Algorithm 8.1

Input: A problem
Output: An elliptic curve E over \mathbb{F}_{q} with known cardinality providing a solution to the problem
(1) Choose $D, q=p^{f}$ such that $4 p^{f}=t^{2}-v^{2} D$ for some $t, v \in \mathbb{Z}$ (and there is no solution with a smaller f), and suitable $|E|=q+1-t$.
(2) Compute

$$
H_{D}(X)=\prod_{\mathfrak{a} \in \operatorname{Cl}(\mathcal{O})}(X-j(\mathfrak{a})) \in \mathbb{Z}[X]
$$

by Algorithm 8.2.
(3) Compute a root $\bar{j} \in \mathbb{F}_{q}$ of $H_{D} \bmod p$.
(9) $k=\frac{\bar{j}}{1728-\bar{j}}, \gamma$ quadratic non-residue in \mathbb{F}_{q}
(5) return the one of

$$
\begin{aligned}
& E: Y^{2}=X^{3}+3 k X+2 k \quad E^{\prime}: Y^{2}=X^{3}+3 k \gamma^{2} X+2 k \gamma^{3} \\
& \text { with }|E|=q+1-t(\text { for } D<-4)
\end{aligned}
$$

Algorithm 8.2

Input: $D<0$ a quadratic discriminant
Output: $H_{D} \in \mathbb{Z}[X]$
(1) Let $h=\# \mathrm{Cl}\left(\mathcal{O}_{D}\right)$.
(2) Compute the reduced system of representatives $\left[A_{k}, B_{k}, C_{k}\right]$ of $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$ for $k=1, \ldots, h$:

$$
D=B_{k}^{2}-4 A_{k} C_{k}, \quad \operatorname{gcd}\left(A_{k}, B_{k}, C_{k}\right)=1, \quad\left|B_{k}\right| \leq A_{k} \leq C_{k}
$$

and $B_{k}>0$ if there is equality in one of the inequalities.
(3) for $k=1, \ldots, h$
(4) $\tau_{k} \leftarrow \frac{-B_{k}+\sqrt{D}}{2 A_{k}} \in \mathbb{C}$
(3) $j_{k} \leftarrow j\left(\tau_{k}\right) \in \mathbb{C}$
(0) $H_{D} \leftarrow \prod_{k=1}^{h}\left(X-j_{k}\right) \in \mathbb{C}[X]$
((Drop the imaginary part of H_{D}, and round the coefficients to integers.
Inría

Siegel's theorem

Theorem (9.1)

$$
h \in O\left(|D|^{1 / 2} \log |D|\right) ;
$$

under GRH,

$$
h \in O\left(|D|^{1 / 2} \log \log |D|\right), h \in \Omega\left(\frac{|D|^{1 / 2}}{\log \log |D|}\right) .
$$

Heights

Theorem (9.2, Enge2009,Schoof1991)
$\operatorname{maxcoeff}\left(H_{D}\right) \leq C h+\pi \sqrt{|D|} \sum_{k=1}^{h} \frac{1}{A_{k}} \in O\left(|D|^{1 / 2} \log ^{2}|D|\right) \subseteq O^{(}\left(|D|^{1 / 2}\right)$ with $C=3.01 \ldots$.

Generic complexity

Theorem (10.1)

Called with a precision of $n \in O\left(|D|^{1 / 2} \log ^{2}|D|\right)$, Algorithm 8.2 computes an approximation to H_{D} in time

$$
\begin{aligned}
& O\left(h E(n) \mathrm{M}(n)+\log h \mathrm{M}_{X}(h, n)\right) \subseteq O\left(\left(h E(n)+h \log ^{2} h\right) \mathrm{M}(n)\right), \\
\subseteq & O\left(E(n)+\log ^{2}|D|\right)|D| \log ^{4}|D| \log \log |D| \\
\subseteq & O^{(}(E(n)|D|)
\end{aligned}
$$

where $E(n)$ is the number of floating-point operations needed to evaluate j at precision n.

Naive complexity

Corollary (10.2)
Algorithm 8.2 can be carried out in

$$
O(h n \mathrm{M}(n)) \subseteq O\left(|D|^{3 / 2} \log ^{6}|D| \log \log |D|\right) \subseteq O\left(|D|^{3 / 2}\right) .
$$

Dedekind η

$$
\begin{aligned}
\eta(z) & =q^{1 / 24} \prod_{\nu=1}^{\infty}\left(1-q^{\nu}\right) \\
& =q^{1 / 24}\left(1+\sum_{\nu=1}^{\infty}(-1)^{\nu}\left(q^{\nu(3 \nu-1) / 2}+q^{\nu(3 \nu+1) / 2)}\right)\right) \\
f_{1}(z) & =\frac{\eta(z / 2)}{\eta(z)} \\
\gamma_{2} & =\frac{f_{1}^{2^{4}+16}}{f_{1}^{8}} \\
j & =\gamma_{2}^{3}
\end{aligned}
$$

Addition sequences for η

$$
\begin{aligned}
q^{\nu} & =q^{\nu-1} \cdot q \\
q^{2 \nu-1} & =q^{2(\nu-1)-1} \cdot q^{2} \\
q^{\nu(3 \nu-1) / 2} & =q^{(\nu-1)(3(\nu-1)+1) / 2} \cdot q^{2 \nu-1} \\
q^{\nu(3 \nu+1) / 2} & =q^{\nu(3 \nu-1) / 2} \cdot q^{\nu}
\end{aligned}
$$

Smart complexity

Corollary (10.3)

Algorithm 8.2 can be carried out in

$$
O(h \sqrt{n} M(n)) \subseteq O\left(|D|^{5 / 4} \log ^{5}|D| \log \log |D|\right) \subseteq O^{\sim}\left(|D|^{5 / 4}\right) .
$$

Multipoint evaluation

Corollary (10.4)

Algorithm 8.2 can be carried out in
$O\left(\left(n \log n+h \log ^{2} h\right) \mathrm{M}(n)\right) \subseteq O\left(|D| \log ^{6}|D| \log \log |D|\right) \subseteq O^{\sim}(|D|)$,
which is quasi-linear in the output size

$$
O\left(|D| \log ^{3}|D|\right) .
$$

Implementation

- Record (E. 2009) (with class invariants)
- $D=-2093236031$
- $h=100000$
- Precision 264727 bits
- $260000 \mathrm{~s}=3 \mathrm{~d}$ CPU time
- 5 GB
- Software
- GNU MPC: complex floating point arithmetic in arbitrary precision with guaranteed rounding
\star Based on MPFR and GMP

* LGPL
- MPFRCX: polynomials with real (MPFR) and complex (MPC) coefficients
* LGPL
- cm: class polynomials and CM curves
* GPL

Chinese remaindering idea

- Enumerate curves with $C M$ by D over \mathbb{F}_{p} for suitable p.
- Write down their j-invariants $j_{1}, \ldots, j_{h} \in \mathbb{F}_{p}$.
- Then

$$
H_{D}(X) \bmod p=\prod_{k=1}^{h}\left(X-j_{k}\right)
$$

- Trick: The p can be relatively small.
- Use several p, and lift by Chinese remaindering to \mathbb{Z}.

Slow Chinese remaindering

Input: $D<0$ a quadratic discriminant
Output: $H_{D} \in \mathbb{Z}[X]$
Compute a set of primes p_{1}, \ldots, p_{r} such that $4 p_{i}=t_{i}^{2}-v_{i}^{2} D$ has integer solutions and

$$
\sum_{i=1}^{r} \log p_{i}>C h+\pi \sqrt{|D|} \sum_{k=1}^{h} \frac{1}{A_{k}}+\log 2
$$

(the bound of Theorem 9.2, the $\log 2$ is for the sign).

Slow Chinese remaindering

```
for \(i=1, \ldots, r\) do
    \(J \leftarrow \emptyset\)
for \(j=0, \ldots, p_{i}-1 \in \mathbb{F}_{p_{i}}\) do
    if \(E / \mathbb{F}_{p_{i}}\) with \(j\)-invariant \(j\) has CM by \(D\) then
            \(J \leftarrow J \cup\{j\}\)
        end if
    end for
    \(H_{D} \bmod p_{i} \leftarrow \prod_{j \in J}(X-j)\)
end for
\(H_{D} \leftarrow \operatorname{CRT}\left(\left\{H_{D} \bmod p_{i}\right\}\right)\)
```


Complexity

Theorem

Assuming that checking the CM type of a curve is fast (polynomial in $\log |D|$),
the complexity of the algorithm is in

$$
O^{\sim}\left(|D|^{3 / 2}\right)
$$

This is the same as the most naive version of the floating point algorithm...

Fast Chinese remaindering

Belding-Bröker-E.-Lauter 2008

for $i=1, \ldots, r$ do
$J \leftarrow \emptyset$
for $j=0, \ldots, p_{i}-1 \in \mathbb{F}_{p_{i}}$ do
if $E / \mathbb{F}_{p_{i}}$ with j-invariant j has CM by D then break
end if
end for
Compute all the conjugates J of j.
$H_{D} \bmod p_{i} \leftarrow \prod_{j \in J}(X-j)$
end for
$H_{D} \leftarrow \operatorname{CRT}\left(\left\{H_{D} \bmod p_{i}\right\}\right)$

Invía

Complexity

Theorem

Under GRH, the expected complexity of the algorithm is in

$$
O\left(|D|^{1 / 2}\right)
$$

Record

E.-Sutherland 2010 (with class invariants)

- $D=-1000000013079299>10^{15}$
- $h=10034174$
- precision 21533832 bits
- 438709 primes of up to 53 bits
- 200 days CPU time
- 13 TB (?)
- 2 PB (?) without class invariants
- 200 MB modulo 255 bit prime

Bordeaux

UNESCO World Heritage Site since 2007
Inría

Sütterlin - Juthomlun

orbtviforfijh $l_{\text {m }}$ w og of xbl is w wogyß

