Summer School - Number Theory for Cryptography, Warwick Exercises for lectures by T. Lange, June 25, 2013

1. The Elliptic Curve Digital Signature Algorithm works as follows: The system parameters are an elliptic curve E over a finite field \mathbb{F}_{p}, a point $P \in E\left(\mathbb{F}_{p}\right)$ on the curve, the number of points $n=\left|E\left(\mathbb{F}_{p}\right)\right|$, and the order ℓ of P. Furthermore a hash function h is given along with a way to interpret $h(m)$ as an integer.

Alice creates a public key by selecting an integer $1<a<\ell$ and computing $P_{A}=a P$; a is Alice's long-term secret and P_{A} is her public key.
To sign a message m, Alice first computes $h(m)$, then picks a random integer $1<k<\ell$ and computes $R=k P$. Let r be the x coordinate of R considered as an integer and then reduced modulo ℓ; for primes p you can assume that each field element of \mathbb{F}_{p} is represented by an integer in $[0, p-1]$ and that this integer is then reduced modulo ℓ. If $r=0$ Alice repeats the process with a different choice of k. Finally, she calculates

$$
s=k^{-1}(h(m)+r \cdot a) \bmod \ell
$$

If $s=0$ she starts over with a different choice of k.
The signature is the pair (r, s).
To verify a signature (r, s) on a message m by user Alice with public key P_{A}, Bob first computes $h(m)$, then computes $w \equiv s^{-1} \bmod \ell$, then computes $u_{1} \equiv h(m) \cdot w \bmod \ell$ and $u_{2} \equiv r \cdot w \bmod \ell$ and finally computes $S=u_{1} P+u_{2} P_{A}$. He accepts the signature as valid if the x coordinate of S matches r when computed modulo ℓ.
(a) Show that a signature generated by Alice will pass as a valid signature by showing that $S=R$.
(b) Show how to obtain Alice's long-term secret a when given the random value k for one signature (r, s) on some message m.
(c) You find two signatures made by Alice. You know that she is using an elliptic curve over \mathbb{F}_{1009} and that the order of the base point is $\ell=1013$. The signatures are for $h\left(m_{1}\right)=$ 345 and $h\left(m_{2}\right)=567$ and are given by $\left(r_{1}, s_{1}\right)=(365,448)$ and $\left(r_{2}, s_{2}\right)=(365,969)$. Compute (a candidate for) Alice's long-term secret a based on these signatures, i.e. break the system.
2. $3 \in \mathbb{F}_{1013}^{*}$ generates a group of order $1012=4 \cdot 11 \cdot 23$, so it generates the whole multiplicative group of the finite field. Solve the discrete logarithm problem $g=3, h=321$ by using the Pohlig-Hellman attack, i.e. find an integer $0<k<1012$ such that $h=g^{k}$ by computing first k modulo 2, 4, 11, and 23 and then computing k using the Chinese Remainder Theorem.
3. $3 \in \mathbb{F}_{1013}^{*}$ generates a group of order 1012. Solve the discrete logarithm problem $g=3, h=$ 224 using the Baby-Step Giant-Step algorithm (see below).
4. The schoolbook version of Pollard's rho method is often described with just three sets. This exercise will use the multiplicative group of a finite field, so we use multiplicative notation.
Let $G_{0}=g, b_{0}=1$, and $c_{0}=0$ and define

$$
G_{i+1}=\left\{\begin{array}{l}
G_{i} \cdot g \\
G_{i}^{2} \\
G_{i} \cdot h
\end{array}, b_{i+1}=\left\{\begin{array}{l}
b_{i}+1 \\
2 b_{i} \\
b_{i}
\end{array}, c_{i+1}=\left\{\begin{array} { l }
{ c _ { i } } \\
{ 2 c _ { i } } \\
{ c _ { i } + 1 }
\end{array} \quad \text { for } G _ { i } \equiv \left\{\begin{array}{l}
0 \bmod 3 \\
1 \bmod 3 \\
2 \bmod 3
\end{array},\right.\right.\right.\right.
$$

where one lifts G_{i} to \mathbb{Z} in the last part. At every step $G_{i}=g^{b_{i}} h^{c_{i}}$.
Use this definition to attack the discrete logarithm problem given by $g=3, h=245$ in \mathbb{F}_{1013}^{*} using Pollard's rho method, i.e. find an integer $0<a<1012$ such that $h=g^{a}$, using the G_{i} as defined above and $H_{i}=G_{2 i}$.

