Summer School - Number Theory for Cryptography

F. Morain

Tutorial, 2013/06/26

- 1. a) Program the p-1 method, together with its standard continuation.
 - b) Program Brent's continuation.
- c) Let us describe a Baby-Step-Giant-Step continuation. Select $w \approx \sqrt{B_2}$, $v_1 = \lceil B_1/w \rceil$, $v_2 = \lceil B_2/w \rceil$. Write our prime s as s = vw u, with $0 \le u < w$, $v_1 \le v \le v_2$. Using the fact that $\gcd(b^s 1, N) > 1$ iff $\gcd(b^{wv} b^u, N) > 1$, give an algorithm to perform the search for s in $O(\sqrt{B_2})$ operations. Implement it and compare it to the continuations already given.
- 2. Let p = 2k + 1 and q = 4k + 1 be prime (with $k \ge 5$) and N = pq. Show that for all a prime to N, one has $\gcd(a^{k!} 1, N) = N$. Show how to modify the p 1 method of factoring to recover p and q in that special case.
- 3. Give parametrizations of elliptic curves over \mathbb{Q} having a 2-torsion point, respectively torsion subgroup of order 4, in Weierstrass or Edwards form. Are they interesting to use in ECM?
- 4. Program ECM.
- 5. (a) Let $\omega = 2^s t$, with integers s and t, t odd. One considers the sequence $y_0 = 1$, $y_k = 2y_{k-1} \mod \omega$. Let e be the order of 2 in $(\mathbb{Z}/t\mathbb{Z})^*$. Show that the length and tail of the iteration are respectively s and e.
- (b) Let p be a prime and $f: \mathbb{Z}/p\mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z}$ such that $f(x) = x^2$. Define (a_k) by $a_0 = a$ (where $a \not\equiv 0 \mod p$) and $a_k = f(a_{k-1}) = a^{2^k} \mod p$. Let $\omega = 2^s t$ be the order of a modulo p. Compute the cycle length and tail length of the cycle of the sequence (a_k) . Numerical values: p = 59, a = 2. Is the function f suitable for the ρ method?
- (c) Let K be a field, and u, v two non-zero elements of K. Show that if u + 1/u = v + 1/v, then u = v or u = 1/v.
- (d) Let $a \neq 1$, $a \in (\mathbb{Z}/p\mathbb{Z})^*$. Put $x_0 = a + 1/a$, $f(x) = x^2 2 \mod p$, $x_k = f(x_{k-1})$. Hence, $x_k = a^{2^k} + a^{-2^k}$. Let $\omega = 2^s t$ be the ordre of a modulo p. Let (H) denote the assertion: "the equation $2^\ell \equiv -1 \mod t$ has at least one solution". Prove that if (H) is satisfied, the length of the cycle of (x_k) is e/2; otherwise, this length is equal to e. Compute the tail length.
- (e) Let $x_0 \in \mathbb{Z}/p\mathbb{Z}$. Assume there is no solution to $x_0 = a + 1/a$ for $a \in (\mathbb{Z}/p\mathbb{Z})^*$. Let $\alpha \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ such that $x_0 = \alpha + 1/\alpha$. Let $\omega = 2^s t$ be the ordre of α in \mathbb{F}_{p^2} and e the ordre of 2 modulo t. Show that $\alpha, \alpha^2, \ldots, \alpha^{2^s}$ are all distinct in \mathbb{F}_{p^2} and that $\alpha^{2^{s+e}} = \alpha^{2^s}$. Define $x_k = f(x_{k-1})$ with $f(x) = x^2 2 \pmod{p}$. Show that if (H) is true, the cycle length is e/2 and e otherwise. Compute the tail length. Numerical values: p = 5, $x_0 = 1$.
- (f) What happens if one uses $f(x) = x^2 2$ in the ρ method?