Algorithm 8.1

Input: A problem

Output: An elliptic curve E over Iy with known cardinality providing a
solution to the problem

@ Choose D, g = pf such that 4pf = £2 — V2D for some t, v € Z (and
there is no solution with a smaller f), and suitable |E| = g+ 1 —t.
@ Compute

Ao = ] (X- @) € 2ZIX

aeClI( )
by Algorithm 8.2.
(5] Compute a root j € Fy of Hp mod p.
Q k= 17

@ return the one of

i quadratic non-residue in [,

E: Y =X 4+3kX+2k E:Y? =X +3ky’X+2ky?

. with |E| = g+ 1 — t (for D < —4)
lrezia—
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Algorithm 8.2

Input: D < 0 a quadratic discriminant
Output: Hp € Z[ X
O Let h=#Cl(Op).
@ Compute the reduced system of representatives [Ak, Bk, Cx| of C1(Op)
fork=1,... h

D= B} —4AkC, gcd(A,Bi, Ci) =1, |Bil < Ax < Ci

and By > 0 if there is equality in one of the inequalities.
Q fork=1,...,h

—Bi+vVD
0 Tk<—£7Ak€(C

o Jk = j(mi) € C
@ Hp « ITi1(X—ju) € CIX
@ Drop the imaginary part of Hp, and round the coefficients to integers.

-
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Siegel’s theorem

Theorem (9.1)
he O (|D\1/2 |og\D|) :
under GRH,

log log | D|

1/2
he o(\Dyl/2 Ioglog]D\) heQ <L> .
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Theorem (9.2, Enge2009,Schoof1991)

h
maxcoeff(Hp) < Ch+m/[D] 3 Ai € o(|D|1/2 log? |D|) c O(|D|1/2)
k=1 "k

with C=3.01....
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Generic complexity

Theorem (10.1)

Called with a precision of n € O (]D|1/2 log? |D
an approximation to Hp in time

), Algorithm 8.2 computes

O (hE(n)M(n) + log hMx(h, n)) € O ((h E(n) + hlog* h)M(n))
O (E(n) + log?|D|) |D] log* | D log log| D|

C
c O(E(n)|D])

where E(n) is the number of floating-point operations needed to evaluate j
at precision n.

4
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Naive complexity

Corollary (10.2)

Algorithm 8.2 can be carried out in

O(hnM(n)) C O (|D|3/2 log® | D| |og|ogyo\) co (\D]3/2> .
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Dedekind 7

nz) = ¢"/* H
_ 1/24 < Z ) 1/(31/ /2 4 q (3u+1)/2))>
( 2)
filz) =
B ;‘24+16
Y2 = f?
j= %
Crzia—
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Addition sequences for 7

v v—1

9 =4 - q
R (R R
ql/(31/—1)/2 q(u—l)(3(l/—1)+1)/2 . q21/—1
ql/(3l/+1)/2 qu(31/—1)/2 . qu
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Smart complexity

Corollary (10.3)

Algorithm 8.2 can be carried out in

0 (hy/nM(n)) C O (|D\5/4 log® | D| |og|ogyo|) co (\015/4) .
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Multipoint evaluation

Corollary (10.4)

Algorithm 8.2 can be carried out in
O ((nlog n+ hlog? h)M(n)) € O (|D] log® |D| loglog|D|) € O (|D]),

which is quasi-linear in the output size

O(|D|log*|D) .

p
Crreia— ,
- Andreas Enge cM Warwick 2013 10



Implementation

e Record (E. 2009) (with class invariants)

D = -2093236031

h = 100000

Precision 264 727 bits
260000 s = 3 d CPU time
5 GB

@ Software
» GNU MPC: complex floating point arithmetic in
arbitrary precision with guaranteed rounding
* Based on MPFR and GMP
* LGPL

» MPFRCX: polynomials with real (MPFR) and complex (MPC)
coefficients

* LGPL
» cm: class polynomials and CM curves
* GPL

v
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Chinese remaindering idea

@ Enumerate curves with CM by D over [, for suitable p.
@ Write down their j-invariants ji, ..., j, € Fp.
@ Then
h
Hp(X) mod p = [ [ (X—Ji).
k=1
@ Trick: The p can be relatively small.

Use several p, and lift by Chinese remaindering to Z.
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Slow Chinese remaindering

Input: D < 0 a quadratic discriminant

Output: Hp € Z[X]
Compute a set of primes pq, ..., p, such that 4p; = t,2 — v,?D has integer
solutions and

r h
1
> logp;> Ch+ /D] > — + log2
i=1 k=1 Ak

(the bound of Theorem 9.2, the log 2 is for the sign).
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Slow Chinese remaindering

fori=1,...,rdo
J—0
for j=0,...,pi—1cF, do
if E/F,, with j-invariant j has CM by D then

J+— JU{j}
end if
end for
Hp mod p; + jEJ(X_j)

end for
HD — CRT({HD mod p,'})
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Complexity

Theorem

Assuming that checking the CM type of a curve is fast
(polynomial in log |D|),
the complexity of the algorithm is in

0(\0]3/2) :

W

This is the same as the most naive version of the floating point algorithm...
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Fast Chinese remaindering

Belding—Broker—E.—Lauter 2008
fori=1,...,rdo
J+ 0
for j=0,...,pi—1€F, do
if E/Fp, with j-invariant j has CM by D then
break
end if
end for
Compute all the conjugates J of j.
Hp mod p; < [[;c (X —))
end for
Hp < CRT({Hp mod p;})

-
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Complexity

Theorem
Under GRH, the expected complexity of the algorithm is in

0(\011/2) .

- Andreas Enge cM Warwick 2013 17



E.—Sutherland 2010 (with class invariants)
e D= —1000000013079299 > 10'

h=10034174

precision 21 533 832 bits

438709 primes of up to 53 bits

200 days CPU time

13 TB (?)

2 PB (?) without class invariants

200 MB modulo 255 bit prime

] Andreas Enge M Warwick 2013 18



Bordeaux

UNESCO World Heritage Site since 2007
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