)(X + u + v)$.

 $P = (x, y) = [2]Q \iff x - u, x - v \text{ and } x + u + v \text{ are squares.}$

 $a = -27\lambda^4(\tau^8 + 14\tau^4 + 1), b = 54\lambda^6(\tau^{12} - 33\tau^8 - 33\tau^4 + 1).$

Point of infinite order:

$$\tau = \frac{\nu^2 + 3}{2\nu}, \quad \lambda = 8\nu^3$$

See BrCl10 (Nancy) for more.

Rem. Can be put in Montgomery form.

Use: $p \equiv 1 \mod 4$ for $p \mid N \mid b^{2r} + 1$ (more later).

F. Morain – École polytechnique – Warwick Summer School – June 2013

JeKiLe12

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/14\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/16\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/18\mathbb{Z}$: over some $\mathbb{Q}(\sqrt{A_t + B_t\sqrt{d_t}}).$

 $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$: $\mathbb{Q}(\sqrt{3t(4-t^3)}, \sqrt{-3})$.

 $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$: $\mathbb{Q}(\sqrt{-1}, \sqrt{4it^2 + 1})$.

 $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$: $\mathbb{Q}(\sqrt{-3}, \sqrt{8t^3+1})$.

Higher degree number fields

Particular cases:

- Cubic: Jeon, Kim, Schweizer (AA 2004), $\mathbb{Z}/M\mathbb{Z}$ for $1 \le M \le 20, M \ne 17, 19$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}$ for $1 \le M_2/2 \le 7$ (conjecturally). See also Jeon/Kim/Lee 2011.
- Quartic: Jeon, Kim, Park (JLMS 2006), $\mathbb{Z}/M\mathbb{Z}$ for $1 \le M \le 24$, $M \ne 19, 23$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}$ for $1 \le M_2/2 \le 9$, $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}$ for $1 \le M_2/3 \le 3$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/M_2\mathbb{Z}$ for $1 \le M_2/4 \le 2$, $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ (conjecturally). See also Jeon/Kim/Lee 2012, 2013.

Implications for ECM: scarce, since these are families with varying field K_t .

F. Morain – École polytechnique – Warwick Summer School – June 2013

The case $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$

(See, e.g., Kohel11)

Model for $X_1(5)$:

 $a(u) = -(u^4 - 228u^3 + 494u^2 + 228u + 1)/48;$

 $b = (u^6 + 522u^5 - 10005u^4 - 10005u^2 - 522u + 1)/864;$

Prop. Let $u = t^5$. Then $E_t : Y^2 = X^3 + a(t^5)X + b(t^5)$ has full 5-torsion over $K_5 = \mathbb{Q}(\zeta_5)$ (model for X(5)).

Interesting for $p = 1 \mod 5$; e.g., $p \mid N \mid b^{5n} - 1$.

Faster step 2 with optimal degree.

Pb: no point of infinite order known on $\mathbb{Q}(t)$.

33/43

 $tU_0^2 + U_2U_3 - U_1U_4 = 0.$ $tU_0U_1 + U_2U_4 - U_2^2 = 0.$ $U_1^2 + U_0 U_2 - U_3 U_4 = 0.$ $U_1U_2 + U_0U_3 - U_4^2 = 0.$ $U_2^2 - U_1 U_3 + t U_0 U_4 = 0.$

Base point: $O_E = (0:1:1:1:1)$.

Projection to $(U_0: U_1: U_4)$:

 $X_1(15)$ as a curve

 $U_1^5 + U_4^5 - (t-3)U_1^2U_4^2U_0 + (2t-1)U_1U_4U_0^3 - tU_0^5 = 0.$

Back to guadratic fields: Rabarison's thesis

Gives parametrizations for all $X_1(M)$ of small genera. Largest example of g = 1: $X_1(15) : s^2 + ts + s = t^3 + t^2$. $a = 1 - c = \frac{(t^2 - t)s + (t^5 + 5t^4 + 9t^3 + 7t^2 + 4t + 1)}{(t + 1)^3(t^2 + t + 1)},$ $b = \frac{t(t^4 - 2t^2 - t - 1)s + t^3(t+1)(t^3 + 3t^2 + t + 1)}{(t+1)^6(t^2 + t + 1)}.$ General form of an elliptic curve with a 15-torsion point (namely $P_0 = (0, 0)$: $E: y^2 + axy + by = x^3 + bx^2$ F. Morain - École polytechnique - Warwick Summer School - June 2013 37/43 F. Morain – École polytechnique – Warwick Summer School – June 2013 38/43 $X_1(15)$ in ECM Letting *d* vary, we can hit $K = \mathbb{Q}(\sqrt{d})$ for which $X_1(15)(K)$ has rank 1 and explicit point P_X of infinite order. \Rightarrow we obtain an infinite family of curves defined over $\mathbb{Q}(\sqrt{d})$ having torsion group $\mathbb{Z}/15\mathbb{Z}$. **Prop.** $X_1(15)(\mathbb{Q})$ has rank 0 and $X_1(15)(\mathbb{Q})_{tors} = \mathbb{Z}/4\mathbb{Z}$. Algorithm build(d, P_X) 1. compute $(t, s) = [k]P_X$. 2. deduce a and b. $X_1(15)(K)_{tors} = \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} & \text{if } K = \mathbb{Q}(\sqrt{-15}), \\ \mathbb{Z}/8\mathbb{Z} & \text{if } K = \mathbb{Q}(\sqrt{-3}) \text{ or } \mathbb{Q}(\sqrt{5}), \\ \mathbb{Z}/4\mathbb{Z} & \text{otherwise.} \end{cases}$ For instance, d = 3 yields t = -1/2, $s = -(1 + \sqrt{3})/4$. Usable when $\sqrt{3} \mod N$ is known. With non-zero proba, we get $\mathbb{Z}/30\mathbb{Z}$ modulo *p* or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$ modulo p. **Implementation in GMP-ECM:** all cases $X_1(M)$ of genus 1 + table of precomputed d, P_X for $|d| \le 100$. Would be easy to enlarge (with Denis Simon's pari program, Magma).

F. Morain – École polytechnique – Warwick Summer School – June 2013

Prop. If *K* is quadratic, then

A new project

Big numbers? Cunningham numbers too difficult to harvest, ditto for many other tables.

Test numbers: $X_{2k} = 2^{2k} - 3$ for the special case d = 3 and all $2k \le 1200$.

With only 10 curves per number, $B_1 = 10^8$: 1288377494293776070458041778724723574112719 | X_{1110} .

ord(P)=[<2, 1>, <3, 2>, <5, 1>, <101, 1>, <2383, 1>, <6373, 1>, <216127, 1>, <2387303, 1>, <34875647, 1>, <518647684813, 1>]

Hope for more!

F. Morain - École polytechnique - Warwick Summer School - June 2013

Atkin's trick

Pb. What if we do know a point of infinite order over *E* mod *N*?

Lemma. (AtMo93) Let $\lambda \equiv x_0^3 + ax_0 + b \mod N$. Then $(\lambda x_0, \lambda^2)$ is a point on $E_{\lambda} : Y^2 = X^3 + a\lambda^2 X + b\lambda^3$.

If $(\lambda/p) = +1$ for $p \mid N$, then E_{λ} will have the desired torsion.

 \Rightarrow try several values of x_0 .

F. Morain – École polytechnique – Warwick Summer School – June 2013	41/43	F. Morain – École polytechnique – Warwick Summer School – June 2013	42/43
Conclusions			
 The quest for large torsion over Q is bound to finish. Res far: some extra families. 	ult so		
 Same work to be done for HECM??? 			
 More stuff in the dev version GMP-ECM, not discussed earlie More ec forms. Addition-subtraction chains. 	er:		
	 E. More stuff in the dev version GMP-ECM, not discussed earlief More ec forms. Addition-subtraction chains. 	 E. Marain – École polytechnique – Warwick Summer School – June 2013 Conclusions The quest for large torsion over Q is bound to finish. Result so far: some extra families. Same work to be done for HECM??? More stuff in the dev version GMP-ECM, not discussed earlier: More ec forms. Addition-subtraction chains. 	P. Morain - Ecose polytechnique - Warwelds Summer School - June 2013 Conclusions • The quest for large torsion over is bound to finish. Result so far: some extra families. • Same work to be done for HECM??? More stuff in the dev version GMP-ECM, not discussed earlier: • More ec forms. • Addition-subtraction chains.