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|. Basics

Kraitchik (1920): find x s.t. x> = 1 mod N, x # +1.

Ex. For N = 143, there are 4 solutions +1, +=12 and
ged(12 — 1,143) = 11.
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A general scheme

Step 0: build a prime basis B = {p1,p2, ... ,px}-
Step 1: find a lot of relations (R;)ic;: R = ]_[f:lp‘.’"’ =1 mod N

Step 2: find I’ C I s.t.

over Z, which is equivalent to

Vj, > ai;=0mod?2,

iel’

which is a classical linear algebra problem.

Step 3: x is a squareroot of 1 and with probability > 1/2,
ged(x — 1, N) is non-trivial.
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ll. Naive methods
A very naive one:

0. Build B = {p1 =2,3,...,p}.
1. Generate k random relations

€1 ,,€2

py'py - pif mod N
and hope to factor the residue to get:
Pipk . pl mod N
from which
pfl—flpgz—fz . _ka—fk =1 mod N.
Store the (e; — f;) mod 2 in the matrix M.

2. Find dependancies relations of M and deduce solutions of
x> =1mod N.
Hypothesis:
x(e) = p'pst - - pf mod N
is a random integer in [1..N[.
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A numerical example

Let N = 143, B = {2,3,5}. We compute:

(R1):2° x 3 x5*=2" mod N,
(Ry) : 2> x3* x5* =2 mod N,
(R3) :3° x5* =1 mod N.
Combining (R;) and (R;), we get:
(272 x 32 x5%)? =1 mod N

or 122 = 1 mod N and ged(12 — 1,N) = 11.
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De Bruijn’s function

Define
Y(x,y) = #{z < x,zis y — smooth}.

Thm. (Candfield, Erdds, Pomerance) V ¢ > 0, uniformly in
y > (logx)'*¢, as x — oo

X
YY) = Sy

with u = log x/ log y.

Prop. Let
L(x) = exp <\/10gx10g logx) .

Forallrealaa > 0,3 >0,as x — oo

w(xa;l;(x)ﬂ) _ L(x)- o),
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Analysis

Prop. The cost of the naive algorithm is O(L>+°().

Proof. N

Proba(x(e) is py-smooth)= W = we need km relations.
Using trial division, testing p,-smoothness costs k divisions.

Linear algebra costs O(k") with 2 < r < 3 (see later).
Total cost is:

N
s > + O(k").
Put k = L(N)?, from which p; ~ klogk = O(L(N)?+°(1). Cost is now:

O(LZbLl/(2b)) + O(Lrb) _ O(Lmax(2b+l/(2b),rb)).

2b+ 1/(2b) is minimal for » = 1/2 and has value 2, which is larger
than rb for all r. O
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[1l. Quadratic sieve

Pb. The above methods are not practical, since factoring the
relations is too costly. Can we build residues of size N for o < 17?

CFRAC: (Morrison and Brillhart) use the continued fraction
expansion of v/N, leads to residues of size N'/?; first real-life
algorithm, factored F; in 1970.

Schroeppel’s linear sieve: relations
F(a,b) = (|v/N] +a)(|V/N] + b) — N for small a and b satisfy

F(a,b) = (|VN] 4+ a)(|VN] + b) mod N

and N = [V/N|? + R, R = O(+/N). All numbers have size O(v/N).
Moreover, if p | F(a,b), then p | F(a + p,b), etc.
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Pomerance’s quadratic sieve:
Usea=1>

(a+ WNJ)Z = <a+ [\/IVJ)Z—sza\/N.

p| F(a) <= <a+ [\/IVJ)ZENmodp

implies N is a square modulo p and

p|Fla) & a=a_ ora=a; modp.

Prop. The cost is O(L(N)"/V*=1)),

Proof. Precomputing all roots of F(a) mod p costs L”.
The cost of sieving over |a| < L‘ is

3 2L eton).
p<Lb p

The number of L-smooth values of F(a) in the interval is L~/ =
take ¢ = b + 1/(4b) and optimize Lm(»:b+1/(4).%) which yields
b=1/\/4r—1).0
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Large primes

Idea: suppose we end up with

x(e)? = (]I rc

for some p, < C(e) < p;. Then we know that C(e) is prime. We can
keep the relation and hope for another

(e =(Irc

so that (x(e)x(e')/C)? is factored over B. Works due to the birthday
paradox. Use hashing to store C’s.

More than one prime: filtering (highly technical to implement).
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Real sieving in QS

Never factor residues, but test

R(a) = log|F(a)| — Y logp* < logps

peIF(a)
peB

and replace log |F(a)| by log |2a+/N|. In practice, fits in a char; use
integer approximations; ignore small primes.

Large primes: relax R(a) < 21logpy, say.
MPQS: (Montgomery, 1985) use families of quadratic polynomials
= massive computations become possible: email (A. K. Lenstra &

M. S. Manasse, 1990), INTERNET (RSA-129).

Rem. a lot more tricks exist (SIQS, etc.).
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IV. Linear algebra

Fundamental property: combination matrices are sparse, since
Q(N) <log, N.

N size #coeffs £0
per relation
RSA-100 50,000 x 50,000
RSA-110 80,000 x 80,000
RSA-120 252,222 x 245,810
(89,304 x 89,088)
RSA-129 569,466 x 524,338 47
(188,614 x 188, 160)
RSA-130 | 3,504,823 x 3,516,502 39
RSA-140 | 4,671, 181 x 4,704,451 32
RSA-155 6,699,191 x 6,711,336 62
6,353— 19,591,108 x 19,590, 832 229
RSA-768 | 192,796, 550 x 192,795, 550 144
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Gauf3

Advanced linear algebra

01 0 O 1
1 0 0 1 0 1
01 0 0 0 0 1 Rem. The companion matrix can be merged into A.
1 1 0 1 0 0 1
L Rem. additings rows use XOR’s on unsigned long (in C). Stillin
Computations: O(k*) but with a very small constant.
01 00 1 . Lo .
10 0 1 0 1 Structured Gaussian elimination: use a sparse encoding of M
01 0 0 00 1 and perform elimination so as to slow the fill-in down as much as
01 0 0 01 0 1 possible.
Going further: Lanczos and Wiedemann benefit from sparse
010 0 1 . i :
encoding, and cost O(k**¢). Many subtleties.
X x x X 0 1
0 0 0 O 1 1 . o . .
Biggest open problem: how to distribute this phase in a clean an
0 00O 1 1 0 1 o o .
efficient way? Currently the bottleneck of this kind of algorithms.
Finally:
Li+L3=0L1+1L,+Ls=0
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Wiedemann'’s algorithm in a nutshell

Misnxn

™ minimal polynomial of M, and/or that of {M'},,.
™42 minimal polynomial of {Mb}°,; of course fM: | 1.

If u is any row vector, the minimal polynomial of {uM'b}22, is -0
and f," | 0.

Rem. for random b, f* = M with high probability.

Idea: compute fM* using {uM'b}?*,"' and use Berlekamp-Massey in
time O(n?) (or faster O(M(n)logn)).

Cost: 2n applications Mb (black-box operation). If M has n'*+¢
non-zero coeffs, then this is O(n**¢).

Proofs: Kaltofen, etc.
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Application to factoring

Trick: find minimal polynomial of z for random z. Then (probably)
Pu(X) =X +pX>+ - +pX

and Py (M)(z) = 0= M(z + paMz + - - - + p,M"'z), so that we
probably have an element of the kernel.

Distributed version: cut M into slices, evaluate Mz this way.
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V. Some hints on NFS

D Z. 1. Borevitch and I. R. Chafarevitch.
Théorie des nombres. Gauthiers-Villars, Paris, 1967.

[4 I.N. Stewart and D. O. Tall.
Algebraic number theory.
Chapman and Hall, London, New-York, 2nd edition, 1987.

[{ M. Pohst and H. Zassenhaus.
Algorithmic algebraic number theory.
Cambridge Univ. Press, 1989.

[3 H. Cohen.
A course in algorithmic algebraic number theory, volume 138 of
Graduate Texts in Mathematics.
Springer—Verlag, 1996. Third printing.

[3 H. Cohen.
Advanced topics in computational number theory, volume 193
of Graduate Texts in Mathematics.
Springer-Verlag, 2000.
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A) Factorization in (euclidean) quadratic fields

We consider the case where Q(+/d) is euclidean.

Thm. Let d be such that Q(v/d) is euclidean and p be a rational
prime.

(@) If (%)
(b) If (%) =1, p =umm, withu e U, , =x—yVdand ™, =x+y/d
are two irreducible non associate factors in Ok; p splits.

(c) If (%) =0, p = u(x + yv/d)* where x + y\/d is irreducible in Ok and
u € U; p is ramified.

= —1, pisirreducible in Og and p is unramified.

Rem. For small p’s, any trivial algorithm will work.
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A numerical example: Q(1/6)

Fundamental unit: = = 5 + 2V/6.
= —(2+V6)(2 - V6) = (5 -2V6)(2 + V6)*

Let’s factor & = 1010 + 490+/6. We first have

=124+ V6)2

N(€) = 1010% — 6 - 490> = —420500 = —2% - 5° . 29?,

—(1+6)(1 —+/6),29 = —(5+3v6)(5 — 3V/6); therefore

= u(2+V6)*(1+V6)" (1 —v6)" (5 +3v6)(5 - 3v/6)*.
_ _ &
a=2, §1 = Grger = 415+ 2156
n=1 & = 7z =341 - 126V6
5 =2, &= <1—£2¢6>2 =35-8V6
Y2 =2, &4 = m =5- 2\[
Y3 = 05 U= 54 =€

E=c"2+V6)* (1 +vV6)(1 - V6)*(5+3V6)%.

F. Morain — Ecole polytechnique — Warwick Summer School — June 2013 19/31

B) NFS: basic idea

Pollard’s idea: let f(X) € Z[X] and m s.t.

f(m) =0 mod N.

Let 0 be aroot of f in C and K = Q[X]/(f(X)) = Q(6).
To simplify things: Ok is supposed to be Z[#] and euclidean. Let

o Z[0) — Z/NZ
6 +— mmodN.

¢ is a ring homomorphism.
Look for algebraic integers of the form a — b6 s.t.

a—bl = H ¥ (a=b0)
TeBk
where v, (a — bf) € Z and
a— bm = prp(a—bm)
peEB

with B a prime basis and w,(a — bm) € Z.
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NFS: basic idea (cont'd)

We then look for A s.t.

I (a0

(a,p)eA

is a square in Ok and at the same time

H (a — bm)

(a,b)eA

is a square in Z. Then

H (a —bm) = 72, H (a—bb) = (A — BO)>.

(a,b)E.A (a,b)e.A

Applying ¢, we get:

((A — BO)?) = (A — Bm)* = Z* mod N

and gcd(A — Bm + Z, N) might factor N.
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Numerical example

Let’s factor N = 5% — 6 = 390619 = m?> — 6 (surprise!) with
m = 5* = 625, hence we will work in Q() = Q[X]/(f(X)) with
f(X)=X?>—-6and f = V6.

Rational basis: B = {2,3,5,7,11,13,17,19,23,29}.

Algebraic basis:

Bk given as

p Cp w7

2 0 2+0:7T2

3 0 3+0:7T3

5] +1 1+6=ms5,1—60=mn}

19 +5 5+9:7T19,5*9:7T{9
23 | £11 | 1 420 = m3,1 — 26 = 7)y
29 +8 5+39:7T29,5—30:7T£9

with ¢, s.t. f(c,) = 0 mod p. All these obtained via factoring of
N(a — b0) for small @’s and b’s.

Free relations: 2 = ¢! (2 + 6)?, or 5 = —mss.
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Results for |a] < 60,1 < b <30

rel a|b|N(a—>bb)|a—Dbo a—bm

L 2(0]2° e .73 2

L| 3|0|3 e~ n2 3

L3 510 52 —T5 '7Tg 5

Ly | 19(0 | 19? 9+ Tho 19

L5 2310 232 —T3 * 7T£3 23

Lo | 290|292 120 + Thy 29

L; | =21 |1]3-5-29 —e7 -m3 T -mMy9 | —2-17-19
Lg | —121]2-3-23 —& Ty T3 - T3 —77.13
Ly | =5|1]19 ~ T -2.3%.5.7
Lpol| 21| -2 —m -3-11-19
L“ 0|1]-2-3 —5_1 * Ty - T3 —54

Ly 1]11]-=5 5 -24.3.13
Ly 41112-5 el <) - Ts —33.23
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rel a| b|N(a—>bb) |a—bo a—bm

L 9 1[3-5 e lomyms [ =2%.7-11
Lis| 16] 1]2-5° —my - w8 -3.7-29
L16 —10 312-23 7T2'7T£3 —5-13-29
Ly 51 3|-29 The —-2-5-11-17
Lig| 13] 3]5.23 T - hs -2-77-19
Lo 1| 4]-5-19 —T5 g -3.7%.17
Ly | 25| 4232 ™ —32.52.11
Ly | =11 | 5] =29 £ - Ty —26.72

Lyn | =7 9] —=19-23 | mo -7, -2%-11

Lyy | =27 | 113 —e-m —2-7-17-29
Lyg | =2 [11]-2-19% | —m-7f3 —13-23?
Lys | 33[13]3-5° ey 2| =227 17?
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Ug E|Tr T3 Ts T§ 19 g T3 Thy M9 The|2357 1113171923 29
L0110 000 O O 0O 0 0 0(1000000O0O00O0
L,|01l0O 0OOO O O O 0O 0 0|0100000O0O0OO0
;1000011 0 O 0O 0O 0 000100 O0O0O0OO0O0O0
L,/00000O0OO0T1 1T O O 0 0/000000O0OT1TO0O0
Ls (1000000 O 1 1 0 0|000000O0O0T1O0
Leg|10/0 0000 O O O 1 1/00000000O0©O01
/010 110 0 0 0O 0O 1 01000001 10O
Lgy|0111 100 0 O 1 0 0 0000001 0O0O0O0
Ly |00)0OOOOT1T O O O 0 01011T000O0©O00O0
L0011 0000 O 0 0 0 001001 001O0O0
Ly1/10111 100 0 O OO O 000000 O0OOO0OO0OO
L1000001 0 0 OO O 0/010001 0O0O0O0
Ls111 0100 0 0 0 0 00100000O0T1TDO0
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Ly-Le-Ly-Lio-Lis-Li7- Lys yields
o ((5+20)7'2+0)(3+0)(1+6)(1—0)*(5+30)(5— 30))2

=(22-3-5-7-11-17%-19-29)°  (mod N)

and
22.3.5.7-11-177-19-29 = 148603 (mod N),

gives 242016% = 1486032 mod N and gcd (242016 — 148603, N) = 1,
Ly Ly -L3z-Ly-Lo-Lig-Lia-Lis-Lig-Lps leads to

& ((5+20)""(2+ 0)2(3 + 0)2(1 + 0)2(1 — 0)2(5 + 0)(5 — 0))°

=(22.3.5.-7°-11-17-19-29)> (mod N)
or 611792 = 813142 mod N, ged(61179 — 81314, N) = 4027.
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Working without units

We can use factorization modulo units. We will end up with relations
NA+BV6) =" =1
and hope to get a square.
If we don’t know ¢, we can try to extract a squareroot of
n=A+ BV6
using brute force: n = €2 = (x + yv/6)2, or:

-6y = =1
P+6y? = A

which readily gives x> = (A + 1)/2 which is easily solved over Z.

Over a general number field, computing units is in general difficult,
and some workaround has been found.
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C) a bit of complexity

SNFS: N = r* £+ s with r and s small.
Choose an extension of degree d. Put k = [e/d], m = r* and
c = s ¢st. m?=cmodN. Put f(X) = X? — c and use

K =Q(X)/(f(X)) = Q(6).
N(a — b8) = b'f(a/b).

For0 < a <1andg > 0, we define
Ly[a, B] = exp((B + o(1))(logn)*(loglog n)'! =), sometimes simplified
to LN[(X].

Thm. The computing time is Ly[1/2, \/2/d].
Thm. Let 4 vary with N as:
d = K(log N)¢(loglog N)' ¢,
Optimal values are ¢ = 1/3, K = (2/3)~!/3
Lu[1/3,exp(2(2/3%)].
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GNFS

For a general N, we need f(X) representing N and f is not sparse,
nor “small”.
Basic thing is to write N in base m for m ~ N'/¢ and

fX) =X+ a1 X"+ +a.

Conj. GNFS has cost Ly[1/3, (64/9)'/3] for optimal d as function of
N.

Some problems:
o A lot of effort was put in searching for

f(X) = aaX? + ag1 X'+ 4 a

with a; ~ N'/(¢*+1) and q; “small” with many properties.

¢ Properties related to units and/or factorization solved using
characters (Adleman). See LNM 1554 for details.

o As usual, linear algebra causes some trouble.
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RSA-768 with NFS

e Who? Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K.
Lenstra, Emmanuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander
Kruppa, Peter L. Montgomery, Dag Arne Osvik, Herman te Riele,
Andrey Timofeev, and Paul Zimmermann.

e Sieving: August 2007 til April 2009 (about 1500 AMD64 years),
several countries/continents. 64 334 489 730 relations (38%
INRIA, 30% EPFL, 15% NTT, 8% Bonn, 3.5% CWI, 5.5%
others).

¢ Linear algebra (after filtering): 192796 550 x 192795 550 (total
weight 27 797 115 920) using 155 core years in 119 calendar
days (block Wiedemann in parallel).
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Conclusions

e A broad view of integer factorization.
e Programs are now available (cado-nfs, GMP-ECM).

o discrete log algorithms as companions to integer factorization.
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