Thermodynamic fluctuations in
model glasses

Ludovic Berthier

Laboratoire Charles Coulomb
Université Montpellier 2 & CNRS

Glassy Systems and Constrained Stochastic Dynamics — Warwick, June 11, 2014

um.p ....erc

UNIVERSITE MONTPELLIER2 . '."

D4PARTICLES



Coworkers

e With:

D. Coslovich (Montpellier)
R. Jack (Bath)
W. Kob (Montpellier)




Temperature crossovers

e Glass formation characterized by several “accepted” crossovers. Onset,
mode-coupling & glass temperatures: directly studied at equilibrium.
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e Extrapolated temperatures for dynamic and thermodynamic singularities:
Ty, Tk . Existence and nature of “ideal glass transition” at Kauzmann
temperature is controversial.



Dynamic heterogeneity

e When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.

80 = “ / e Spatial fluctuations grow (modestly)
o ot oy near Ty,

e Clear indication that some kind of
phase transition is not far — which?

e Structural origin not clearly es-
tablished: point-to-set lengthscales,
other structural indicators?
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Dynamical heterogeneities in glasses, colloids and granular materials
Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos (Oxford Univ. Press, 2011).



Dynamic heterogeneity

e When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.
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e Spatial fluctuations grow (modestly)
near T,.

e Clear indication that some kind of
phase transition is not far — which?

".3° e .' e Structural origin not clearly estab-

3 3 IR lished: point-to-set lengthscales and
%ﬁls 0.. % 4'
rad? ..nli.!.'h“-!‘ 4% 200 ..u‘-'

other structural indicators?
e Do “convincing” thermodynamic fluctuations even exist?



Dynamical view: Large deviations

e Large deviations of fluctuations of
the (time integrated) local activity 0

my = [ dx fot dt'm(xz;t', t' + At):
P(m) = (3(m —my)) ~ e" N0, 2
al
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e Exponential tail: direct signature of 10—9,// H:"bi 8@8
phase coexistence in (d + 1) dimen- e 1080
sions: High and low activity phases. 1077/ . . = . @ =~
Direct connection to dynamic hetero- 0.0 01 04 03

geneity. [Jack et al, JCP "06]

e Equivalently, a field coupled to local dynamics induces a nonequilibrium
first-order phase transition in the “s-ensemble”. [Garrahan et al., PRL ’07]

e Metastability controls this physics. “Complex” free energy landscape
gives rise to same transition, but the transition exists without multiplicity of
glassy states: KCM, plaquette models. [Jack & Garrahan, PRE '10]



Thermodynamic view: RFOT

e Random First Order Transition (RFOT) theory is a theoretical framework
constructed over the last 30 years (Parisi, Wolynes, Go6tze...) using a large
set of analytical techniques.

[Structural glasses and supercooled liquids, Wolynes & Lubchenko, ’12]

e Some results become exact for simple “mean-field” models, such as the
fully connected p-spin glass model: H = — Z Jiy i Siy " Si .
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e Recently demonstrated for hard spheres as d — oo [Kurchan, Zamponi et al]

e Complex free energy landscape — sharp transitions: Onset (apparition
of metastable states), mode-coupling singularity (metastable states
dominate), and entropy crisis (metastable states become sub-extensive).
e |[deal glass = zero configurational entropy, replica symmetry breaking.

e Extension to finite dimensions (‘mosaic picture’) remains ambiguous.



‘Landau’ free energy

e Relevant thermodynamic fluctuations encoded in “effective potential”
V(Q). Free energy cost, i.e. configurational entropy, for 2 configurations to
have overlap Q: [Franz & Parisi, PRL '97]

Va(Q) = —(T/N) / drye PHE2) Jog / drie PHEDS(Q — Q1)

N
where: Q12 = % Zz’,j:l O(a — |r1; —rajl).
0.08 I I

e V(Q) Is a ‘large deviation’ func-
tion, mainly studied in mean-field
RFQOT limit.
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e Overlap fluctuations reveal evolution of multiple metastable states. Finite
d requires ‘mosaic state’ because V(@) must be convex: exponential tail.



Direct measurement?

e Principle: Take two equilibrated configurations 1 and 2, measure their
overlap Q:2, record the histogram of Q1.

e (Obvious) problem: Two equilibrium configurations are typically
uncorrelated, with mutual overlap < 1 and small (nearly Gaussian)
fluctuations.
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e Solution: Seek “large deviations” using umbrella sampling techniques.
[Berthier, PRE ’13]



Overlap fluctuations in 3d liquid

e |[dea: bias the dynamics us-
ing W;(Q) = k:(Q — Q;)” to ex-
plore of Q ~ Q;.

e Reconstruct P(Q) using
reweighting techniques.

e Exponential tail below T, et
— phase coexistence be-
tween multiple metastable
states in 3d bulk liquid.

e Static fluctuations may con-
trol fluctuations and phase
transitions in trajectory space.
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Equilibrium phase transitions

e Non-convex V' (Q) implies that an equilibrium phase transition can be
induced by a field conjugated to ().  [Kurchan, Franz, Mézard, Cammarota, Biroli...]

e Annealed: 2 coupled copies. A
50009 | §Hool
L0 . Fooo
SR-3858
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H=H|+ Hy — €,Q12 =

e Within RFOT: Some differences be-

* Quenched: copy 2 is frozen. 00 quenched and annealed cases.

000888 5)0888 e First order transition emerges from T,
80 SO s 800 ©| ending at a critical point near Tpyc:.
OO00 000

00O Sccoo0 e Direct consequence of, but different

H = H; — eqQ12 nature from, ideal glass transition.



Spin plaquette models

e Spin plaquette models are intermediate spin models between KCM and
spin glass RFOT models: statics not fully trivial, localized defects and

facilitated dynamics. E.g. in d = 2 on square lattice: E = — ) " syss35s4.

[]

e Plausible scenario for emergence of facilitated dynamics out of
interacting Hamiltonian with glassy dynamics. [Garrahan, JPCM 03]

e Dynamic heterogeneity similar to
standard KCM. [Jack et al, PRE "05]

e “High-order” or “multi-point” static
correlations develop without finite T
phase transitions.

e For triangular plaquette model, an-
nealed transition occurs [Garrahan, PRE
'14]. Quenched? -> NO (Rob).
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Numerical evidence In 34 liquid
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— Equilibrium first-order phase
transition.

[see also Parisi & Seoane PRE '14]



Configurational entropy > (7'

e ¥ = kglog N signals entropy crisis: (T — Tk ) = 0. Problematic when
d < oo, because metastable states cannot be rigorously defined.

e Experiments and simulations require approximations: X = Siot — Svib-

1 | | | | -
Harmonic spheres N = 108 e Sensible estimate:

> = 6[V(thgh) o V(QIOW)]

e Free energy cost to local-
Ize the system ‘near’ a given
configuration: Well-defined
even in finite d.

e Definition of ‘states’, ex-
ploration of energy land-
scape not needed.

[Berthier and Coslovich, arXiv:1401.5260]



Ideal glass transition?

e ¢ perturbs the Hamiltonian: Affects the competition energy /
configurational entropy (possibly) controlling the ideal glass transition.

e Random pinning of a fraction ¢ of par- (%DQQ QQ
ticles: unperturbed Hamiltonian.
H OOV

« Slowing down observed numerically. O Jeo)e

[Kim, Scheidler.. ] O OO O
AT

e Within RFQOT, ideal glass transition line ex-
tends up to critical point.
[Cammarota & Biroli, PNAS '12]

e Pinning reduces multiplicity of states, i.e.
decreases configurational entropy: X(c,T) ~

Pinni ng» ¥(0,T) — cY(T). Equivalent of T" — Tk.




Pinning in plaquette models

e Random pinning studies in spin plaquette models offer an alternative
scenario to RFOT. [Jack & Berthier, PRE '12]

e Crossover f*(T') from competition between bulk correlations and random
pinning: directly reveals growing static correlation lengthscale.

(b) 8 - (C) | .25

Light blue: mobile. Deep blue: frozen. Black: pinned.



Smooth crossover

e Static overlap q increases rapidly with fraction f of pinned spins,
crossover f* = f*(T'), but no phase transition.

e Overlap fluctuations reveal growing static correlation length scale, but
susceptibility remains finite as N — .

e Dynamics barely slows down with f, unlike atomistic models.
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Random pinning in 3d liquid

e Challenge: fully exploring equilibrium configuration space in the
presence of random pinning: parallel tempering. Limited (for now) to small
system sizes: N = 64, 128. [Kob & Berthier, PRL 13]

Low-c fluid High-c glass

e From liquid to equilibrium glass: freezing of amorphous density profile.

e We performed a detailed investigation of the nature of this phase
change, in fully equilibrium conditions.



Order parameter

e We detect “glass formation” using an equilibrium, microscopic order
parameter: The global overlap Q@ = (Q12).

0.7 [T T
- e—e T=4.8
0.6+ ~— T=50 _
| == T=5.5
T=6.0
057 o—o7=7.0 -
- T=8.0
%04_ —o T=13 _|
= | T=20
g
o 0.3 _
0.2F 1% .
L _ /V
0. _
IIIIIIII I 111 111 I 111 | I I I 111 111 I
O[?OO 0.10 0.20 0.30 0.40

c | - N =64

e Gradual increase at high T" to more abrupt emergence of amorphous
order at low T' at well-defined ¢ value. First-order phase transition or
smooth crossover?



Fluctuations: Phase coexistence

e Probability distribution function of the overlap: P(Q) = (6(Q — Qu3)) -
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e Bimodal distributions appear at low enough T, suggestive of phase
coexistence at first-order transition, rounded by finite N effects.



Thermodynamic limit?

e Phase transition can only be proven using finite-size scaling techniques
to extrapolate toward N — oc.

0.9

q

e Limited data support enhanced bimodality and larger susceptibility for
larger N. Encouraging, but not quite good enough: More work needed.



Equilibrium phase diagram

e Location of the transition from liquid-to-glass determined from
equilibrium measurements of microscopic order parameter on both sides.
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e Glass formation induced by random pinning has clear thermodynamic
signatures which can be studied directly.

e Results compatible with Kauzmann transition — this can now be decided.



Summary

e Non-trivial static fluctuations of the overlap in 3d bulk supercooled
liquids: non-Gaussian V' (Q) losing convexity below ~ T sct -

e Adding a thermodynamic field can induce equilibrium phase transitions.

e Annealed coupling: first-order transition
AT ending at simple critical point. Universal?

e Quenched coupling: first-order transition
ending at random critical point. Specific to
RFOT?

e Random pinning: random first order transi-
» tion ending at random critical point. Specific
to RFOT.

€

e Direct probes of peculiar thermodynamic underpinnings of RFOT theory.

e A Kauzmann phase transition may exist, and its existence be decided.
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