Summer School – Number Theory for Cryptography, Warwick Exercises for lectures by D. J. Bernstein and T. Lange, June 24, 2013

- 1. Write a Sage program to do RSA encryption. Make sure to test your program on large RSA moduli to make sure you're doing the modular reductions inside the exponentiation.
- 2. Users A, B, C, D, and E are friends of S. They have public keys

$$(e_A, N_A) = (5, 62857),$$

 $(e_B, N_B) = (5, 64541),$
 $(e_C, N_C) = (5, 69799),$
 $(e_D, N_D) = (5, 89179),$
 $(e_E, N_E) = (5, 82583).$

You know that S uses schoolbook RSA (no padding, no randomness). One day you observe the ciphertexts $c_A = 11529$, $c_B = 60248$, $c_C = 27504$, $c_D = 43997$, and $c_E = 44926$ and get the extra information that S sent the same message to all of them. What was the message?

3. The public RSA computations get faster when e is small. If proper padding is used (and thus problems as in the previous exercise are avoided) there is no harm to using small e. Small d would be dangerous – an attacker could try all small values.

How can one use the knowledge of p and q to speed up the secret computation, i.e., the computation $x^d \pmod{N}$?

- 4. Show how to obtain m from X, Y in OAEP.
- 5. Alice uses the clock cryptosystem $\operatorname{Clock}(\mathbb{F}_{1000003})$ with base point (1000, 2). With 30 clock additions she computed n(1000, 2) = (947472, 736284) for some 6-digit n. Can you figure out n?
- 6. The method of sending aP, bP to establish the shared secret abP is called Diffie-Hellman $key\ exchange$. This method works over any group.

The integer p = 1009 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key exchange in a cyclic subgroup of $(\mathbb{Z}/p, +)$ with generator g = 123. You observe $h_a = 234$ and $h_b = 456$. What is the shared key of Alice and Bob?

- 7. Bosma and Lenstra proved in 1995 that "The smallest cardinality of a complete system of addition laws on E equals two". The critical step is to compute, for each addition law, a nonempty finite set Δ of points on E such that the addition law successfully adds P and Q exactly when $P Q \notin \Delta$. How is it possible for a single addition law, the Edwards addition law, to be complete?
- 8. (a) How many multiplications are required for clock doubling? (b) How many of those multiplications can be squarings? (c) What about clock addition? (d) Show that Edwards doubling in \mathbf{P}^2 takes only $3\mathbf{M} + 4\mathbf{S}$. (e) Show that Edwards addition in \mathbf{P}^2 takes only $10\mathbf{M} + 1\mathbf{S} + 1\mathbf{D}$.
- 9. Curve25519 is the Montgomery curve $y^2 = x^3 + 486662x^2 + x$ modulo $2^{255} 19$. Write a Sage function to compute x(nP) given n and x(P) for P on this curve. How fast is the function? Check, for random m, n, P, that computing x(nP) from n and x(P), and then computing x(mnP) from m and x(nP), produces the same result as using m and n in the opposite order. Does this check convince you that the function works?