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Temperature crossovers

• Glass formation characterized by several “accepted” crossovers. Onset,
mode-coupling & glass temperatures: directly studied at equilibrium.
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[G. Tarjus] [Debenedetti & Stillinger]

• Extrapolated temperatures for dynamic and thermodynamic singularities:
T0, TK . Existence and nature of “ideal glass transition” at Kauzmann
temperature is controversial.
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Dynamic heterogeneity

• When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.
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• Spatial fluctuations grow (modestly)
near Tg.

• Clear indication that some kind of
phase transition is not far – which?

• Structural origin not clearly es-
tablished: point-to-set lengthscales,
other structural indicators?

Dynamical heterogeneities in glasses, colloids and granular materials

Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos (Oxford Univ. Press, 2011).
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Dynamic heterogeneity

• When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.

• Spatial fluctuations grow (modestly)
near Tg.

• Clear indication that some kind of
phase transition is not far – which?

• Structural origin not clearly estab-
lished: point-to-set lengthscales and
other structural indicators?

• Do “convincing” thermodynamic fluctuations even exist?
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Dynamical view: Large deviations

• Large deviations of fluctuations of
the (time integrated) local activity

mt =
∫
dx

∫ t
0
dt′m(x; t′, t′ +∆t):

P (m) = 〈δ(m−mt)〉 ∼ e−tNψ(m).

• Exponential tail: direct signature of
phase coexistence in (d + 1) dimen-
sions: High and low activity phases.
Direct connection to dynamic hetero-
geneity.
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[Jack et al., JCP ’06]

• Equivalently, a field coupled to local dynamics induces a nonequilibrium
first-order phase transition in the “s-ensemble”. [Garrahan et al., PRL ’07]

• Metastability controls this physics. “Complex” free energy landscape
gives rise to same transition, but the transition exists without multiplicity of
glassy states: KCM, plaquette models. [Jack & Garrahan, PRE ’10]
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Thermodynamic view: RFOT

• Random First Order Transition (RFOT) theory is a theoretical framework
constructed over the last 30 years (Parisi, Wolynes, Götze...) using a large
set of analytical techniques.
[Structural glasses and supercooled liquids, Wolynes & Lubchenko, ’12]

• Some results become exact for simple “mean-field” models, such as the

fully connected p-spin glass model: H = −
∑
i1···ip

Ji1···ipsi1 · · · sip .

• Recently demonstrated for hard spheres as d → ∞ [Kurchan, Zamponi et al.]

• Complex free energy landscape → sharp transitions: Onset (apparition
of metastable states), mode-coupling singularity (metastable states
dominate), and entropy crisis (metastable states become sub-extensive).

• Ideal glass = zero configurational entropy, replica symmetry breaking.

• Extension to finite dimensions (‘mosaic picture’) remains ambiguous.
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‘Landau’ free energy

• Relevant thermodynamic fluctuations encoded in “effective potential”
V (Q). Free energy cost, i.e. configurational entropy, for 2 configurations to
have overlap Q: [Franz & Parisi, PRL ’97]

Vq(Q) = −(T/N)

∫
dr2e

−βH(r2) log

∫
dr1e

−βH(r1)δ(Q−Q12)

where: Q12 = 1
N

∑N

i,j=1 θ(a− |r1,i − r2,j |).

Σ(T )TK

Simple liquid

Tmct

Tonset

Q

V
(Q

)

0.80.60.40.20

0.08

0.06

0.04

0.02

0

• V (Q) is a ‘large deviation’ func-

tion, mainly studied in mean-field
RFOT limit.

• P (Q) = 〈δ(Q−Q12)〉

∼ exp[−βNV (Q)]

• Overlap fluctuations reveal evolution of multiple metastable states. Finite
d requires ‘mosaic state’ because V (Q) must be convex: exponential tail.
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Direct measurement?

• Principle: Take two equilibrated configurations 1 and 2, measure their
overlap Q12, record the histogram of Q12.

• (Obvious) problem: Two equilibrium configurations are typically
uncorrelated, with mutual overlap ≪ 1 and small (nearly Gaussian)
fluctuations.
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• Solution: Seek “large deviations” using umbrella sampling techniques.
[Berthier, PRE ’13]
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Overlap fluctuations in 3d liquid

• Idea: bias the dynamics us-

ing Wi(Q) = ki(Q−Qi)
2 to ex-

plore of Q ≈ Qi.

• Reconstruct P (Q) using
reweighting techniques.

• Exponential tail below Tonset

→ phase coexistence be-
tween multiple metastable
states in 3d bulk liquid.

• Static fluctuations may con-
trol fluctuations and phase
transitions in trajectory space.
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Equilibrium phase transitions

• Non-convex V (Q) implies that an equilibrium phase transition can be

induced by a field conjugated to Q. [Kurchan, Franz, Mézard, Cammarota, Biroli...]

• Annealed: 2 coupled copies.

εa

H = H1 +H2 − ǫaQ12

• Quenched: copy 2 is frozen.

εq

H = H1 − ǫqQ12

TK

Tonset

T

ε

Critical point

• Within RFOT: Some differences be-
tween quenched and annealed cases.

• First order transition emerges from TK ,
ending at a critical point near Tonset.

• Direct consequence of, but different
nature from, ideal glass transition.
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Spin plaquette models

• Spin plaquette models are intermediate spin models between KCM and
spin glass RFOT models: statics not fully trivial, localized defects and

facilitated dynamics. E.g. in d = 2 on square lattice: E = −
∑
�

s1s2s3s4.

• Plausible scenario for emergence of facilitated dynamics out of
interacting Hamiltonian with glassy dynamics. [Garrahan, JPCM ’03]

• Dynamic heterogeneity similar to
standard KCM. [Jack et al., PRE ’05]

• “High-order” or “multi-point” static
correlations develop without finite T
phase transitions.

• For triangular plaquette model, an-
nealed transition occurs [Garrahan, PRE

’14]. Quenched? -> NO (Rob).
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Numerical evidence in 3d liquid

• Investigate (T, ǫ) phase dia-
gram using umbrella sampling.

• Sharp jump of the overlap be-
low Tonset ≈ 10.

• Suggests coexistence region
ending at a critical point.
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• P (Q) bimodal for finite N .

• Bimodality and static suscep-
tibility enhanced at larger N for
T . Tc ≈ 9.8.

→ Equilibrium first-order phase
transition.

[see also Parisi & Seoane PRE ’14]
title – p.13



Configurational entropy Σ(T )

• Σ = kB logN signals entropy crisis: Σ(T → TK) = 0. Problematic when

d < ∞, because metastable states cannot be rigorously defined.

• Experiments and simulations require approximations: Σ ≈ Stot − Svib.
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• Sensible estimate:
Σ = β[V (Qhigh)− V (Qlow)]

• Free energy cost to local-
ize the system ‘near’ a given
configuration: Well-defined
even in finite d.

• Definition of ‘states’, ex-
ploration of energy land-
scape not needed.

[Berthier and Coslovich, arXiv:1401.5260]
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Ideal glass transition?

• ǫ perturbs the Hamiltonian: Affects the competition energy /
configurational entropy (possibly) controlling the ideal glass transition.

• Random pinning of a fraction c of par-
ticles: unperturbed Hamiltonian.

• Slowing down observed numerically.
[Kim, Scheidler...]

TK
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Pinning

• Within RFOT, ideal glass transition line ex-
tends up to critical point.

[Cammarota & Biroli, PNAS ’12]

• Pinning reduces multiplicity of states, i.e.
decreases configurational entropy: Σ(c, T ) ≃
Σ(0, T )− cY (T ). Equivalent of T → TK .
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Pinning in plaquette models

• Random pinning studies in spin plaquette models offer an alternative
scenario to RFOT. [Jack & Berthier, PRE ’12]

• Crossover f⋆(T ) from competition between bulk correlations and random
pinning: directly reveals growing static correlation lengthscale.

Light blue: mobile. Deep blue: frozen. Black: pinned.
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Smooth crossover

• Static overlap q increases rapidly with fraction f of pinned spins,
crossover f⋆ = f⋆(T ), but no phase transition.

• Overlap fluctuations reveal growing static correlation length scale, but
susceptibility remains finite as N → ∞.

• Dynamics barely slows down with f , unlike atomistic models.
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Random pinning in 3d liquid

• Challenge: fully exploring equilibrium configuration space in the
presence of random pinning: parallel tempering. Limited (for now) to small
system sizes: N = 64, 128. [Kob & Berthier, PRL ’13]

Low-c fluid High-c glass

• From liquid to equilibrium glass: freezing of amorphous density profile.

• We performed a detailed investigation of the nature of this phase
change, in fully equilibrium conditions.
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Order parameter

• We detect “glass formation” using an equilibrium, microscopic order
parameter: The global overlap Q = 〈Q12〉.
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• Gradual increase at high T to more abrupt emergence of amorphous
order at low T at well-defined c value. First-order phase transition or
smooth crossover?
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Fluctuations: Phase coexistence

• Probability distribution function of the overlap: P (Q) = 〈δ(Q−Qαβ)〉 .
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• Distributions remain nearly Gaussian at high T .

• Bimodal distributions appear at low enough T , suggestive of phase
coexistence at first-order transition, rounded by finite N effects.
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Thermodynamic limit?

• Phase transition can only be proven using finite-size scaling techniques
to extrapolate toward N → ∞.

• Limited data support enhanced bimodality and larger susceptibility for
larger N . Encouraging, but not quite good enough: More work needed.
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Equilibrium phase diagram

• Location of the transition from liquid-to-glass determined from
equilibrium measurements of microscopic order parameter on both sides.
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• Glass formation induced by random pinning has clear thermodynamic
signatures which can be studied directly.

• Results compatible with Kauzmann transition – this can now be decided.
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Summary

• Non-trivial static fluctuations of the overlap in 3d bulk supercooled
liquids: non-Gaussian V (Q) losing convexity below ≈ Tonset.

• Adding a thermodynamic field can induce equilibrium phase transitions.
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Critical point

• Annealed coupling: first-order transition
ending at simple critical point. Universal?

• Quenched coupling: first-order transition
ending at random critical point. Specific to
RFOT?

• Random pinning: random first order transi-
tion ending at random critical point. Specific
to RFOT.

• Direct probes of peculiar thermodynamic underpinnings of RFOT theory.

• A Kauzmann phase transition may exist, and its existence be decided.
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