Summer School - Number Theory for Cryptography
 F. Morain

Tutorial, 2013/06/26

1. a) Program the $p-1$ method, together with its standard continuation.
b) Program Brent's continuation.
c) Let us describe a Baby-Step-Giant-Step continuation. Select $w \approx \sqrt{B_{2}}, v_{1}=\left\lceil B_{1} / w\right\rceil$, $v_{2}=\left\lceil B_{2} / w\right\rceil$. Write our prime s as $s=v w-u$, with $0 \leq u<w, v_{1} \leq v \leq v_{2}$. Using the fact that $\operatorname{gcd}\left(b^{s}-1, N\right)>1$ iff $\operatorname{gcd}\left(b^{w v}-b^{u}, N\right)>1$, give an algorithm to perform the search for s in $O\left(\sqrt{B_{2}}\right)$ operations. Implement it and compare it to the continuations already given.
2. Let $p=2 k+1$ and $q=4 k+1$ be prime (with $k \geq 5$) and $N=p q$. Show that for all a prime to N, one has $\operatorname{gcd}\left(a^{k!}-1, N\right)=N$. Show how to modify the $p-1$ method of factoring to recover p and q in that special case.
3. Give parametrizations of elliptic curves over \mathbb{Q} having a 2-torsion point, respectively torsion subgroup of order 4, in Weierstrass or Edwards form. Are they interesting to use in ECM?

4. Program ECM.

5. (a) Let $\omega=2^{s} t$, with integers s and t, t odd. One considers the sequence $y_{0}=1, y_{k}=2 y_{k-1} \bmod \omega$. Let e be the order of 2 in $(\mathbb{Z} / t \mathbb{Z})^{*}$. Show that the length and tail of the iteration are respectively s and e.
(b) Let p be a prime and $f: \mathbb{Z} / p \mathbb{Z} \longrightarrow \mathbb{Z} / p \mathbb{Z}$ such that $f(x)=x^{2}$. Define $\left(a_{k}\right)$ by $a_{0}=a$ (where $a \not \equiv 0 \bmod p)$ and $a_{k}=f\left(a_{k-1}\right)=a^{2^{k}} \bmod p$. Let $\omega=2^{s} t$ be the order of a modulo p. Compute the cycle length and tail length of the cycle of the sequence $\left(a_{k}\right)$. Numerical values: $p=59, a=2$. Is the function f suitable for the ρ method?
(c) Let K be a field, and u, v two non-zero elements of K. Show that if $u+1 / u=v+1 / v$, then $u=v$ or $u=1 / v$.
(d) Let $a \neq 1, a \in(\mathbb{Z} / p \mathbb{Z})^{*}$. Put $x_{0}=a+1 / a, f(x)=x^{2}-2 \bmod p, x_{k}=f\left(x_{k-1}\right)$. Hence, $x_{k}=a^{2^{k}}+a^{-2^{k}}$. Let $\omega=2^{s} t$ be the ordre of a modulo p. Let (H) denote the assertion: "the equation $2^{\ell} \equiv-1 \bmod t$ has at least one solution". Prove that if (H) is satisfied, the length of the cycle of $\left(x_{k}\right)$ is $e / 2$; otherwise, this length is equal to e. Compute the tail length.
(e) Let $x_{0} \in \mathbb{Z} / p \mathbb{Z}$. Assume there is no solution to $x_{0}=a+1 / a$ for $a \in(\mathbb{Z} / p \mathbb{Z})^{*}$. Let $\alpha \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}$ such that $x_{0}=\alpha+1 / \alpha$. Let $\omega=2^{s} t$ be the ordre of α in $\mathbb{F}_{p^{2}}$ and e the ordre of 2 modulo t. Show that $\alpha, \alpha^{2}, \ldots, \alpha^{2^{s}}$ are all distinct in $\mathbb{F}_{p^{2}}$ and that $\alpha^{2^{s+e}}=\alpha^{2^{s}}$. Define $x_{k}=f\left(x_{k-1}\right)$ with $f(x)=x^{2}-2(\bmod p)$. Show that if (H) is true, the cycle length is $e / 2$ and e otherwise. Compute the tail length. Numerical values: $p=5$, $x_{0}=1$.
(f) What happens if one uses $f(x)=x^{2}-2$ in the ρ method?
