
Algorithm 8.1
Input: A problem
Output: An elliptic curve E over Fq with known cardinality providing a
solution to the problem

...1 Choose D, q = pf such that 4pf = t2 − v2D for some t, v ∈ Z (and
there is no solution with a smaller f), and suitable |E| = q + 1− t.

...2 Compute
HD(X) =

∏
a∈Cl(O)

(
X− j(a)

)
∈ Z[X]

by Algorithm 8.2.
...3 Compute a root j ∈ Fq of HD mod p.
...4 k = j

1728−j , γ quadratic non-residue in Fq
...5 return the one of

E : Y2 = X3 + 3kX + 2k E′ : Y2 = X3 + 3kγ2X + 2kγ3

with |E| = q + 1− t (for D < −4)
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Algorithm 8.2

Input: D < 0 a quadratic discriminant
Output: HD ∈ Z[X]

...1 Let h = #Cl(OD).

...2 Compute the reduced system of representatives [Ak,Bk,Ck] of Cl(OD)
for k = 1, . . . , h:

D = B2
k − 4AkCk, gcd(Ak,Bk,Ck) = 1, |Bk| ≤ Ak ≤ Ck

and Bk > 0 if there is equality in one of the inequalities.
...3 for k = 1, . . . , h
...4 τk ← −Bk+

√
D

2Ak
∈ C

...5 jk ← j(τk) ∈ C

...6 HD ←
∏h

k=1(X− jk) ∈ C[X]
...7 Drop the imaginary part of HD, and round the coefficients to integers.
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Siegel’s theorem

.
Theorem (9.1)
..

......

h ∈ O
(
|D|1/2 log |D|

)
;

under GRH,

h ∈ O
(
|D|1/2 log log |D|

)
, h ∈ Ω

(
|D|1/2

log log |D|

)
.
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Heights

.
Theorem (9.2, Enge2009,Schoof1991)
..

......

maxcoeff(HD) ≤ Ch + π
√
|D|

h∑
k=1

1

Ak
∈ O

(
|D|1/2 log2 |D|

)
⊆ Õ

(
|D|1/2

)
with C = 3.01 . . ..
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Generic complexity

.
Theorem (10.1)
..

......

Called with a precision of n ∈ O
(
|D|1/2 log2 |D|

)
, Algorithm 8.2 computes

an approximation to HD in time

O (h E(n)M(n) + log h MX(h, n)) ⊆ O
(
(h E(n) + h log2 h)M(n)

)
,

⊆ O
(
E(n) + log2 |D|

)
|D| log4 |D| log log|D|

⊆ Õ (E(n) |D|)

where E(n) is the number of floating-point operations needed to evaluate j
at precision n.
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Naive complexity

.
Corollary (10.2)
..

......

Algorithm 8.2 can be carried out in

O(h n M(n)) ⊆ O
(
|D|3/2 log6 |D| log log|D|

)
⊆ Õ

(
|D|3/2

)
.
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Dedekind η

η(z) = q1/24
∞∏
ν=1

(1− qν)

= q1/24
(
1 +

∞∑
ν=1

(−1)ν
(

qν(3ν−1)/2 + qν(3ν+1)/2)
))

f1(z) =
η(z/2)
η(z)

γ2 =
f241 + 16

f81
j = γ32
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Addition sequences for η

qν = qν−1 · q
q2ν−1 = q2(ν−1)−1 · q2

qν(3ν−1)/2 = q(ν−1)(3(ν−1)+1)/2 · q2ν−1

qν(3ν+1)/2 = qν(3ν−1)/2 · qν
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Smart complexity

.
Corollary (10.3)
..

......

Algorithm 8.2 can be carried out in

O
(
h
√

n M(n)
)
⊆ O

(
|D|5/4 log5 |D| log log|D|

)
⊆ Õ

(
|D|5/4

)
.
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Multipoint evaluation

.
Corollary (10.4)
..

......

Algorithm 8.2 can be carried out in

O
(
(n log n + h log2 h)M(n)

)
⊆ O

(
|D| log6 |D| log log|D|

)
⊆ Õ (|D|) ,

which is quasi-linear in the output size

O
(
|D| log3 |D|

)
.
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Implementation

Record (E. 2009) (with class invariants)
▶ D = −2 093 236 031
▶ h = 100 000
▶ Precision 264 727 bits
▶ 260 000 s = 3 d CPU time
▶ 5 GB

Software
▶ GNU MPC: complex floating point arithmetic in

arbitrary precision with guaranteed rounding
⋆ Based on MPFR and GMP
⋆ LGPL

▶ MPFRCX: polynomials with real (MPFR) and complex (MPC)
coefficients

⋆ LGPL
▶ cm: class polynomials and CM curves

⋆ GPL
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Chinese remaindering idea

Enumerate curves with CM by D over Fp for suitable p.
Write down their j-invariants j1, . . . , jh ∈ Fp.
Then

HD(X) mod p =

h∏
k=1

(X− jk).

Trick: The p can be relatively small.
Use several p, and lift by Chinese remaindering to Z.
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Slow Chinese remaindering

Input: D < 0 a quadratic discriminant
Output: HD ∈ Z[X]

Compute a set of primes p1, . . . , pr such that 4pi = t2i − v2i D has integer
solutions and

r∑
i=1

log pi > Ch + π
√
|D|

h∑
k=1

1

Ak
+ log 2

(the bound of Theorem 9.2, the log 2 is for the sign).

Andreas Enge CM Warwick 2013 13



Slow Chinese remaindering

for i = 1, . . . , r do
J← ∅
for j = 0, . . . , pi − 1 ∈ Fpi do

if E/Fpi with j-invariant j has CM by D then
J← J ∪ {j}

end if
end for
HD mod pi ←

∏
j∈J(X− j)

end for
HD ← CRT({HD mod pi})
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Complexity

.Theorem..

......

Assuming that checking the CM type of a curve is fast
(polynomial in log |D|),
the complexity of the algorithm is in

Õ
(
|D|3/2

)
.

This is the same as the most naive version of the floating point algorithm...
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Fast Chinese remaindering

Belding–Bröker–E.–Lauter 2008
for i = 1, . . . , r do

J← ∅
for j = 0, . . . , pi − 1 ∈ Fpi do

if E/Fpi with j-invariant j has CM by D then
break

end if
end for
Compute all the conjugates J of j.
HD mod pi ←

∏
j∈J(X− j)

end for
HD ← CRT({HD mod pi})
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Complexity

.Theorem..

......

Under GRH, the expected complexity of the algorithm is in

Õ
(
|D|1/2

)
.
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Record

E.–Sutherland 2010 (with class invariants)
D = −1 000 000 013 079 299 > 1015

h = 10 034 174

precision 21 533 832 bits
438 709 primes of up to 53 bits
200 days CPU time
13 TB (?)
2 PB (?) without class invariants
200 MB modulo 255 bit prime
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Bordeaux

UNESCO World Heritage Site since 2007
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Sütterlin – Sütterlin

a b c d e f g h i j k l m n

o p q r s t u v w x y z ß

A B C D E F G H I J K LMN

O P Q R S T U VWXY Z
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