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Goals

1 Understand the phase coexistence of active-inactive regions at the
point where the dynamical phase transition observed in glassy
systems occurs. Very well captured by KCMs.

2 Determine an effective model of the dynamics in the phase transition
from the simplest possible model. Is there something simpler that a
KCM ?
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Introduction

A glass looks like...

2D binary mixture of hard disks with
different radius (Keys et al Phys. Rev.
X 1, 021013, 2011).

Inactive particles vs Active particles

Start movie

Dynamic heterogeneity: inactive regions with slow dynamics and active
regions with fast dynamics.

Facilitated dynamics: mobility in a region leads to motion of
neighbouring particles. An adjacent excitation is required for both the
birth or death of an excitation.
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Introduction

Activity vs Inactivity

Inactive regions surrounded by active particles.

The persistent time (tp): time a particle remains inactive before the first
move.

The exchange time (tx): time between two consecutive moves. (Jung et
al 2004).

Not a glass A glass
Dynamic heterogeneity 〈tp〉 = 〈tx〉 = τ 〈tx〉 � 〈tp〉

Facilitation - Particles close to excitation lines diffuse more quickly

Stokes-Einstein relations:

Dη/T = constant Satisfied Broken,

since τα ≈ 〈tp〉
Dτα = constant and D ≈ δx2/〈tx〉:

τα (relaxation time) (Dτα ≈ δx2〈tp〉/〈tx〉)
D (diffusion coefficient)
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A KCM

A Kinetically constrained model (KCM)

Dynamic heterogeneity (bubbles of inactivity) and facilitation (excitation lines)
are captured by kinetically constrained models (KCMs).

One spatial dimension (discrete) + one temporal dimension (continuous)

It is a coarse-grained model with ni = 1 if active and ni = 0 if inactive.

Dynamic is controlled by a local constraint.
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A KCM

Statics vs Dynamics

Non-conservative system

Site i changes state with rate fi[(1− c)ni + c (1− ni)], where c is the
density of active sites and fi is the kinetic constraint.

fi = 1 if constraint is satisfied and fi = 0 otherwise.

fi depends on the neighbourhood but not on ni.

Detailed balanced holds w.r.t Boltzmann distribution (Bernoulli product
measure) with energy

∑
i ni and inverse temperature β (c = 1/(1 + eβ)).

Since statics is trivial, we need a dynamical description.
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A KCM

A dynamic observable: the Activity

Let C(t) be a configuration of the system at time t. We define a (discrete)
observable as

A[trajectory] =
K∑
k=1

α(C(tk−1)→ C(tk)),

over K changes of configurations between times 0 and T .

Activity

The activity is K[trajectory] = #events, i.e. α(C(tk−1)→ C(tk)) = 1 when
configuration changes.
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A KCM

Evolution of a KCM

The master equation for the evolution of the probability P (C, A, t) is

∂P (C, A, t)
∂t

=
∑
C′
W (C′ → C)P (C′, A− α(C′ → C), t)− r(C)P (C, A, t)

having measured a value A of the observable between 0 and t.
r(C) =

∑
C′W (C → C′) is the escape rate.

Continuous time: at each site there is a clock that changes the state ni after

a time ∆t given by p(∆t) = W (ni → 1− ni)e−W (ni→1−ni)∆t.
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A KCM

Large deviation

To have certain dynamics one can bias a trajectory according to a parameter s,
with trajectory with lower than normal activity (s > 0) or higher than normal
activity (s < 0):

P [trajectory]→ Ps[trajectory] =
P [trajectory]e−sK[trajectory]

Zs
,

where Zs = 〈e−sK[trajectory]〉.
For large observation times:

lim
t→∞

lnZs
t
→ ψK(s).

ψK(s) is a large deviation function, also known as dynamical free energy.
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A KCM

First order phase transition

ψK(s) presents a singularity at s = 0:
s < 0: trajectory where 〈Kt〉 is larger.

s = 0: trajectory with coexistence of active and inactive regions.

s > 0: trajectory where 〈Kt〉 is smaller.

Figure: Active-Inactive transition ( Garrahan et al (2007)).
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FA model

Fredrickson-Andersen Model (FA-1f)

The transition rates in the FA model are

W (ni → 1− ni) = fi(nj)
eβ(ni−1)

1 + e−β
,

where fi = 1 if
∑
j∼i nj > 0, i.e if there is at least one active site in the

neighbourhood, otherwise fi = 0.

For an activation: W (0→ 1) = fi
1

1+eβ
. the term c = 1/(1 + eβ) is the

density of active sites.

Mean distance between excitations: l = 1/c
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Examples FA-1f

Typical histories (with s = 0) for different densities

Histories of length L = 100 and t = 1000 for c = 0.1 and 0.6.
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Statistics

Part 1
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Statistics

Describe bubbles of inactivity

There is not an effective model to understand the phase coexistence of
activity and inactivity which is generic in glasses.

Such a model must describe how bubbles of inactivity evolve in space-time .

1 Order columns of
inactivity

2 Columns → Nodes

3 Build adjacency
matrix (from
overlap of nodes)

4 Find bubbles by
identifying one
node, its
neighbours,...
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Statistics

Statistics on bubbles

Focus on one bubble...
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Statistics

Geometrical Properties

Area

A

Number of Nodes

k

Temporal extension

t

Spatial extension

x

Temporal perimeter

PT

Spatial perimeter

PS
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Statistics

Histograms for the Area

Varying L: Varying c:
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c=0.5

c=0.6

Curves superimpose for different L
As c decreases, bigger bubbles
appear
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Statistics

Spatial Perimeter
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PS ∼ ∆t1.002 for large bubbles
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Statistics

Area
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A ∼ ∆t1.470 for large bubbles, close to Brownian with ζ = 3/2.∗

∗S. Majumdar et al. 2005
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Statistics

Spatial extension
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∆x ∼ ∆t0.549 for large bubbles, bigger than Brownian where ζ = 1/2
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Statistics

Mean shape of bubbles

The probability that r.w. arrives to x1 at time t1 given that started at x0 at
time t0 is:

Pε(x1, t1|x0, t0) =
1√

2πD(t1 − t0)

[
e
−(x1−x0−ε)2

2D(t1−t0) − e
−(x1−x0+ε)2

2D(t1−t0)

]

The mean value of x(t, t1) is:

〈x(t, t1)〉[t0,t1] =

∫∞
0
dxxPε(x1, t1|x, t)Pε(x, t|x0, t0)∫∞

0
dxPε(x1, t1|x, t)Pε(x, t|x0, t0)
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Scaling

Numerical mean shape

By scaling average curves of bubbles with duration ∆t− ε < ∆t < ∆t+ ε as
F (τ) ∼ ∆t−ζf(τ∆t).

ζ = 0.5: ζ = 0.6:
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(Towards an) Effective model

Part 2
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(Towards an) Effective model

FA model for small c

At low temperature (small c) the borders of the bubbles of inactivity in the FA
model have some few active sites (left). The dynamics in the FA can be
reproduced by a model of branching-coalescence (right)
(Whitelan,Berthier,Garrahan 2005).
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Borders of activity look like random walkers that branch, diffuse and coalesce.
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(Towards an) Effective model

Branching-Coalescing process

We can simulate the system as a branching-coalescing process if

it captures the same dynamics that the FA model

Is valid at finite time scales

Is analytically tractable
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(Towards an) Effective model

Model of branching coalescence

Initial condition with density c of active sites.

A configuration C changes after a time ∆t as p(∆t) = r(C)e−r(C)∆t where

the escape rate is

r(C) =
∑
i

fi(C)[(1− ni)c︸ ︷︷ ︸
activation

+ni(1− c)︸ ︷︷ ︸
inactivation

] = ract(C) + rinact(C)

An activation with probability: pact =
ract(C)
r(C) and an inactivation with

probability: pinact = rinact(C)
r(C) .

A border of activity constrained to have maximum 3 active sites.
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(Towards an) Effective model
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(Towards an) Effective model
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(Towards an) Effective model

Strategy

In continuous space: two random walkers will cross an infinite number of times.

In discrete space: is reflected in small bubbles. Focus on branching/coalescing
points of large bubbles (of duration T > 10)
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(Towards an) Effective model

Analysis

The rates are the same by time reversal symmetry. How often do we have a
branching/coalescing event?

To have just branching and coalescing points we use a contraction algorithm
until there’s no isolated point...

 10000

 12000

 14000

 16000

 18000

 20000
 0  50  100  150  200

t
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(Towards an) Effective model

Analysis

We end up with a brownian net with just branching and coalescing points.

How many events occur along the borders of a bubble? The frequency of
branching/coalescing sould not depend on size of bubbles.
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(Towards an) Effective model

Probability distribution of frequency ν

We can study the PDF of the frequency ν of branching and coalescing
events for different bubbles’ sizes.

Bubbles of duration from:

10 to 500

500 to 1000

1000 to 1500

1500 to 2000

2000 to 2500

2500 to 3000

3000 to 4000
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(Towards an) Effective model

Average frequency

Are branching/coalescencing rates independent of bubble size?

Mean frequency ν̄:
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(Towards an) Effective model

Perspectives

1 Check that the effective model from “brownian net” is realistic.

2 Convergence of the distribution of the event rates as statistics is
increased

3 Determine average frequency ν̄?

4 How ν and D are related to c? Scaling limits?

5 What information do we have about the phase coexistence?

6 Low temperature limits for other KCM?

7 For a biased dynamics (s < 0 or s > 0), what can be relevant from
this simple model?
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(Towards an) Effective model

Thank you for listening!
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Appendix

Order parameter

Activity

K = ∆t

tobs∑
t=0

L∑
i=1

(ri(t+ ∆t)− ri(t))2

where L is the total number of particles considered and tobs is the
amount of time the systems is observed.
The mean activity is

〈K〉 = Ltobs〈(r1(t+ ∆t)− r1(t))2〉 = 2dLtobsD∆t
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Appendix

Tests

For an unconstrained model, the probability of a configuration
~n = (n1, n2, . . . , nL) is Punceq (~n) = cn(1− c)L−n, therefore the average value
of a site is

1

L

〈∑
i

ni

〉unc

eq

= c .

For a constrained model where
∑L
i ni > 0, the probability has a

normalization factor Z Peq(~n) = cn(1−c)L−n
Z

which is found to be
Z = 1− (1− c)L. The average value of a site is

〈nj〉eq =
c

1− (1− c)L .

We compare this value with the one obtained numerically. The bigger the

lattice, the more accurate the numerical value is.
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Appendix

Other statistics

Temporal Perimeter
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Spatial Perimeter
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Appendix

Other statistics

Perimeter geometry
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PT ∼ ∆t for all of the bubbles and PS ∼ ∆t for large bubbles.
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