MPRI - Cours 2.12.2

F. Morain

Lecture III: Integer factorization

```
2013/06/27
```

The slides are available on http://www.lix.polytechnique.fr/Labo/Francois.Morain/MPRI/2012
I. Basics.
II. Naive methods.
III. The quadratic sieve and extensions.
IV. Linear algebra.
V. Some hints on NFS.
F. Morain - École polytechnique - Warwick Summer School - June 2013

A general scheme

Step 0: build a prime basis $\mathcal{B}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$.
Step 1: find a lot of relations $\left(R_{i}\right)_{i \in I}: R_{i}=\prod_{j=1}^{k} p_{j}^{a_{i, j}} \equiv 1 \bmod N$
Step 2: find $I^{\prime} \subset I$ s.t.

$$
\prod_{i \in I^{\prime}} R_{i}=x^{2}
$$

over \mathbb{Z}, which is equivalent to

$$
\forall j, \sum_{i \in I^{\prime}} a_{i, j} \equiv 0 \bmod 2
$$

which is a classical linear algebra problem.
Step 3: x is a squareroot of 1 and with probability $\geq 1 / 2$, $\operatorname{gcd}(x-1, N)$ is non-trivial.
I. Basics

Kraitchik (1920): find x s.t. $x^{2} \equiv 1 \bmod N, x \neq \pm 1$.

Ex. For $N=143$, there are 4 solutions $\pm 1, \pm 12$ and $\operatorname{gcd}(12-1,143)=11$.
F. Morain -École polytechnique - Warwick Summer School - June 2013

II. Naive methods

 A very naive one:0 . Build $\mathcal{B}=\left\{p_{1}=2,3, \ldots, p_{k}\right\}$.

1. Generate k random relations

$$
p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \bmod N
$$

and hope to factor the residue to get:

$$
p_{1}^{f_{1}^{1}} p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \bmod N
$$

from which

$$
p_{1}^{e_{1}-f_{1}} p_{2}^{e_{2}-f_{2}} \cdots p_{k}^{e_{k}-f_{k}} \equiv 1 \bmod N
$$

Store the $\left(e_{i}-f_{i}\right) \bmod 2$ in the matrix \mathcal{M}.
2. Find dependancies relations of \mathcal{M} and deduce solutions of $x^{2} \equiv 1 \bmod N$.
Hypothesis:

$$
x(e)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \bmod N
$$

is a random integer in [1..N[.

A numerical example

Let $N=143, \mathcal{B}=\{2,3,5\}$. We compute:

$$
\begin{gathered}
\left(R_{1}\right): 2^{3} \times 3 \times 5^{4} \equiv 2^{7} \bmod N \\
\left(R_{2}\right): 2^{3} \times 3^{3} \times 5^{4} \equiv 2^{3} \bmod N \\
\left(R_{3}\right): 3^{3} \times 5^{4} \equiv 1 \bmod N
\end{gathered}
$$

Combining $\left(R_{1}\right)$ and $\left(R_{2}\right)$, we get:

$$
\left(2^{-2} \times 3^{2} \times 5^{4}\right)^{2} \equiv 1 \bmod N
$$

or $12^{2} \equiv 1 \bmod N$ and $\operatorname{gcd}(12-1, N)=11$.
F. Morain - École polytechnique - Warwick Summer School - June 2013

Analysis

Prop. The cost of the naive algorithm is $O\left(L^{2+o(1)}\right)$.
Proof.
$\operatorname{Proba}\left(x(e)\right.$ is p_{k}-smooth $)=\frac{\psi\left(N, p_{k}\right)}{N} \Rightarrow$ we need $k \frac{N}{\psi\left(N, p_{k}\right)}$ relations.
Using trial division, testing p_{k}-smoothness costs k divisions.
Linear algebra costs $O\left(k^{r}\right)$ with $2 \leq r \leq 3$ (see later).
Total cost is:

$$
O\left(k^{2} \frac{N}{\psi\left(N, p_{k}\right)}\right)+O\left(k^{r}\right)
$$

Put $k=L(N)^{b}$, from which $p_{k} \approx k \log k=O\left(L(N)^{b+o(1)}\right)$. Cost is now:

$$
O\left(L^{2 b} L^{1 /(2 b)}\right)+O\left(L^{r b}\right)=O\left(L^{\max (2 b+1 /(2 b), r b)}\right)
$$

$2 b+1 /(2 b)$ is minimal for $b=1 / 2$ and has value 2 , which is larger than $r b$ for all r.

De Bruijn's function

Define

$$
\psi(x, y)=\#\{z \leq x, z \text { is } y-\text { smooth }\} .
$$

Thm. (Candfield, Erdős, Pomerance) $\forall \varepsilon>0$, uniformly in $y \geq(\log x)^{1+\varepsilon}$, as $x \rightarrow \infty$

$$
\psi(x, y)=\frac{x}{u^{u(1+o(1))}}
$$

with $u=\log x / \log y$.
Prop. Let

$$
L(x)=\exp (\sqrt{\log x \log \log x})
$$

For all real $\alpha>0, \beta>0$, as $x \rightarrow \infty$

$$
\frac{\psi\left(x^{\alpha}, L(x)^{\beta}\right)}{x^{\alpha}}=L(x)^{-\frac{\alpha}{2 \beta}+o(1)}
$$

F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad

III. Quadratic sieve

Pb . The above methods are not practical, since factoring the relations is too costly. Can we build residues of size N^{α} for $\alpha<1$?

CFRAC: (Morrison and Brillhart) use the continued fraction expansion of \sqrt{N}, leads to residues of size $N^{1 / 2}$; first real-life algorithm, factored F_{7} in 1970.

Schroeppel's linear sieve: relations
$F(a, b)=(\lfloor\sqrt{N}\rfloor+a)(\lfloor\sqrt{N}\rfloor+b)-N$ for small a and b satisfy

$$
F(a, b) \equiv(\lfloor\sqrt{N}\rfloor+a)(\lfloor\sqrt{N}\rfloor+b) \bmod N
$$

and $N=\lfloor\sqrt{N}\rfloor^{2}+R, R=O(\sqrt{N})$. All numbers have size $O(\sqrt{N})$. Moreover, if $p \mid F(a, b)$, then $p \mid F(a+p, b)$, etc.

Pomerance's quadratic sieve:

Use $a=b$

$$
\begin{gathered}
(a+\lfloor\sqrt{N}\rfloor)^{2} \equiv(a+\lfloor\sqrt{N}\rfloor)^{2}-N \approx 2 a \sqrt{N} . \\
p \mid F(a) \Longleftrightarrow(a+\lfloor\sqrt{N}\rfloor)^{2} \equiv N \bmod p
\end{gathered}
$$

implies N is a square modulo p and $p \mid F(a) \Leftrightarrow a \equiv a_{-}$or $a \equiv a_{+} \bmod p$.
Prop. The cost is $O\left(L(N)^{r / \sqrt{4(r-1)})}\right.$.
Proof. Precomputing all roots of $F(a) \bmod p \operatorname{costs} L^{b}$.
The cost of sieving over $|a| \leq L^{c}$ is

$$
\sum_{p \leq L^{b}} \frac{2 L^{c}}{p}=L^{c+o(1)} .
$$

The number of L^{b}-smooth values of $F(a)$ in the interval is $L^{c-1 /(4 b)} \Rightarrow$ take $c=b+1 /(4 b)$ and optimize $L^{\max (b, b+1 /(4 b), r b)}$ which yields $b=1 / \sqrt{4(r-1)}$.

Large primes

Idea: suppose we end up with

$$
x(e)^{2}=\left(\prod p\right) C
$$

for some $p_{k}<C(e)<p_{k}^{2}$. Then we know that $C(e)$ is prime. We can keep the relation and hope for another

$$
x\left(e^{\prime}\right)^{2}=\left(\prod p\right) C
$$

so that $\left(x(e) x\left(e^{\prime}\right) / C\right)^{2}$ is factored over \mathcal{B}. Works due to the birthday paradox. Use hashing to store C 's.

More than one prime: filtering (highly technical to implement).
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad 9/31 F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad

IV. Linear algebra

Fundamental property: combination matrices are sparse, since $\Omega(N) \leq \log _{2} N$.

N	size	\#coeffs $\neq 0$ per relation
RSA-100	$50,000 \times 50,000$	
RSA-110	$80,000 \times 80,000$	
RSA-120	$252,222 \times 245,810$ $(89,304 \times 89,088)$	
RSA-129	$569,466 \times 524,338$ $(188,614 \times 188,160)$	47
RSA-130	$3,504,823 \times 3,516,502$	39
RSA-140	$4,671,181 \times 4,704,451$	32
RSA-155	$6,699,191 \times 6,711,336$	62
$6,353-$	$19,591,108 \times 19,590,832$	229
RSA-768	$192,796,550 \times 192,795,550$	144

Gauß

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
0 & 0 & 1 & \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Computations:

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
0 & 0 & 1 & \\
0 & 1 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
x & x & x & x \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
1 & 0 & 1 & \\
1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Finally:

$$
L_{1}+L_{3}=0, L_{1}+L_{2}+L_{4}=0
$$

\qquad

Cost: $2 n$ applications $M b$ (black-box operation). If M has $n^{1+\varepsilon}$ non-zero coeffs, then this is $O\left(n^{2+\varepsilon}\right)$.

Proofs: Kaltofen, etc.

Wiedemann's algorithm in a nutshell

M is $n \times n$
f^{M} : minimal polynomial of M, and/or that of $\left\{M^{i}\right\}_{i=0}^{\infty}$.
$f^{M, b}$: minimal polynomial of $\left\{M^{i} b\right\}_{i=0}^{\infty}$; of course $f^{M, b} \mid f^{M}$.
If u is any row vector, the minimal polynomial of $\left\{u M^{i} b\right\}_{i=0}^{\infty}$ is $f_{u}^{M, b}$ and $f_{u}^{M, b} \mid f^{M, b}$.

Rem. for random $b, f^{M, b}=f^{M}$ with high probability.
Idea: compute $f_{u}^{M, b}$ using $\left\{u M^{i} b\right\}_{i=0}^{2 n-1}$ and use Berlekamp-Massey in time $O\left(n^{2}\right)$ (or faster $O(\mathrm{M}(n) \log n)$).

Application to factoring

Trick: find minimal polynomial of z for random z. Then (probably)

$$
P_{M}(X)=X+p_{2} X^{2}+\cdots+p_{r} X^{r}
$$

and $P_{M}(M)(z)=0=M\left(z+p_{2} M z+\cdots+p_{r} M^{r-1} z\right)$, so that we probably have an element of the kernel.

Distributed version: cut M into slices, evaluate $M z$ this way.

Advanced linear algebra

Rem. The companion matrix can be merged into A.
Rem. additings rows use XOR's on unsigned long (in C). Still in $O\left(k^{3}\right)$ but with a very small constant.

Structured Gaussian elimination: use a sparse encoding of M and perform elimination so as to slow the fill-in down as much as possible.

Going further: Lanczos and Wiedemann benefit from sparse encoding, and cost $O\left(k^{2+\varepsilon}\right)$. Many subtleties.

Biggest open problem: how to distribute this phase in a clean an efficient way? Currently the bottleneck of this kind of algorithms.

V．Some hints on NFS

目 Z．I．Borevitch and I．R．Chafarevitch． Théorie des nombres．Gauthiers－Villars，Paris， 1967.
居 I．N．Stewart and D．O．Tall．
Algebraic number theory．
Chapman and Hall，London，New－York，2nd edition， 1987.
冨 M．Pohst and H．Zassenhaus．
Algorithmic algebraic number theory．
Cambridge Univ．Press， 1989.
圊 H．Cohen．
A course in algorithmic algebraic number theory，volume 138 of Graduate Texts in Mathematics．
Springer－Verlag，1996．Third printing．
毒 H．Cohen．
Advanced topics in computational number theory，volume 193 of Graduate Texts in Mathematics．
Springer－Verlag， 2000.

A）Factorization in（euclidean）quadratic fields

We consider the case where $\mathbb{Q}(\sqrt{d})$ is euclidean．

Thm．Let d be such that $\mathbb{Q}(\sqrt{d})$ is euclidean and p be a rational prime．
（a）If $\left(\frac{d}{p}\right)=-1, p$ is irreducible in \mathcal{O}_{K} and p is unramified．
（b）If $\left(\frac{d}{p}\right)=1, p=u \pi_{p} \pi_{p}^{\prime}$ with $u \in \mathcal{U}, \pi_{p}=x-y \sqrt{d}$ and $\pi_{p}^{\prime}=x+y \sqrt{d}$ are two irreducible non associate factors in $\mathcal{O}_{K} ; p$ splits．
（c）If $\left(\frac{d}{p}\right)=0, p=u(x+y \sqrt{d})^{2}$ where $x+y \sqrt{d}$ is irreducible in \mathcal{O}_{K} and $u \in \mathcal{U} ; p$ is ramified．

Rem．For small p＇s，any trivial algorithm will work．
\qquad

A numerical example： $\mathbb{Q}(\sqrt{6})$

Fundamental unit：$\varepsilon=5+2 \sqrt{6}$ ．

$$
2=-(2+\sqrt{6})(2-\sqrt{6})=(5-2 \sqrt{6})(2+\sqrt{6})^{2}=\varepsilon^{-1}(2+\sqrt{6})^{2} .
$$

Let＇s factor $\xi=1010+490 \sqrt{6}$ ．We first have

$$
\mathrm{N}(\xi)=1010^{2}-6 \cdot 490^{2}=-420500=-2^{2} \cdot 5^{3} \cdot 29^{2}
$$

$5=-(1+\sqrt{6})(1-\sqrt{6}), 29=-(5+3 \sqrt{6})(5-3 \sqrt{6})$ ；therefore
$\xi=u(2+\sqrt{6})^{\alpha}(1+\sqrt{6})^{\gamma_{1}}(1-\sqrt{6})^{\delta_{1}}(5+3 \sqrt{6})^{\gamma_{2}}(5-3 \sqrt{6})^{\delta_{2}}$.
$\alpha=2, \quad \xi_{1}=\frac{\xi}{(2+\sqrt{6})^{2}}=-415+215 \sqrt{6}$
$\gamma_{1}=1, \quad \xi_{2}=\frac{\xi_{1}}{1+\sqrt{6}}=341-126 \sqrt{6}$
$\delta_{1}=2, \quad \xi_{3}=\frac{\xi_{2}}{(1-\sqrt{6})^{2}}=35-8 \sqrt{6}$
$\gamma_{2}=2, \quad \xi_{4}=\frac{\xi_{3}}{(5+3 \sqrt{6})^{2}}=5-2 \sqrt{6}$
$\gamma_{3}=0, \quad u=\xi_{4}=\varepsilon^{-1}$

$$
\xi=\varepsilon^{-1}(2+\sqrt{6})^{2}(1+\sqrt{6})(1-\sqrt{6})^{2}(5+3 \sqrt{6})^{2} .
$$

B）NFS：basic idea

Pollard＇s idea：let $f(X) \in \mathbb{Z}[X]$ and m s．t．

$$
f(m) \equiv 0 \bmod N .
$$

Let θ be a root of f in \mathbb{C} and $K=\mathbb{Q}[X] /(f(X))=\mathbb{Q}(\theta)$ ．
To simplify things： $\mathcal{O}_{\mathbf{K}}$ is supposed to be $\mathbb{Z}[\theta]$ and euclidean．Let

$$
\begin{aligned}
\phi: \mathbb{Z}[\theta] & \rightarrow \\
\theta & \mapsto \mathbb{Z} / N \mathbb{Z} \\
& \mapsto m \bmod N
\end{aligned}
$$

ϕ is a ring homomorphism．
Look for algebraic integers of the form $a-b \theta$ s．t．

$$
a-b \theta=\prod_{\pi \in \mathcal{B}_{K}} \pi^{v_{\pi}(a-b \theta)}
$$

where $v_{\pi}(a-b \theta) \in \mathbb{Z}$ and

$$
a-b m=\prod_{p \in \mathcal{B}} p^{w_{p}(a-b m)}
$$

with \mathcal{B} a prime basis and $w_{p}(a-b m) \in \mathbb{Z}$ ．

NFS: basic idea (cont'd)

Numerical example

Let's factor $N=5^{8}-6=390619=m^{2}-6$ (surprise!) with $m=5^{4}=625$, hence we will work in $\mathbb{Q}(\theta)=\mathbb{Q}[X] /(f(X))$ with $f(X)=X^{2}-6$ and $\theta=\sqrt{6}$.
Rational basis: $\mathcal{B}=\{2,3,5,7,11,13,17,19,23,29\}$.
Algebraic basis: \mathcal{B}_{K} given as

p	c_{p}	π, π^{\prime}
2	0	$2+\theta=\pi_{2}$
3	0	$3+\theta=\pi_{3}$
5	± 1	$1+\theta=\pi_{5}, 1-\theta=\pi_{5}^{\prime}$
19	± 5	$5+\theta=\pi_{19}, 5-\theta=\pi_{19}^{\prime}$
23	± 11	$1+2 \theta=\pi_{23}, 1-2 \theta=\pi_{23}^{\prime}$
29	± 8	$5+3 \theta=\pi_{29}, 5-3 \theta=\pi_{29}^{\prime}$

with c_{p} s.t. $f\left(c_{p}\right) \equiv 0 \bmod p$. All these obtained via factoring of $\mathrm{N}(a-b \theta)$ for small a 's and b 's.

Free relations: $2=\varepsilon^{-1}(2+\theta)^{2}$, or $5=-\pi_{5} \pi_{5}^{\prime}$.
and $\operatorname{gcd}(A-B m \pm Z, N)$ might factor N.
F. Morain - École polytechnique - Warwick Summer School - June 2013 \qquad 21/31 F. Morain - École polytechnique - Warwick Summer School - June 2013

Results for $|a| \leq 60,1 \leq b \leq 30$

rel	a	b	$N(a-b \theta)$	$a-b \theta$	$a-b m$
L_{1}	2	0	2^{2}	$\varepsilon^{-1} \cdot \pi_{2}^{2}$	2
L_{2}	3	0	3^{2}	$\varepsilon^{-1} \cdot \pi_{3}^{2}$	3
L_{3}	5	0	5^{2}	$-\pi_{5} \cdot \pi_{5}^{\prime}$	5
L_{4}	19	0	19^{2}	$\pi_{19} \cdot \pi_{19}^{\prime}$	19
L_{5}	23	0	23^{2}	$-\pi_{23} \cdot \pi_{23}^{\prime}$	23
L_{6}	29	0	29^{2}	$-\pi_{29} \cdot \pi_{29}^{\prime}$	29
L_{7}	-21	1	$3 \cdot 5 \cdot 29$	$-\varepsilon^{-1} \cdot \pi_{3} \cdot \pi_{5} \cdot \pi_{29}$	$-2 \cdot 17 \cdot 19$
L_{8}	-12	1	$2 \cdot 3 \cdot 23$	$-\varepsilon^{-1} \cdot \pi_{2} \cdot \pi_{3} \cdot \pi_{23}$	$-7^{2} \cdot 13$
L_{9}	-5	1	19	$-\pi_{19}$	$-2 \cdot 3^{2} \cdot 5 \cdot 7$
L_{10}	-2	1	-2	$-\pi_{2}$	$-3 \cdot 11 \cdot 19$
L_{11}	0	1	$-2 \cdot 3$	$-\varepsilon^{-1} \cdot \pi_{2} \cdot \pi_{3}$	-5^{4}
L_{12}	1	1	-5	π_{5}^{\prime}	$-2^{4} \cdot 3 \cdot 13$
L_{13}	4	1	$2 \cdot 5$	$\varepsilon^{-1} \cdot \pi_{2} \cdot \pi_{5}$	$-3^{3} \cdot 23$

rel	a	b	$N(a-b \theta)$	$a-b \theta$	$a-b m$
L_{14}	9	1	$3 \cdot 5^{2}$	$\varepsilon^{-1} \cdot \pi_{3} \cdot \pi_{5}^{2}$	$-2^{3} \cdot 7 \cdot 11$
L_{15}	16	1	$2 \cdot 5^{3}$	$-\pi_{2} \cdot \pi_{5}^{\prime 3}$	$-3 \cdot 7 \cdot 29$
L_{16}	-10	3	$2 \cdot 23$	$\pi_{2} \cdot \pi_{23}^{\prime}$	$-5 \cdot 13 \cdot 29$
L_{17}	5	3	-29	π_{29}^{\prime}	$-2 \cdot 5 \cdot 11 \cdot 17$
L_{18}	13	3	$5 \cdot 23$	$\pi_{5}^{\prime} \cdot \pi_{23}^{\prime}$	$-2 \cdot 7^{2} \cdot 19$
L_{19}	1	4	$-5 \cdot 19$	$-\pi_{5} \cdot \pi_{19}^{\prime}$	$-3 \cdot 7^{2} \cdot 17$
L_{20}	25	4	23^{2}	$\pi_{23}^{\prime 2}$	$-3^{2} \cdot 5^{2} \cdot 11$
L_{21}	-11	5	-29	$\varepsilon \cdot \pi_{29}^{\prime}$	$-2^{6} \cdot 7^{2}$
L_{22}	-7	9	$-19 \cdot 23$	$\pi_{19} \cdot \pi_{23}^{\prime}$	$-2^{9} \cdot 11$
L_{23}	-27	11	3	$-\varepsilon \cdot \pi_{3}$	$-2 \cdot 7 \cdot 17 \cdot 29$
L_{24}	-2	11	$-2 \cdot 19^{2}$	$-\pi_{2} \cdot \pi_{19}^{\prime 2}$	$-13 \cdot 23^{2}$
L_{25}	33	13	$3 \cdot 5^{2}$	$\varepsilon^{-1} \cdot \pi_{3} \cdot \pi_{5}^{\prime 2}$	$-2^{2} \cdot 7 \cdot 17^{2}$

F. Morain - École polytechnique - Warwick Summer School - June 2013

Working without units

We can use factorization modulo units. We will end up with relations

$$
\mathrm{N}(A+B \sqrt{6})=\varepsilon^{m}=1
$$

and hope to get a square.
If we don't know ε, we can try to extract a squareroot of

$$
\eta=A+B \sqrt{6}
$$

using brute force: $\eta=\xi^{2}=(x+y \sqrt{6})^{2}$, or:

$$
\left\{\begin{aligned}
x^{2}-6 y^{2} & = \pm 1 \\
x^{2}+6 y^{2} & =A
\end{aligned}\right.
$$

which readily gives $x^{2}=(A \pm 1) / 2$ which is easily solved over \mathbb{Z}.
Over a general number field, computing units is in general difficult, and some workaround has been found.
$L_{3} \cdot L_{6} \cdot L_{7} \cdot L_{10} \cdot L_{15} \cdot L_{17} \cdot L_{25}$ yields

$$
\begin{gathered}
\phi\left((5+2 \theta)^{-1}(2+\theta)(3+\theta)(1+\theta)(1-\theta)^{3}(5+3 \theta)(5-3 \theta)\right)^{2} \\
\equiv\left(2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17^{2} \cdot 19 \cdot 29\right)^{2} \quad(\bmod N)
\end{gathered}
$$

and

$$
2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17^{2} \cdot 19 \cdot 29 \equiv 148603 \quad(\bmod N)
$$

gives $242016^{2} \equiv 148603^{2} \bmod N$ and $\operatorname{gcd}(242016-148603, N)=1$,
$L_{1} \cdot L_{2} \cdot L_{3} \cdot L_{4} \cdot L_{9} \cdot L_{10} \cdot L_{14} \cdot L_{15} \cdot L_{19} \cdot L_{23}$ leads to

$$
\begin{gathered}
\phi\left((5+2 \theta)^{-1}(2+\theta)^{2}(3+\theta)^{2}(1+\theta)^{2}(1-\theta)^{2}(5+\theta)(5-\theta)\right)^{2} \\
\equiv\left(2^{3} \cdot 3^{3} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 17 \cdot 19 \cdot 29\right)^{2} \quad(\bmod N)
\end{gathered}
$$

or $61179^{2} \equiv 81314^{2} \bmod N, \operatorname{gcd}(61179-81314, N)=4027$.

GNFS

For a general N, we need $f(X)$ representing N and f is not sparse, nor "small".
Basic thing is to write N in base m for $m \approx N^{1 / d}$ and

$$
f(X)=X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} .
$$

Conj. GNFS has cost $L_{N}\left[1 / 3,(64 / 9)^{1 / 3}\right]$ for optimal d as function of N.

Some problems:

- A lot of effort was put in searching for

$$
f(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0}
$$

with $a_{i} \approx N^{1 /(d+1)}$ and a_{i} "small" with many properties.

- Properties related to units and/or factorization solved using characters (Adleman). See LNM 1554 for details.
- As usual, linear algebra causes some trouble.
F. Morain -École polytechnique - Warwick Summer School - June 2013 \qquad 29/31 9/31

Conclusions

- A broad view of integer factorization.
- Programs are now available (cado-nfs, GMP-ECM).
- discrete log algorithms as companions to integer factorization.

