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Metastable states
“Basins” / “minima” / “valleys” on a free energy 
landscape

Regions of configuration space with fast “intra-state” 
motion and slow transitions between states

insight review articles
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energy minima, and vibration within a minimum. It is possible to
separate formally the corresponding configurational and vibrational
contributions to a liquid’s properties75,76. In two important computa-
tional studies, the configurational entropy was calculated by probing
systematically the statistics governing the sampling of potential 
energy minima77,78 (Box 2). Using this technique, a remarkable 
connection between configurational entropy and diffusion was 
identified in liquid water79. One of water’s distinguishing anomalies
is the fact that, at sufficiently low temperature, its diffusivity increases
upon compression80. As shown in Fig. 7, diffusivity maxima are 
correlated strongly with configurational entropy maxima, the
respective loci coinciding within numerical error.

The results shown in Fig. 7 and the success of the Adam–Gibbs
equation in describing experimental data on relaxation in a wide
variety of systems52 indicate that there exists a scaling relationship
between the depth distribution of basins and the height of the saddle
points along paths connecting neighbouring basins. Such scaling is
not a mathematical necessity, but arises from the nature of real 
molecular interactions. The topographic nature of this statistical
scaling relationship between minima and saddle points is poorly
understood (but see the recent computational investigation of saddle
points74). Its elucidation will explain the origin of the connection
between the dynamics and thermodynamics of glass-forming liq-
uids, and constitutes the principal theoretical challenge in this field.

Strong versus fragile behaviour
The extent to which the shear viscosity ! deviates from Arrhenius
behaviour, !"!oexp(E/kBT), constitutes the basis of the classifica-
tion of liquids as either strong or fragile (Fig. 2). Molten SiO2, often
considered as the prototypical strong glass-former, displays an
almost constant activation energy of 180 kcal mol#1 (ref. 81). This
constancy indicates that the underlying mechanism, presumably
breaking and reformation of Si–O bonds, applies throughout the
entire landscape4. In contrast, the viscosity of OTP — the canonical
fragile glass-former — deviates markedly from Arrhenius
behaviour82, showing an effective activation energy (dln!/d1/T) that
increases 20-fold, from one-quarter of the heat of vaporization for
the liquid above its melting point to roughly five times the heat of
vaporization near Tg. This means that OTP’s landscape is very hetero-
geneous. The basins sampled at high temperature allow relaxation by
surmounting low barriers involving the rearrangement of a small
number of molecules. The very large activation energy at T ≈ Tg, on
the other hand, corresponds to the cooperative rearrangement of
many molecules. These differences between strong and fragile behav-
iour imply a corresponding topographic distinction between the two

archetypal landscapes. Aside from multiplicity due to permutational
symmetry, strong landscapes may consist of a single ‘megabasin’,
whereas fragile ones display a proliferation of well-separated
‘megabasins’ (Fig. 8).

Cooperative rearrangements such as those that must occur in
OTP are unlikely to consist of elementary transitions between adja-
cent basins. Rather, the likely scenario involves a complicated
sequence of elementary transitions. At low temperatures, these
rearrangements should be rare and long-lived on the molecular
timescale. Furthermore, the diversity of deep landscape traps and of
the pathways of configuration space that connect them should result
in a broad spectrum of relaxation times, as required for the stretched
exponential function in equation (2). This in turn suggests that
supercooled fragile liquids are dynamically heterogeneous, probably
consisting at any instant of mostly non-diffusing molecules with a
few ‘hot spots’ of mobile molecules. This dynamic heterogeneity39

has both experimental29,30,36 and computational31–35 support.
The inverse relation between the self-diffusion coefficient and 

viscosity embodied in the Stokes–Einstein equation is based on 
macroscopic hydrodynamics that treats the liquid as a continuum.
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Figure 6 Mean inherent structure energy per particle of a binary mixture of unequal-
sized Lennard–Jones atoms, as a function of the temperature of the equilibrated liquid
from which the inherent structures were generated by energy minimization. Molecular
dynamics simulations at constant energy and density were performed over a range of
temperatures for 256 Lennard–Jones atoms, of which 20% are of type A and 80%
are of type B. The Lennard–Jones size and energy parameters are $AA"1,
$BB"0.88, $AB"0.8, and %AA"1, %BB"0.5, %AB"1.5, respectively. Length,
temperature, energy and time are expressed in units of $AA, %AA/kB, %AA and
$AA(m/%AA)

1/2, respectively, with m representing the mass of the particles. Simulations
were performed at a density of 1.2. The fast and slow cooling rates are 1.08&10#3

and 3.33&10#6. When T > 1, the system has sufficient kinetic energy to sample the
entire energy landscape, and the overwhelming number of sampled energy minima
are shallow. Under these conditions, the system exhibits a temperature-independent
activation energy for structural relaxation (calculations not shown). Between T"1 
and T ≈ 0.45, the activation energy increases upon cooling, the dynamics become
‘landscape-influenced’, and the mechanically stable configurations sampled are
strongly temperature-dependent. Below T ≈ 0.45, the height of the barriers
separating sampled adjacent energy minima seems to increase abruptly 
(calculations not shown). This is the ‘landscape-dominated’ regime. In it, particles
execute rare jumps over distances roughly equal to interparticle separations. The
crossover between landscape-influenced and landscape-dominated behaviour
corresponds closely with the mode-coupling transition temperature70,92. (Adapted
from refs 70 and 72.)
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Figure 5 Schematic illustration of an energy landscape. The x-axis represents all
configurational coordinates. (Adapted from ref. 44.)
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Counting states
Regions of configuration space with fast “intra-state” 
motion and slow transitions between states

[Kurchan and Levine, J Phys A, 2011]

States with lifetime ⌧ , take a time t
obs

with 1 ⌧ t
obs

⌧ ⌧

Averaging over a time period t
obs

:

same as Boltzmann averaging within the state

Diversity (entropy) of averaged properties: 
… gives number (and properties) of metastable states!
… including configurational entropy (complexity)



East model
Spins ni = 0, 1, with i = 1 . . . N .

Spin i can flip only if ni�1 = 1.

Flip rates c and 1� c gives hnii = c = 1
1+e� .

C(t) = hni(t)ni(0)i�hn2
i i

hn2
i i�hnii2

2

II. MODEL, METHODS, AND METASTABLE
STATES

A. Model

The East model [17, 18] consists of L binary spins
ni = 0, 1, with i = 1 . . . L, and periodic boundaries.
We refer to spins with ni = 1 as ‘up’ and those with
ni = 0 as ‘down’. The notation C = (n

1

, n
2

, . . . , nL) in-
dicates a configuration of the system. The key feature
of the model is that spin i may flip only if spin i � 1 is
up. If this kinetic constraint [19, 20] is satisfied, spin i
flips from 0 to 1 with rate c and from 1 to 0 with rate
1 � c. We take c/(1 � c) = e�� where � is the inverse
temperature, so small c corresponds to low temperature.
The rates for spin flips obey detailed balance, so that
the probability of configuration C at equilibrium is sim-
ply p0(C) = e��

P
i ni/Z, where Z = (1 + e��)L is the

partition function. At equilibrium, one has hnii = c, and
the regime of interest is small c (low temperature).

Despite the trivial form of p0(C), the kinetic con-
straint in this model leads to complex co-operative dy-
namics at small c. In particular, the relaxation time
of the model diverges in a super-Arrhenius fashion, as
⌧
0

⇠ e�2/(2 ln 2) [18, 33]. The rapid increase in relaxation
time is illustrated in Fig. 1a where we show

C(t) =
hni(t)ni(0)i � hnii2

c(1 � c)
, (1)

for various temperatures. The origin of the increasing
time scale is a large set of metastable states, arranged
hierarchically [18]: di↵erent states have di↵erent lifetimes
which scale as c�b. Here and throughout b is an integer
which we use to classify the various relevant time scales
in the system. Evidence for the separated timescales is
shown in Fig. 1b: the correlation function decays via a
sequence of plateaus that become more clearly separated
as c is reduced.

B. Metastable states

To identify metastable states, we perform a time aver-
age over the spins, defining

nit = (1/t)

Z t

0

dt0ni(t
0), (2)

and a time-averaged spin profile

Ct = (n
1t, n2t, . . . , nLt). (3)

The key observation of [14] is that if the system has
metastable states indexed by ↵ = 1, 2, . . . , then each
state is associated with a profile C↵

. Further, if t is much
larger than the intrastate relaxation times, but small
compared to their lifetimes, then the observed profile Ct

will almost surely be close to one of the C↵
. Hence, the
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FIG. 1: Correlation function C(t) in the East model. (a) The
inverse temperature is varied from � = 1 to � = 5, showing
a dramatic increase in relaxation time. (b) At the lowest
temperatures, plateaus are apparent during the early stages
of relaxation (where C(t) is large). Arrows indicate the times
for which data is shown in later figures. The behaviour at
these times is representative of regimes c1�b ⌧ t ⌧ c�b: the
rationale for choosing the specific values of t is discussed in
the main text.

statistical properties of the (observable) profiles Ct can
be used to infer the properties of the metastable states
in the system.

This situation, of many metastable states each asso-
ciated with a profile C↵

, holds very accurately in the
East model. As discussed by Sollich and Evans [18] (see
also [34]), motion on a time scale t ⌧ c�b ⌧ ⌧

0

is re-
stricted to domains of size 2b�1, with each domain being
immediately to the right of a long-lived up spin. Also, if
c1�b ⌧ t ⌧ c�b then spins within such domains typically
flip many times within time t, while other spins are un-
likely to flip at all. The result of this large number of flips
is that nit ! hnii = c if spin i is within a mobile domain.
Sollich and Evans [18] used the term “superdomain” to
describe these mobile domains. A metastable state with
lifetime of order c�b can be identified by specifying the
position of its superdomains.

In terms of Fig. 1b, the limit c1�b ⌧ t ⌧ c�b corre-
sponds to choosing a time within a plateau of the cor-
relation function. However, when using numerical re-
sults to gain information about metastable states, we
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statistical properties of the (observable) profiles Ct can
be used to infer the properties of the metastable states
in the system.

This situation, of many metastable states each asso-
ciated with a profile C↵

, holds very accurately in the
East model. As discussed by Sollich and Evans [18] (see
also [34]), motion on a time scale t ⌧ c�b ⌧ ⌧

0

is re-
stricted to domains of size 2b�1, with each domain being
immediately to the right of a long-lived up spin. Also, if
c1�b ⌧ t ⌧ c�b then spins within such domains typically
flip many times within time t, while other spins are un-
likely to flip at all. The result of this large number of flips
is that nit ! hnii = c if spin i is within a mobile domain.
Sollich and Evans [18] used the term “superdomain” to
describe these mobile domains. A metastable state with
lifetime of order c�b can be identified by specifying the
position of its superdomains.
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sponds to choosing a time within a plateau of the cor-
relation function. However, when using numerical re-
sults to gain information about metastable states, we

[RLJ, Phys Rev E, 2013]

Characteristic times tb ⇡ c�(b� 1
2 )



Time averaging…
[RLJ, Phys Rev E, 2013]
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FIG. 2: Time averaged density profiles Ct at � = 5 (so
c ⇡ 0.0067). Averaging over many trajectories from the same
initial condition, we show the mean profile hnitiic and its stan-
dard deviation h(�nit)

2iic. The times correspond with the ar-
rows in Fig. 1b, and are typical of the regimes c1�b ⌧ t ⌧ c�b.
The approximate positions of the up spins in the initial con-
dition are shown at the top of the figure (1s indicate up spins
and dots indicate selected down spins). Typically, nit is ei-
ther close to 1 (i.e., hnitiic ⇡ 1 with h(�nit)

2iic ⌧ 1 or nit

is small (i.e., hnitiic ⌧ 1 with h(�nit)
2iic ⌧ 1). The separa-

tion between these two cases motivates the definition of the
(coarse-grained) ñit = 0, 1).

find that saturating the limit t � c1�b is more impor-
tant than t ⌧ c�b: in the following we focus on the time
points indicated by arrows in Fig. 1b, which correspond
to c1�b ⌧ t . c�b. However, our results are similar if we
use smaller times (as long as t � c1�b).

To illustrate this behaviour, we have simulated trajec-

tories of the East model, starting from a particular initial
condition that helps to reveal the physical processes at
work. Fig. 2 shows the time-averaged spins hnitiic and
their variances h(�nit)2iic, where the subscript “ic” indi-
cates that the average was taken with a fixed initial con-
dition (in contrast to other averages in this work which
are conventional averages over equilibrium trajectories).
We emphasise the following three points:

• All of the hnitiic are either close to 1 or of order

c ⌧ 1. Also, the standard deviation h(�nit)2i1/2

ic

⌧
1 for all spins. Thus, for this initial condition
and for each of these times t, one almost certainly
finds a profile Ct that is close to a reference profile
C↵

t = hnitiic. Each reference profile (one for each
value of t shown) can therefore be identified with a
metastable state that is stable on a time scale t.

• For b � 1, any spins with hnitiic ⇡ 1 are separated
by at least 2b�1 spins with hniti ⌧ 1. If two up
spins are closer than this in the initial condition
then the rightmost of them is within the mobile
domain associated with the leftmost one. In that
case, the rightmost spin (nj) tends to flip many
times and njt converges to a value close to c.

• For this initial condition (and these time scales),
the system relaxes independently in each of 6 in-
dependent regions. This means that the dynamical
evolution of separate patches of the system can be
treated independently.

These three points establish the central requirements
for our analysis of metastable states. The first shows
that the metastable states in this system are well-defined,
while the second shows that metastable states with di↵er-
ent lifetimes have di↵erent internal structures. The third
point establishes that one may decompose the behaviour
of the system into independent regions, at least for this
initial condition. Building on this point, Fig. 3 shows
how the local behaviour evolves with time, for various
di↵erent initial conditions (the predictions shown follow
from the superspin analysis of [18] and are also consistent
with our numerical results). We note that while some ini-
tial conditions belong to a single metastable state (and
always yield the same time-averaged profile Ct), there are
other initial conditions that exist on the border between
states (and therefore may yield one of several profiles).

For these cases, it will not be true that h(�nit)2i1/2

ic

⌧ 1,
but it is true that for typical trajectories, Ct ⇡ C↵

t for
some metastable state ↵.

In general, the analysis of Kurchan and Laloux [35]
indicates that typical configurations of any large finite-
dimensional system always lie on a border between states.
For the East model, this result follows from the observa-
tion that the local configuration 111... will occur many
times in a large system: in the regions where this occurs,
the system may relax into one of two averaged profiles
[either 1x1x.. or 1xx..., (see Fig. 3)]. Hence a typical con-
figuration of the system cannot be associated to a single
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• For b � 1, any spins with hnitiic ⇡ 1 are separated
by at least 2b�1 spins with hniti ⌧ 1. If two up
spins are closer than this in the initial condition
then the rightmost of them is within the mobile
domain associated with the leftmost one. In that
case, the rightmost spin (nj) tends to flip many
times and njt converges to a value close to c.

• For this initial condition (and these time scales),
the system relaxes independently in each of 6 in-
dependent regions. This means that the dynamical
evolution of separate patches of the system can be
treated independently.

These three points establish the central requirements
for our analysis of metastable states. The first shows
that the metastable states in this system are well-defined,
while the second shows that metastable states with di↵er-
ent lifetimes have di↵erent internal structures. The third
point establishes that one may decompose the behaviour
of the system into independent regions, at least for this
initial condition. Building on this point, Fig. 3 shows
how the local behaviour evolves with time, for various
di↵erent initial conditions (the predictions shown follow
from the superspin analysis of [18] and are also consistent
with our numerical results). We note that while some ini-
tial conditions belong to a single metastable state (and
always yield the same time-averaged profile Ct), there are
other initial conditions that exist on the border between
states (and therefore may yield one of several profiles).

For these cases, it will not be true that h(�nit)2i1/2

ic

⌧ 1,
but it is true that for typical trajectories, Ct ⇡ C↵

t for
some metastable state ↵.

In general, the analysis of Kurchan and Laloux [35]
indicates that typical configurations of any large finite-
dimensional system always lie on a border between states.
For the East model, this result follows from the observa-
tion that the local configuration 111... will occur many
times in a large system: in the regions where this occurs,
the system may relax into one of two averaged profiles
[either 1x1x.. or 1xx..., (see Fig. 3)]. Hence a typical con-
figuration of the system cannot be associated to a single

2

II. MODEL, METHODS, AND METASTABLE
STATES

A. Model

The East model [17, 18] consists of L binary spins
ni = 0, 1, with i = 1 . . . L, and periodic boundaries.
We refer to spins with ni = 1 as ‘up’ and those with
ni = 0 as ‘down’. The notation C = (n

1

, n
2

, . . . , nL) in-
dicates a configuration of the system. The key feature
of the model is that spin i may flip only if spin i � 1 is
up. If this kinetic constraint [19, 20] is satisfied, spin i
flips from 0 to 1 with rate c and from 1 to 0 with rate
1 � c. We take c/(1 � c) = e�� where � is the inverse
temperature, so small c corresponds to low temperature.
The rates for spin flips obey detailed balance, so that
the probability of configuration C at equilibrium is sim-
ply p0(C) = e��

P
i ni/Z, where Z = (1 + e��)L is the

partition function. At equilibrium, one has hnii = c, and
the regime of interest is small c (low temperature).

Despite the trivial form of p0(C), the kinetic con-
straint in this model leads to complex co-operative dy-
namics at small c. In particular, the relaxation time
of the model diverges in a super-Arrhenius fashion, as
⌧
0

⇠ e�2/(2 ln 2) [18, 33]. The rapid increase in relaxation
time is illustrated in Fig. 1a where we show

C(t) =
hni(t)ni(0)i � hnii2

c(1 � c)
, (1)

for various temperatures. The origin of the increasing
time scale is a large set of metastable states, arranged
hierarchically [18]: di↵erent states have di↵erent lifetimes
which scale as c�b. Here and throughout b is an integer
which we use to classify the various relevant time scales
in the system. Evidence for the separated timescales is
shown in Fig. 1b: the correlation function decays via a
sequence of plateaus that become more clearly separated
as c is reduced.

B. Metastable states

To identify metastable states, we perform a time aver-
age over the spins, defining

nit = (1/t)

Z t

0

dt0ni(t
0), (2)

and a time-averaged spin profile

Ct = (n
1t, n2t, . . . , nLt). (3)

The key observation of [14] is that if the system has
metastable states indexed by ↵ = 1, 2, . . . , then each
state is associated with a profile C↵

. Further, if t is much
larger than the intrastate relaxation times, but small
compared to their lifetimes, then the observed profile Ct

will almost surely be close to one of the C↵
. Hence, the
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FIG. 1: Correlation function C(t) in the East model. (a) The
inverse temperature is varied from � = 1 to � = 5, showing
a dramatic increase in relaxation time. (b) At the lowest
temperatures, plateaus are apparent during the early stages
of relaxation (where C(t) is large). Arrows indicate the times
for which data is shown in later figures. The behaviour at
these times is representative of regimes c1�b ⌧ t ⌧ c�b: the
rationale for choosing the specific values of t is discussed in
the main text.

statistical properties of the (observable) profiles Ct can
be used to infer the properties of the metastable states
in the system.

This situation, of many metastable states each asso-
ciated with a profile C↵

, holds very accurately in the
East model. As discussed by Sollich and Evans [18] (see
also [34]), motion on a time scale t ⌧ c�b ⌧ ⌧

0

is re-
stricted to domains of size 2b�1, with each domain being
immediately to the right of a long-lived up spin. Also, if
c1�b ⌧ t ⌧ c�b then spins within such domains typically
flip many times within time t, while other spins are un-
likely to flip at all. The result of this large number of flips
is that nit ! hnii = c if spin i is within a mobile domain.
Sollich and Evans [18] used the term “superdomain” to
describe these mobile domains. A metastable state with
lifetime of order c�b can be identified by specifying the
position of its superdomains.

In terms of Fig. 1b, the limit c1�b ⌧ t ⌧ c�b corre-
sponds to choosing a time within a plateau of the cor-
relation function. However, when using numerical re-
sults to gain information about metastable states, we

Characteristic times tb ⇡ c�(b� 1
2 )

Time-averages (almost) determined by initial condition…
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FIG. 2: Time averaged density profiles Ct at � = 5 (so
c ⇡ 0.0067). Averaging over many trajectories from the same
initial condition, we show the mean profile hnitiic and its stan-
dard deviation h(�nit)

2iic. The times correspond with the ar-
rows in Fig. 1b, and are typical of the regimes c1�b ⌧ t ⌧ c�b.
The approximate positions of the up spins in the initial con-
dition are shown at the top of the figure (1s indicate up spins
and dots indicate selected down spins). Typically, nit is ei-
ther close to 1 (i.e., hnitiic ⇡ 1 with h(�nit)

2iic ⌧ 1 or nit

is small (i.e., hnitiic ⌧ 1 with h(�nit)
2iic ⌧ 1). The separa-

tion between these two cases motivates the definition of the
(coarse-grained) ñit = 0, 1).

find that saturating the limit t � c1�b is more impor-
tant than t ⌧ c�b: in the following we focus on the time
points indicated by arrows in Fig. 1b, which correspond
to c1�b ⌧ t . c�b. However, our results are similar if we
use smaller times (as long as t � c1�b).

To illustrate this behaviour, we have simulated trajec-

tories of the East model, starting from a particular initial
condition that helps to reveal the physical processes at
work. Fig. 2 shows the time-averaged spins hnitiic and
their variances h(�nit)2iic, where the subscript “ic” indi-
cates that the average was taken with a fixed initial con-
dition (in contrast to other averages in this work which
are conventional averages over equilibrium trajectories).
We emphasise the following three points:

• All of the hnitiic are either close to 1 or of order

c ⌧ 1. Also, the standard deviation h(�nit)2i1/2

ic

⌧
1 for all spins. Thus, for this initial condition
and for each of these times t, one almost certainly
finds a profile Ct that is close to a reference profile
C↵

t = hnitiic. Each reference profile (one for each
value of t shown) can therefore be identified with a
metastable state that is stable on a time scale t.

• For b � 1, any spins with hnitiic ⇡ 1 are separated
by at least 2b�1 spins with hniti ⌧ 1. If two up
spins are closer than this in the initial condition
then the rightmost of them is within the mobile
domain associated with the leftmost one. In that
case, the rightmost spin (nj) tends to flip many
times and njt converges to a value close to c.

• For this initial condition (and these time scales),
the system relaxes independently in each of 6 in-
dependent regions. This means that the dynamical
evolution of separate patches of the system can be
treated independently.

These three points establish the central requirements
for our analysis of metastable states. The first shows
that the metastable states in this system are well-defined,
while the second shows that metastable states with di↵er-
ent lifetimes have di↵erent internal structures. The third
point establishes that one may decompose the behaviour
of the system into independent regions, at least for this
initial condition. Building on this point, Fig. 3 shows
how the local behaviour evolves with time, for various
di↵erent initial conditions (the predictions shown follow
from the superspin analysis of [18] and are also consistent
with our numerical results). We note that while some ini-
tial conditions belong to a single metastable state (and
always yield the same time-averaged profile Ct), there are
other initial conditions that exist on the border between
states (and therefore may yield one of several profiles).

For these cases, it will not be true that h(�nit)2i1/2

ic

⌧ 1,
but it is true that for typical trajectories, Ct ⇡ C↵

t for
some metastable state ↵.

In general, the analysis of Kurchan and Laloux [35]
indicates that typical configurations of any large finite-
dimensional system always lie on a border between states.
For the East model, this result follows from the observa-
tion that the local configuration 111... will occur many
times in a large system: in the regions where this occurs,
the system may relax into one of two averaged profiles
[either 1x1x.. or 1xx..., (see Fig. 3)]. Hence a typical con-
figuration of the system cannot be associated to a single

ñi = ⇥(ni � 1
2 ) = 0, 1

E.g., B`=4 = (1, 0, 1, 0) almost never occurs for b � 2

Measure entropy of ñi

by pattern-counting at length `

B`: state of (ñi, . . . , ñi+`�1)

S` =
P

B`
p(B`) ln(1/p(B`))
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II. MODEL, METHODS, AND METASTABLE
STATES

A. Model

The East model [17, 18] consists of L binary spins
ni = 0, 1, with i = 1 . . . L, and periodic boundaries.
We refer to spins with ni = 1 as ‘up’ and those with
ni = 0 as ‘down’. The notation C = (n

1

, n
2

, . . . , nL) in-
dicates a configuration of the system. The key feature
of the model is that spin i may flip only if spin i � 1 is
up. If this kinetic constraint [19, 20] is satisfied, spin i
flips from 0 to 1 with rate c and from 1 to 0 with rate
1 � c. We take c/(1 � c) = e�� where � is the inverse
temperature, so small c corresponds to low temperature.
The rates for spin flips obey detailed balance, so that
the probability of configuration C at equilibrium is sim-
ply p0(C) = e��

P
i ni/Z, where Z = (1 + e��)L is the

partition function. At equilibrium, one has hnii = c, and
the regime of interest is small c (low temperature).

Despite the trivial form of p0(C), the kinetic con-
straint in this model leads to complex co-operative dy-
namics at small c. In particular, the relaxation time
of the model diverges in a super-Arrhenius fashion, as
⌧
0

⇠ e�2/(2 ln 2) [18, 33]. The rapid increase in relaxation
time is illustrated in Fig. 1a where we show

C(t) =
hni(t)ni(0)i � hnii2

c(1 � c)
, (1)

for various temperatures. The origin of the increasing
time scale is a large set of metastable states, arranged
hierarchically [18]: di↵erent states have di↵erent lifetimes
which scale as c�b. Here and throughout b is an integer
which we use to classify the various relevant time scales
in the system. Evidence for the separated timescales is
shown in Fig. 1b: the correlation function decays via a
sequence of plateaus that become more clearly separated
as c is reduced.

B. Metastable states

To identify metastable states, we perform a time aver-
age over the spins, defining

nit = (1/t)

Z t

0

dt0ni(t
0), (2)

and a time-averaged spin profile

Ct = (n
1t, n2t, . . . , nLt). (3)

The key observation of [14] is that if the system has
metastable states indexed by ↵ = 1, 2, . . . , then each
state is associated with a profile C↵

. Further, if t is much
larger than the intrastate relaxation times, but small
compared to their lifetimes, then the observed profile Ct

will almost surely be close to one of the C↵
. Hence, the
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FIG. 1: Correlation function C(t) in the East model. (a) The
inverse temperature is varied from � = 1 to � = 5, showing
a dramatic increase in relaxation time. (b) At the lowest
temperatures, plateaus are apparent during the early stages
of relaxation (where C(t) is large). Arrows indicate the times
for which data is shown in later figures. The behaviour at
these times is representative of regimes c1�b ⌧ t ⌧ c�b: the
rationale for choosing the specific values of t is discussed in
the main text.

statistical properties of the (observable) profiles Ct can
be used to infer the properties of the metastable states
in the system.

This situation, of many metastable states each asso-
ciated with a profile C↵

, holds very accurately in the
East model. As discussed by Sollich and Evans [18] (see
also [34]), motion on a time scale t ⌧ c�b ⌧ ⌧

0

is re-
stricted to domains of size 2b�1, with each domain being
immediately to the right of a long-lived up spin. Also, if
c1�b ⌧ t ⌧ c�b then spins within such domains typically
flip many times within time t, while other spins are un-
likely to flip at all. The result of this large number of flips
is that nit ! hnii = c if spin i is within a mobile domain.
Sollich and Evans [18] used the term “superdomain” to
describe these mobile domains. A metastable state with
lifetime of order c�b can be identified by specifying the
position of its superdomains.

In terms of Fig. 1b, the limit c1�b ⌧ t ⌧ c�b corre-
sponds to choosing a time within a plateau of the cor-
relation function. However, when using numerical re-
sults to gain information about metastable states, we

Characteristic times tb ⇡ c�(b� 1
2 )
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FIG. 4: Patch entropies S`,t (points) associated with the den-
sity profiles ñit, evaluated at the times indicated in Fig. 1b
and for (a) � = 4 and (b) � = 5. The ‘theory’ lines are the
predictions of (8,9), where the density ⇢ is obtained as hñiti
and the rod length m = 1 + 2b�1 (or m = 1 for b = 0).

almost exactly those of an ideal gas of hard rods of length
m, where the leftmost site of each hard rod carries a ‘1’
and all others site carry a ‘0’. If the number density of
rods is ⇢, straightforward counting arguments show that
the patch entropies for this hard rod system are given by

S`(m, ⇢) = �`⇢ log ⇢� (1� `⇢) log(1� `⇢), `  m, (8)

and

S`(m, ⇢) = Sm(m, ⇢) + (` � m)Srod(m, ⇢), ` > m, (9)

where

Srod(m, ⇢) = �⇢ log ⇢ � (1 � m⇢) log(1 � m⇢)

+ [1 � (m � 1)⇢] log[1 � (m � 1)⇢] (10)

is the total entropy density.
The predictions of (8) and (9) are shown in Fig. 4 as

solid lines. The fit is excellent. The value of ⇢ has been
calculated from the numerical data (as ⇢ = hñiti), but no
other fit parameters are required (we take m = 1+2b�1).
We conclude that metastable states in the East model
with lifetimes t ⇠ c�b are in one-to-one correspondence
with configurations of hard rods of length 1 + 2b�1.
At equilibrium, states with equal numbers of rods are

(a)

(b)
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FIG. 5: Spatial correlation functions at � = 5 and times in-
dicated in Fig. 1b. (a) Two-point correlations gt(r) of the
time-averaged density nit. The dashed lines are guides to the
eye. The mapping to hard rods indicates that gt(r) should be
equal to 0 for r  2b�1 and constant (= ⇢) otherwise, con-
sistent with the data. (b) Two-point correlations G4(r, t) of
the persistence function pit. The ‘theory’ lines are predictions
of (13), where ⇢ is fitted to the value G4(0, t).

equiprobable, and the number density of such hard rods
is ⇢ ⇡ c. (To be precise, for t ⌧ t

0

then ⇢ = c � O(c2):
one has hniti = c, but the coarse-graining procedure lead-
ing to ñit means that the average number of sites with
ñit = 1 is less than the average number of sites with
ni = 1.) It is however useful to recall at this point that
we have always been restricting our analysis to the situ-
ation c�b ⌧ ⌧

0

, which also implies that m⇢ ⌧ 1 (recall
⌧
0

is the bulk relaxation time). For times of order ⌧
0

, the
situation is more complicated, since time scales are no
longer well-separated [32]. To the the extent that that
metastable states exist on these time scales, we expect
them still to be in one-to-one correspondence with hard-
rod configurations, but states with equal numbers of rods
are no longer equiprobable. The same limitations mean
that the superdomain analysis of [18] does not give quan-
titative results for structural relaxation at equilibrium.

Fig. 5 shows the correlation function between time-
averaged densities

gt(r) =
hnitni+r,ti

hniti
. (11)

Convenient to plot S` � S`�1

... converges for large ` to entropy per site

Theory: up spins are never closer than `⇤,

otherwise randomly distributed. . .

. . . “hard rods”

Length scale `⇤ ⇡ 2b�1

For b = 0, expect ñ = n,

‘static’ result

Well-defined complexity

. . . for states of lifetime tb
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FIG. 3: Schematic illustration of time evolution among
metastable states. Each box represents a state, labelled by
its characteristic local density profile, and a value of b that
indicates its lifetime (of order c�b). To describe the profile
we use a notation suggested by Fig. 2, based on the relative
sizes of hnitiic and h�n2

iti
1/2
ic . We distinguish four cases: (i) a

1 represents a spin with nit ⇡ 1 (up to a tolerance much less
than 1); (ii) a dot represents a spin with nit ⌧ c; (iii) a c

represents a spin with nit ⇡ c (up to a tolerance much less
than c); (iv) an x represents a spin with nit ⇠ c (that is, a
typical value c with a tolerance much less than 1 but bigger
than c). The 1 corresponds to ñit = 1 while x, c and dot
all correspond to ñit = 0. Arrows indicate how a profile on
one time scale evolves into a di↵erent profile after averaging
over a longer time scale. Some states have more than one
outward arrow, indicating that they may evolve into one of
several possible profiles, so they are on a borderline between
the various (more stable) states into which they may evolve.

averaged profile. However, a key insight from [14] is that
while it is not possible to establish a one-to-one map-
ping between initial conditions and metastable states, it
is possible to establish such a mapping between profiles
Ct and metastable states.

C. Methods for counting metastable states

We now turn to the patch-repetition analysis proposed
by Kurchan and Levine [14] as a method for analysis of
metastable states. We wish to consider the probability
distribution of profiles Ct, since these are in one-to-one
correspondence with metastable states. In general, the
averages nit have continuous values, and a tolerance ✏ is
required [14] in order to identify if a state Ct is “close”
to a reference profile C↵

t . However, in the East model, we
have nit ⇡ 0, 1 (recall Fig. 2) so we define

ñit = ⇥(ni,t � a), (4)

where ⇥(x) is a step function, and the threshold a =
1/2 (results depend weakly on this threshold). We then
obtain a binary profile

C̃t = (ñ
1t, ñ2t, . . . , ñLt), (5)

and we consider the statistical properties of these profiles,
as a proxy for the Ct.

To analyse the distribution over the C̃t, we use the
patch-repetition analysis [14]. To this end, consider
a patch of the system of size `, for example B`

i =
(ñit, ñi+1,t, . . . , ñi+`�1,t). Then, for a large system, one
evaluates

S`,t = �
X

B`

⇥
n(B`)/L

⇤
log

⇥
n(B`)/L

⇤
(6)

where n(B`) is the number of occurences of patch B` in
C̃t, and the sum runs over all patches of size ` that appear
in C̃t. (Clearly

P
B` n(B`) = L since the total number of

patches is L.)
As long as correlations in the system are of finite range,

one may define the entropy density associated with the
profiles C̃t as

St = lim
`!1

S`,t/`. (7)

Since we expect a one-to-one correspondence between
profiles C̃t and metastable states of lifetime at least t,
then we can identify St as the entropy density associated
with these metastable states. The (extensive) quantity
LSt is sometimes called the “complexity” [11, 12, 14] (al-
though we emphasise that we are working with states of
fixed finite lifetime, not the infinitely long-lived states
that exist in mean-field models).

III. PATCH-REPETITION ANALYSIS AND
DYNAMICAL CORRELATIONS

We now present numerical results that illustrate how
the patch repetition analysis is e↵ective in identifying and
characterising metastable states in the East model, and
how the results of this analysis can be used to predict
dynamical correlation functions. These results illustrate
the operation of the scheme, and the central role played
by the averaging time t. The implications of these results
for other glassy systems will be discussed in the following
Section.

In the East model, we have evaluated S`,t numerically
for the times t shown with arrows in Fig. 1b. Fig. 4
shows our results (symbols), which we present by plot-
ting S`+1,t � S`,t as a function of `. We first observe
that for t ⌧ 1 (i.e., b = 0), then S`+1,t � S`,t is inde-
pendent of `. This result follows immediately from the
trivial equilibrium distribution p0(C) in the East model.
However, on averaging over larger time scales, structure
appears in these entropy measurements, and one may eas-
ily identify a length scale `⇤ associated with convergence
of S`+1,t � S`,t to its large-` limit St.

To account for the `-dependence of S`,t, recall that the
“superdomain” argument of [18] indicates that sites with
ñit = 1 are separated by at least 2b�1 lattice sites (for
b � 1). This rule indicates that the statistics of the time-
averaged profiles C̃t are related to those of systems of hard
rods of length m = 1 + 2b�1. In fact, for times much less
than ⌧

0

, we find that the statistics of the profiles C̃t are

1 : ni ⇡ 1

0 : ni ⇡ 0

Evolution to “longer rods”, some deterministic and  
some stochastic steps…

x : ni ⇡ c±O(c1/2)

c : ni ⇡ c±O(c3/2)



Part I summary
Time scale separation means metastable states are well-
defined…!

Kurchan-Levine method allows counting of metastable 
states (of given lifetime)…!

In the East model, these states correspond with those of 
“hard rod” systems… 
 
… diverging length scale coupled with diverging time scale  
... at least for times t

obs

⌧ ⌧↵ (that is, `⇤ ⌧ 1/c)

[Kurchan and Levine, J Phys A, 2011]

[RLJ, Phys Rev E, 2013]



Triangular Plaquette Model
purely entropic in origin. The entropic nature of the barriers
explains why relaxation of the SPM model diverges only in
an Arrhenius fashion !!"e3"# despite the cooperativity of its
dynamics.

D. SPM summary

It is clear from the results of this section that, even in a
simple model like the SPM, the situation regarding caging
and mosaic length scales is already more complicated than
what the appealingly simple and general arguments of Ref.
18 would predict. As we increase the size of droplets with
frozen boundaries, there are two crossovers. Static spin-spin
correlations vanish at c"L−2, but neither the droplet entropy,
nor its dynamical correlation functions reach their bulk
forms until the much higher temperature c"L−1. We note
that these two length scales were also identified in the dis-
cussion of static and dynamic length scales in Ref. 23. To be
precise, the static four-spin correlator $#00#0r#r0#rr% decays
on a length scale $4

stat"c−1/2, but the dynamic four-point cor-
relator decays on a length that scales as $2,2"c−1. There is
also a static length scale that mirrors the scaling of $2,2 which
is derived from fluctuations of two-point correlations.23

Despite these complications, a general picture like that
of Ref. 18 does seem to be applicable to the SPM, in the
sense that droplet melting does occur, even if it happens in
stages. As the temperature decreases towards the Kauzmann
singularity at T=0, the mosaic length scale increases, and the
relaxation time increases according to !29#. This increase
follows a simple Arrhenius law because only the entropic
barriers depend on $*. This suggests that one should replace
!2# by the more general parametrization

! " fs!$#e"fu!$#, !30#

where fs!$# describes the entropic part of the barrier and
fu!$# the energetic part. At small temperatures then we ex-
pect the energetic part to dominate, except in the case where
fu!$# is independent of $, as is the case for the SPM.

It is at this point at which our discussion of dynamics
diverges from that of KTW and BB, since the !nonperturba-
tive# dynamical moves are not nucleation events in this
model, then the free-energy barrier is not set by a transition
state with a critical droplet of the new phase. Rather, the
relaxation proceeds by less expensive rearrangements that
occur over a length scale $*,typ, as was discussed in detail in
Ref. 23.

IV. TRIANGULAR PLAQUETTE MODEL

In this section we compare the results we found above
for the SPM, with a similar model of Ising spins, the trian-
gular plaquette model or TPM.16,17 This model has a super-
Arrhenius divergence of the relaxation time at low tempera-
tures, and is therefore a fragile model, as compared to the
SPM, which is strong. Moreover, dynamical correlations do
not have the strong anisotropy of the SPM.23 The calculation
of the partition function, however, is considerably more in-
volved, so our results below are less detailed than those for
the SPM.

The TPM is defined by the Hamiltonian,16,17

H = − !1/2#&
xy

#xy#x+1,y#x,y+1, !31#

where, as before, '#xy( are the Ising spins on a square lattice
and the dynamics are the spin flips with Glauber rates. If we
define the plaquette variables,

qxy = #xy#x+1,y#x,y+1, !32#

we again find that the partition sum over the spins reduces to
a product over qxy, that are independent up to a nonextensive
set of constraints from the boundary conditions.15,16

We note that defining this model in this way leads to a
Hamiltonian that does not possess the square symmetry
group of the lattice, it is more intuitive to deform the square
lattice into a triangular one. The interactions are then around
upward pointing triangular plaquettes !see Fig. 9#. The sym-
metries of the Hamiltonian are then translations by lattice
vectors, and 120° rotations !60° rotations leave the lattice
invariant but flip downward pointing triangles to upward
pointing ones, so they change the Hamiltonian#.

The analogy of the square droplet of Fig. 1 is a rhombus
shape in the triangular representation. The arguments for
counting bulk and boundary states are the same as those of
the plaquette model. However, identifying the 22L−1 degen-
eracies of each state and the nature of the !2L−3# constraints
is considerably more involved.

A. Static spin-spin correlations and constraints

The key to understanding static properties of the trian-
gular plaquette model is to realize that

$qi1,j1
qi2,j2

. . . qin,jn
% = )tanh!"/2#*n. !33#

All multispin correlators that can be written in this form are
finite. Furthermore, all other multispin correlators are zero.15

While one- and two-point static spin correlations vanish,

$#xy% = 0, $#xy#x!y!% = %x,x!%y,y!, !34#

specific three-point correlators are nonzero,

$#xy#x+1,y#x,y+1% = $qxy% = tanh!"/2# . !35#

A useful general relation is that

FIG. 9. Sketch showing relation between square and rhomboid droplets !L
=6#. The spins are on the intersections of grids; #11 is marked by a filled
circle. The & symbol marks the plaquette interaction q24=#24#25#34. Rota-
tions of 120° leave both Hamiltonian and triangular lattices invariant. How-
ever, note that the boundaries of the droplets are not all equivalent, since the
rhombus shape is not invariant under this rotation.
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an Arrhenius fashion !!"e3"# despite the cooperativity of its
dynamics.

D. SPM summary
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what the appealingly simple and general arguments of Ref.
18 would predict. As we increase the size of droplets with
frozen boundaries, there are two crossovers. Static spin-spin
correlations vanish at c"L−2, but neither the droplet entropy,
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pect the energetic part to dominate, except in the case where
fu!$# is independent of $, as is the case for the SPM.

It is at this point at which our discussion of dynamics
diverges from that of KTW and BB, since the !nonperturba-
tive# dynamical moves are not nucleation events in this
model, then the free-energy barrier is not set by a transition
state with a critical droplet of the new phase. Rather, the
relaxation proceeds by less expensive rearrangements that
occur over a length scale $*,typ, as was discussed in detail in
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In this section we compare the results we found above
for the SPM, with a similar model of Ising spins, the trian-
gular plaquette model or TPM.16,17 This model has a super-
Arrhenius divergence of the relaxation time at low tempera-
tures, and is therefore a fragile model, as compared to the
SPM, which is strong. Moreover, dynamical correlations do
not have the strong anisotropy of the SPM.23 The calculation
of the partition function, however, is considerably more in-
volved, so our results below are less detailed than those for
the SPM.

The TPM is defined by the Hamiltonian,16,17
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where, as before, '#xy( are the Ising spins on a square lattice
and the dynamics are the spin flips with Glauber rates. If we
define the plaquette variables,

qxy = #xy#x+1,y#x,y+1, !32#

we again find that the partition sum over the spins reduces to
a product over qxy, that are independent up to a nonextensive
set of constraints from the boundary conditions.15,16

We note that defining this model in this way leads to a
Hamiltonian that does not possess the square symmetry
group of the lattice, it is more intuitive to deform the square
lattice into a triangular one. The interactions are then around
upward pointing triangular plaquettes !see Fig. 9#. The sym-
metries of the Hamiltonian are then translations by lattice
vectors, and 120° rotations !60° rotations leave the lattice
invariant but flip downward pointing triangles to upward
pointing ones, so they change the Hamiltonian#.

The analogy of the square droplet of Fig. 1 is a rhombus
shape in the triangular representation. The arguments for
counting bulk and boundary states are the same as those of
the plaquette model. However, identifying the 22L−1 degen-
eracies of each state and the nature of the !2L−3# constraints
is considerably more involved.

A. Static spin-spin correlations and constraints

The key to understanding static properties of the trian-
gular plaquette model is to realize that

$qi1,j1
qi2,j2

. . . qin,jn
% = )tanh!"/2#*n. !33#

All multispin correlators that can be written in this form are
finite. Furthermore, all other multispin correlators are zero.15

While one- and two-point static spin correlations vanish,

$#xy% = 0, $#xy#x!y!% = %x,x!%y,y!, !34#

specific three-point correlators are nonzero,

$#xy#x+1,y#x,y+1% = $qxy% = tanh!"/2# . !35#
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tions of 120° leave both Hamiltonian and triangular lattices invariant. How-
ever, note that the boundaries of the droplets are not all equivalent, since the
rhombus shape is not invariant under this rotation.

164508-8 R. L. Jack and J. P. Garrahan J. Chem. Phys. 123, 164508 !2005"

Downloaded 01 Sep 2008 to 138.38.192.48. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Ising spins si = ±1
on vertices of triangular lattice

[Newman and Moore 1999, Garrahan and Newman 2000, Garrahan 2002]

hsii = 0, hsisji = 0

Selected three-point and higher correlations are non-zero,

Correlation length ⇠ ⇠ c� log 2/ log 3

Assuming complexity ⇡ simple entropy,

S` ⇡ `2c ln c+ 2` ln 2

Many metastable states. . .

[Cammarota and Biroli, EPL, 2012]



VOLUME 86, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 JUNE 2001

Microscopic Theory of Heterogeneity and Nonexponential Relaxations in Supercooled Liquids

Xiaoyu Xia and Peter G. Wolynes*
Department of Physics and Chemistry, University of Illinois, Urbana, Illinois 61801

(Received 5 September 2000)

Recent experiments show that supercooled liquids around the glass transition temperature are “dynami-
cally heterogeneous” [H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)]. Such heterogeneity is expected
from the random first order transition theory of the glass transition. Using a microscopic approach based
on this theory, we derive a relation between the departure from Debye relaxation as characterized by the
b value of a stretched exponential response function, f!t" ! e2!t#tKWW"b , and the fragility of the liquid.
The b value is also predicted to depend on temperature and to vanish as the ideal glass transition is
approached at the Kauzmann temperature.
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The striking universality of relaxation dynamics in su-
percooled liquids has remained intriguing for decades. In
addition to the overall dramatic slowing of transport as the
glass transition is approached, one finds the emergence of
a strongly nonexponential approach to equilibrium when
a supercooled liquid is perturbed [1]. This contrasts with
the behavior of chemically simple liquids at higher tem-
peratures, where only a single time scale for a highly ex-
ponential structural relaxation is usually encountered for
times beyond the vibrational time scales. Both the range
of time scales and the typical magnitude of the relaxation
time require explanation.

Several theoretical threads lead to the notion that the
universal behavior of supercooled liquids arises from
proximity to an underlying random first order transition
[2–6] which is found in mean field theories of spin glass
without reflection symmetry [7–9], and in mode coupling
[10,11] and density functional [12–14] approaches to
the structural glass transition. This picture explains both
the breakdown of simple collisional theories of transport
that apply to high temperature liquids at a characteristic
temperature TA and the impending entropy crisis of super-
cooled liquids first discovered by Simon and brilliantly
emphasized by Kauzmann [15] at the temperature TK .
Furthermore the scenario suggests that the finite range
of the underlying forces modifies mean field behavior
between TA and TK in a way that leads to an intricate
“mosaic” structure of a glassy fluid in which mesoscopic
local regions are each in an aperiodic minimum but are
separated by more mobile domain walls which are strained
and quite far from local minima structures, as shown in
Fig. 1 [16]. Relaxation of the elements of the mosaic,
reconfiguring to other low energy structures, leads to the
slow relaxation, and a scaling treatment of the most proba-
ble relaxation time yields the venerable Vogel-Fulcher law,
t ! t0eDT0#T2T0 [5]. D, called the fragility, determines
the apparent size of deviations from an Arrhenius law.
Most recently a microscopic calculation of the coefficient
D yielded good agreement with experiments for a range
of liquids [17]. In this paper, we address the predictions of
the mosaic picture for the dispersion of relaxation times.

Relaxation in supercooled liquids is well approximated
by the stretched exponential or Kohlrausch-Williams-Watts
(KWW) formula f!t" ! e2!t#tKWW"b

. A study conducted
by Böhmer et al. [18] on over sixty glass formers at about
Tg shows b and D are strongly correlated. The smallest
b is found for the most fragile liquids. The heterogeneity
of time scales suggests possible heterogeneity in space.

The existence of spatial heterogeneity received support
from recent computer simulations [19–21], although these
are at temperatures near TA where the clusters are small,

FIG. 1. An illustration of the “mosaic structure” of super-
cooled liquids. The mosaic pieces are not necessarily the same
size due to the fluctuations in the driving force, configurational
entropy. The system escapes from a local metastable configura-
tion by an activated process equivalent to forming a liquidlike
droplet inside a mosaic element. For droplets with size much
smaller than the mosaic (as shown with the small circle), the
droplet shape and its surface energy cost are well described by
the infinite system result [Eq. (2)]. For transition state droplets
that would seem larger than the typical mosaic elements (as
shown with the large circle), the surface energy cost will be
much smaller than sr2 since the formation of such a droplet
will break through boundaries of the preexisting domain. In this
case, the free energy barrier to form such a large droplet will
be close to DF0, the most probable barrier determined by the
macroscopic configurational entropy density.
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KCM or mosaic?
Can think of TPM as a kinetically-constrained model
… or as a “mosaic” made up of metastable states

BUT:  
No domain walls, 
No surface tension between  
states

“Nucleation” dynamics

among states:

barrier scales with log `
(not `p as in CNT)

[RLJ and Garrahan, JCP, 2005]



“Cavity” point-to-set
To measure “mosaic” tile size…

For the TPM: this size is ⇠
mos

⇠ c� log 2/ log 3

[RLJ and Garrahan, J Chem Phys, 2005]

Relaxation on length scale ⇠
mos

determines bulk relaxation time

[Montanari and Semerjian, J Stat Phys, 2006]
(consistent with rigorous bound)

Immobilise system outside a “cavity” of size `

What is the smallest `
for which the cavity has more than 1 state available?

[Bouchaud and Biroli, J Chem Phys, 2004]



Random pinning
Random pinning: from an equilibrium configuration C0,

‘pin’ (immobilise) each spin w/prob f

Also, measure pi = hsis0i iC

Finite length scale ⇠ ⇠ (1/c)
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FIG. 2. Effects of pinning in the TPM at β = 3. (a) Time-
dependent correlation function. (b) Time-dependent four-point sus-
ceptibility.

strongly the ones shown in Fig. 1, and are therefore not shown,
for brevity. However, the f dependence of the relaxation time
τ is weaker in the TPM than in the SPM: The ratio τmax/τ0
does increase systematically on decreasing temperature but it
takes values in the range 1–4 while τ0 varies over nearly four
orders of magnitude.

We emphasize that all of the results presented in this article
are obtained in large systems and we have checked that they
are free from finite-size effects. (This is discussed further in
Sec. IV C below.) We find that susceptibilities and relaxation
times have maxima at f ∗, but the maximum values remain
finite even when the thermodynamic limit is taken, V → ∞.
Thus, there are no diverging correlation times or correlation
lengths in this system for any finite f or T , nor is there any
phase transition. However, we find that correlation times and
susceptibilities have sharp maxima along a line f ∗(T ) in the
(f,T ) phase diagram.

IV. SCALING OF LENGTHS

We have shown that varying f in the SPM and TPM reveals
crossovers at f ∗, associated with maxima in susceptibilities
and in relaxation times. We now discuss how these features
can be related to correlation lengths in these systems. In
particular, we focus on the scaling of these length scales at
low temperatures.

A. Visualisation of spatial correlations

It is instructive to visualize the spatial fluctuations that
appear as a result of the random pinning. To this end,
we consider the dynamic propensity [42,43]. (Compared to
visualising the autocorrelations ai directly, the propensity
provides continuous functions rather than binary ones, and this

pi = 1 pi = −1fi = 1

f = 0.12 f = 0.25(a) (b) (c)

(d)

f = 0.10

(e) (f)

f = 0.20

f = 0.18

f = 0.15

FIG. 3. (Color online) Snapshots of the propensities pi in the
long-time limit. (a)–(c) SPM at β = 3, varying f . At this temperature
f ∗ ≈ 0.18. (d)–(f) TPM at β = 3 for which f ∗ ≈ 0.15. Pinned spins
are black while unpinned spins are color coded with dark blue (dark
gray) for pi ≈ 1, and pale blue or green (light gray) for pi ≈ 0 and
pi ≈ −1, respectively. On increasing f , the spins become polarized
so that pi ≈ 1 in most cases. The correlations associated with the
propensity are strongest near f ∗, consistent with χ4 being maximal.

yields images that better differentiate between regions where
relaxation is frustrated by the frozen spins and those where
relaxation can occur.)

To calculate the propensity, we take a single representative
reference configuration, sA, in which a specific set of spins
are frozen, and we run several long MC trajectories starting
from it. We calculate the autocorrelation ai(t) = si(t)si(0) for
each unfrozen spin in each trajectory and we average over the
trajectories to obtain the (site-dependent) propensities pi(t) =
ai(t). For large times these propensities approach limiting
values, pi = pi(t → ∞), which depend on the reference
configuration sA but not on the time t . The propensities are
therefore static on-site quantities characterizing the degree of
freezing of spin i for a given realization of the random pinning
and a given reference configuration.

Representative results are shown in Fig. 3, where pinned
spins are shown in black, and a blue-green color coding
describes the propensity. Sites for which the pinned spins
cause the configuration to remain near its initial state have
pi ≈ 1 (dark blue) while those where the pinned spins have
little effect have pi = 0 (light blue). If the frozen spins cause si

to become polarized in the opposite direction to sA
i , one finds

pi < 0 (green).
At f = 0 then pi = 0 for all i and the system is homo-

geneous. As f starts to increase (left panel), then the system
acquires regions where the spins become polarized and cannot
relax any more (colored dark blue in Fig. 3). This seems to
occur in small, isolated regions whose size increases with f .
For f ≈ f ∗ (middle panel), these polarized regions percolate
throughout the system and spatial fluctuations of the propensity
occur over a large length scale. This yields snapshots where
large regions are strongly polarized while others are unaffected
by the pinning. Finally, as f increases further above f ∗

(right panel), most spins are strongly pinned, and only few
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FIG. 2. Effects of pinning in the TPM at β = 3. (a) Time-
dependent correlation function. (b) Time-dependent four-point sus-
ceptibility.

strongly the ones shown in Fig. 1, and are therefore not shown,
for brevity. However, the f dependence of the relaxation time
τ is weaker in the TPM than in the SPM: The ratio τmax/τ0
does increase systematically on decreasing temperature but it
takes values in the range 1–4 while τ0 varies over nearly four
orders of magnitude.

We emphasize that all of the results presented in this article
are obtained in large systems and we have checked that they
are free from finite-size effects. (This is discussed further in
Sec. IV C below.) We find that susceptibilities and relaxation
times have maxima at f ∗, but the maximum values remain
finite even when the thermodynamic limit is taken, V → ∞.
Thus, there are no diverging correlation times or correlation
lengths in this system for any finite f or T , nor is there any
phase transition. However, we find that correlation times and
susceptibilities have sharp maxima along a line f ∗(T ) in the
(f,T ) phase diagram.

IV. SCALING OF LENGTHS

We have shown that varying f in the SPM and TPM reveals
crossovers at f ∗, associated with maxima in susceptibilities
and in relaxation times. We now discuss how these features
can be related to correlation lengths in these systems. In
particular, we focus on the scaling of these length scales at
low temperatures.

A. Visualisation of spatial correlations

It is instructive to visualize the spatial fluctuations that
appear as a result of the random pinning. To this end,
we consider the dynamic propensity [42,43]. (Compared to
visualising the autocorrelations ai directly, the propensity
provides continuous functions rather than binary ones, and this
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FIG. 3. (Color online) Snapshots of the propensities pi in the
long-time limit. (a)–(c) SPM at β = 3, varying f . At this temperature
f ∗ ≈ 0.18. (d)–(f) TPM at β = 3 for which f ∗ ≈ 0.15. Pinned spins
are black while unpinned spins are color coded with dark blue (dark
gray) for pi ≈ 1, and pale blue or green (light gray) for pi ≈ 0 and
pi ≈ −1, respectively. On increasing f , the spins become polarized
so that pi ≈ 1 in most cases. The correlations associated with the
propensity are strongest near f ∗, consistent with χ4 being maximal.

yields images that better differentiate between regions where
relaxation is frustrated by the frozen spins and those where
relaxation can occur.)

To calculate the propensity, we take a single representative
reference configuration, sA, in which a specific set of spins
are frozen, and we run several long MC trajectories starting
from it. We calculate the autocorrelation ai(t) = si(t)si(0) for
each unfrozen spin in each trajectory and we average over the
trajectories to obtain the (site-dependent) propensities pi(t) =
ai(t). For large times these propensities approach limiting
values, pi = pi(t → ∞), which depend on the reference
configuration sA but not on the time t . The propensities are
therefore static on-site quantities characterizing the degree of
freezing of spin i for a given realization of the random pinning
and a given reference configuration.

Representative results are shown in Fig. 3, where pinned
spins are shown in black, and a blue-green color coding
describes the propensity. Sites for which the pinned spins
cause the configuration to remain near its initial state have
pi ≈ 1 (dark blue) while those where the pinned spins have
little effect have pi = 0 (light blue). If the frozen spins cause si

to become polarized in the opposite direction to sA
i , one finds

pi < 0 (green).
At f = 0 then pi = 0 for all i and the system is homo-

geneous. As f starts to increase (left panel), then the system
acquires regions where the spins become polarized and cannot
relax any more (colored dark blue in Fig. 3). This seems to
occur in small, isolated regions whose size increases with f .
For f ≈ f ∗ (middle panel), these polarized regions percolate
throughout the system and spatial fluctuations of the propensity
occur over a large length scale. This yields snapshots where
large regions are strongly polarized while others are unaffected
by the pinning. Finally, as f increases further above f ∗

(right panel), most spins are strongly pinned, and only few
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strongly the ones shown in Fig. 1, and are therefore not shown,
for brevity. However, the f dependence of the relaxation time
τ is weaker in the TPM than in the SPM: The ratio τmax/τ0
does increase systematically on decreasing temperature but it
takes values in the range 1–4 while τ0 varies over nearly four
orders of magnitude.

We emphasize that all of the results presented in this article
are obtained in large systems and we have checked that they
are free from finite-size effects. (This is discussed further in
Sec. IV C below.) We find that susceptibilities and relaxation
times have maxima at f ∗, but the maximum values remain
finite even when the thermodynamic limit is taken, V → ∞.
Thus, there are no diverging correlation times or correlation
lengths in this system for any finite f or T , nor is there any
phase transition. However, we find that correlation times and
susceptibilities have sharp maxima along a line f ∗(T ) in the
(f,T ) phase diagram.

IV. SCALING OF LENGTHS

We have shown that varying f in the SPM and TPM reveals
crossovers at f ∗, associated with maxima in susceptibilities
and in relaxation times. We now discuss how these features
can be related to correlation lengths in these systems. In
particular, we focus on the scaling of these length scales at
low temperatures.

A. Visualisation of spatial correlations

It is instructive to visualize the spatial fluctuations that
appear as a result of the random pinning. To this end,
we consider the dynamic propensity [42,43]. (Compared to
visualising the autocorrelations ai directly, the propensity
provides continuous functions rather than binary ones, and this
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FIG. 3. (Color online) Snapshots of the propensities pi in the
long-time limit. (a)–(c) SPM at β = 3, varying f . At this temperature
f ∗ ≈ 0.18. (d)–(f) TPM at β = 3 for which f ∗ ≈ 0.15. Pinned spins
are black while unpinned spins are color coded with dark blue (dark
gray) for pi ≈ 1, and pale blue or green (light gray) for pi ≈ 0 and
pi ≈ −1, respectively. On increasing f , the spins become polarized
so that pi ≈ 1 in most cases. The correlations associated with the
propensity are strongest near f ∗, consistent with χ4 being maximal.

yields images that better differentiate between regions where
relaxation is frustrated by the frozen spins and those where
relaxation can occur.)

To calculate the propensity, we take a single representative
reference configuration, sA, in which a specific set of spins
are frozen, and we run several long MC trajectories starting
from it. We calculate the autocorrelation ai(t) = si(t)si(0) for
each unfrozen spin in each trajectory and we average over the
trajectories to obtain the (site-dependent) propensities pi(t) =
ai(t). For large times these propensities approach limiting
values, pi = pi(t → ∞), which depend on the reference
configuration sA but not on the time t . The propensities are
therefore static on-site quantities characterizing the degree of
freezing of spin i for a given realization of the random pinning
and a given reference configuration.

Representative results are shown in Fig. 3, where pinned
spins are shown in black, and a blue-green color coding
describes the propensity. Sites for which the pinned spins
cause the configuration to remain near its initial state have
pi ≈ 1 (dark blue) while those where the pinned spins have
little effect have pi = 0 (light blue). If the frozen spins cause si

to become polarized in the opposite direction to sA
i , one finds

pi < 0 (green).
At f = 0 then pi = 0 for all i and the system is homo-

geneous. As f starts to increase (left panel), then the system
acquires regions where the spins become polarized and cannot
relax any more (colored dark blue in Fig. 3). This seems to
occur in small, isolated regions whose size increases with f .
For f ≈ f ∗ (middle panel), these polarized regions percolate
throughout the system and spatial fluctuations of the propensity
occur over a large length scale. This yields snapshots where
large regions are strongly polarized while others are unaffected
by the pinning. Finally, as f increases further above f ∗

(right panel), most spins are strongly pinned, and only few
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FIG. 2. Effects of pinning in the TPM at β = 3. (a) Time-
dependent correlation function. (b) Time-dependent four-point sus-
ceptibility.

strongly the ones shown in Fig. 1, and are therefore not shown,
for brevity. However, the f dependence of the relaxation time
τ is weaker in the TPM than in the SPM: The ratio τmax/τ0
does increase systematically on decreasing temperature but it
takes values in the range 1–4 while τ0 varies over nearly four
orders of magnitude.

We emphasize that all of the results presented in this article
are obtained in large systems and we have checked that they
are free from finite-size effects. (This is discussed further in
Sec. IV C below.) We find that susceptibilities and relaxation
times have maxima at f ∗, but the maximum values remain
finite even when the thermodynamic limit is taken, V → ∞.
Thus, there are no diverging correlation times or correlation
lengths in this system for any finite f or T , nor is there any
phase transition. However, we find that correlation times and
susceptibilities have sharp maxima along a line f ∗(T ) in the
(f,T ) phase diagram.

IV. SCALING OF LENGTHS

We have shown that varying f in the SPM and TPM reveals
crossovers at f ∗, associated with maxima in susceptibilities
and in relaxation times. We now discuss how these features
can be related to correlation lengths in these systems. In
particular, we focus on the scaling of these length scales at
low temperatures.

A. Visualisation of spatial correlations

It is instructive to visualize the spatial fluctuations that
appear as a result of the random pinning. To this end,
we consider the dynamic propensity [42,43]. (Compared to
visualising the autocorrelations ai directly, the propensity
provides continuous functions rather than binary ones, and this
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are black while unpinned spins are color coded with dark blue (dark
gray) for pi ≈ 1, and pale blue or green (light gray) for pi ≈ 0 and
pi ≈ −1, respectively. On increasing f , the spins become polarized
so that pi ≈ 1 in most cases. The correlations associated with the
propensity are strongest near f ∗, consistent with χ4 being maximal.

yields images that better differentiate between regions where
relaxation is frustrated by the frozen spins and those where
relaxation can occur.)

To calculate the propensity, we take a single representative
reference configuration, sA, in which a specific set of spins
are frozen, and we run several long MC trajectories starting
from it. We calculate the autocorrelation ai(t) = si(t)si(0) for
each unfrozen spin in each trajectory and we average over the
trajectories to obtain the (site-dependent) propensities pi(t) =
ai(t). For large times these propensities approach limiting
values, pi = pi(t → ∞), which depend on the reference
configuration sA but not on the time t . The propensities are
therefore static on-site quantities characterizing the degree of
freezing of spin i for a given realization of the random pinning
and a given reference configuration.

Representative results are shown in Fig. 3, where pinned
spins are shown in black, and a blue-green color coding
describes the propensity. Sites for which the pinned spins
cause the configuration to remain near its initial state have
pi ≈ 1 (dark blue) while those where the pinned spins have
little effect have pi = 0 (light blue). If the frozen spins cause si

to become polarized in the opposite direction to sA
i , one finds

pi < 0 (green).
At f = 0 then pi = 0 for all i and the system is homo-

geneous. As f starts to increase (left panel), then the system
acquires regions where the spins become polarized and cannot
relax any more (colored dark blue in Fig. 3). This seems to
occur in small, isolated regions whose size increases with f .
For f ≈ f ∗ (middle panel), these polarized regions percolate
throughout the system and spatial fluctuations of the propensity
occur over a large length scale. This yields snapshots where
large regions are strongly polarized while others are unaffected
by the pinning. Finally, as f increases further above f ∗

(right panel), most spins are strongly pinned, and only few
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[RLJ and Berthier, PRE 2012]

Natural mosaic length scale ⇠
mos

⇠ (1/c)log 2/ log 3

Finite length scale ⇠ ⇠ (1/c) (from numerics)

Coupling between spatial domains too weak for this, in TPM ??

Mean-field idea: pinning reduces number of available states, 
with fixed surface tension: diverging length scale (at fixed c)

[Cammarota and Biroli, EPL 2012]



Overlap fluctuations
For fixed (quenched) C0, bias C to lie near C0,

with biasing probability e✏Nq(C,C0)

[RLJ and Garrahan, unpublished]
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FIG. 2. Effects of pinning in the TPM at β = 3. (a) Time-
dependent correlation function. (b) Time-dependent four-point sus-
ceptibility.

strongly the ones shown in Fig. 1, and are therefore not shown,
for brevity. However, the f dependence of the relaxation time
τ is weaker in the TPM than in the SPM: The ratio τmax/τ0
does increase systematically on decreasing temperature but it
takes values in the range 1–4 while τ0 varies over nearly four
orders of magnitude.

We emphasize that all of the results presented in this article
are obtained in large systems and we have checked that they
are free from finite-size effects. (This is discussed further in
Sec. IV C below.) We find that susceptibilities and relaxation
times have maxima at f ∗, but the maximum values remain
finite even when the thermodynamic limit is taken, V → ∞.
Thus, there are no diverging correlation times or correlation
lengths in this system for any finite f or T , nor is there any
phase transition. However, we find that correlation times and
susceptibilities have sharp maxima along a line f ∗(T ) in the
(f,T ) phase diagram.

IV. SCALING OF LENGTHS

We have shown that varying f in the SPM and TPM reveals
crossovers at f ∗, associated with maxima in susceptibilities
and in relaxation times. We now discuss how these features
can be related to correlation lengths in these systems. In
particular, we focus on the scaling of these length scales at
low temperatures.

A. Visualisation of spatial correlations

It is instructive to visualize the spatial fluctuations that
appear as a result of the random pinning. To this end,
we consider the dynamic propensity [42,43]. (Compared to
visualising the autocorrelations ai directly, the propensity
provides continuous functions rather than binary ones, and this
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long-time limit. (a)–(c) SPM at β = 3, varying f . At this temperature
f ∗ ≈ 0.18. (d)–(f) TPM at β = 3 for which f ∗ ≈ 0.15. Pinned spins
are black while unpinned spins are color coded with dark blue (dark
gray) for pi ≈ 1, and pale blue or green (light gray) for pi ≈ 0 and
pi ≈ −1, respectively. On increasing f , the spins become polarized
so that pi ≈ 1 in most cases. The correlations associated with the
propensity are strongest near f ∗, consistent with χ4 being maximal.

yields images that better differentiate between regions where
relaxation is frustrated by the frozen spins and those where
relaxation can occur.)

To calculate the propensity, we take a single representative
reference configuration, sA, in which a specific set of spins
are frozen, and we run several long MC trajectories starting
from it. We calculate the autocorrelation ai(t) = si(t)si(0) for
each unfrozen spin in each trajectory and we average over the
trajectories to obtain the (site-dependent) propensities pi(t) =
ai(t). For large times these propensities approach limiting
values, pi = pi(t → ∞), which depend on the reference
configuration sA but not on the time t . The propensities are
therefore static on-site quantities characterizing the degree of
freezing of spin i for a given realization of the random pinning
and a given reference configuration.

Representative results are shown in Fig. 3, where pinned
spins are shown in black, and a blue-green color coding
describes the propensity. Sites for which the pinned spins
cause the configuration to remain near its initial state have
pi ≈ 1 (dark blue) while those where the pinned spins have
little effect have pi = 0 (light blue). If the frozen spins cause si

to become polarized in the opposite direction to sA
i , one finds

pi < 0 (green).
At f = 0 then pi = 0 for all i and the system is homo-

geneous. As f starts to increase (left panel), then the system
acquires regions where the spins become polarized and cannot
relax any more (colored dark blue in Fig. 3). This seems to
occur in small, isolated regions whose size increases with f .
For f ≈ f ∗ (middle panel), these polarized regions percolate
throughout the system and spatial fluctuations of the propensity
occur over a large length scale. This yields snapshots where
large regions are strongly polarized while others are unaffected
by the pinning. Finally, as f increases further above f ∗

(right panel), most spins are strongly pinned, and only few
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Allow model to relax to configuration C,

measure overlap hq(C, C0)i = hsis0i i



Overlap fluctuations
For two configurations C, C0, bias C to lie near C0,

with biasing probability e✏Nq(C,C0)

(annealed case)

[Garrahan PRE 2014, RLJ and Garrahan, unpublished]
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First order phase transition at non-zero ✏⇤



Overlap fluctuations
[RLJ and Garrahan, unpublished]
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Why are the quenched/annealed cases so different?
Defect density hnµi ⇡ c2

Defect density hnµi ⇡ c

Annealed case: system is sampling non-typical metastable states



Dimensionality?
[RLJ and Garrahan, unpublished]

Are two-dimensional models special?

If surface tension between metastable states exists, 
can relate pinned systems to random-field Ising magnets…
(hence no phase transitions in 2d)

In TPM, no surface tension, so this argument does not apply…  

preliminary results for 3d generalisation of TPM  
… consistent with 1st order transition with annealed coupling,  
     no transition for quenched coupling,  
     (as in 2d)



Dynamics and metastability
Alternate probe of non-typical metastable states:!
bias trajectories of a system using time-integrated quantities

Let C be a “configuration”.

Consider trajectories C(t) of length t
obs

(sample paths)

Bias probabilities as:

Prob[C(t); s] = Prob[C(t); 0] e
�st

obs

k[C(t)]

Z(s)

[ Ruelle, Gallavotti-Cohen, Evans, Derrida, Lebowitz, Gaspard, Maes, etc ]

k[C(t)]: time-averaged measurement along trajectory



Dynamics and metastability
Bias probabilities as:

Prob[C(t); s] = Prob[C(t); 0] e
�st

obs

k[C(t)]

Z(s)

Effect of field s is to enhance probabilities of

long-lived states with small k

This can lead to “dynamical phase transitions”:

singular responses to field s
[ Garrahan et al 2007, Hedges et al 2009, … ]

System arrives in non-typical metastable states. . .

(cf annealed overlap calculation)



Summary
KCMs (and the TPM) have well-defined metastable states 
(with a range of lifetimes…)!

Random pinning and quenched overlap calculations reveal 
correlations among “mosaic tiles” but (apparently) no phase 
transitions…!

No evidence for surface tension between states in TPM,  
[Relevant for “nucleation” arguments about dynamics,  
could be a scenario for atomistic systems(?)]!

Annealed overlap and s-ensemble calculations probe non-
typical metastable states and do lead to phase transitions in 
KCMs, TPM, …


