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Disks in a Narrow Channel
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@ Packing fraction ¢ = %{2)2.

@ h= Hy — o is the width available to the centres of the disks.

Three ranges for the width:
o Hy < (1++/3/2) 0 — nearest-neighbour contacts only. (NN case).
o (1++/3/2)0 < Hy < 20 — nearest and next-nearest neighbour
contacts possible. (NNN case).
@ Hy > 20 — disks can move past each other. This case cannot be
solved with the transfer matrix approach.
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The NN case case first. Figures for Hy = (14 +/3/2) 0.

i A,

Upper Figure: the jammed state of maximum density. ¢max = 0.8418.

Lower Figure: a jammed state with a defect. A, = 0 — V02 — h? is the
extra length associated with the defect.
Note that it interrupts the zigzag structure.
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Number of Jammed or Inherent States S.(¢) for NN case
Se(@) = In Ny(¢)/N.
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S. S. Ashwin, M. Z. Yamchi and R. K. Bowles , PRL 110, 145701 (2013).
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Philosophy of approach

@ In theoretical physics we can basically solve exactly one-dimensional
models or infinite dimensional models (i.e. mean-field theories).

@ Mean-field theories for glasses and jamming e.g. RFOT and glass
close-packing involve replica symmetry breaking ideas. The
"transitions” , e.g. at ¢g4, ¢k, ¢ccp probably "avoided” transitions in
three dimensions.

@ Narrow channels are effectively one-dimensional systems , so only
"avoided” transitions can be expected for them too.

@ Results from our calculation support an old picture of glassy
behaviour where the growth of the long-relaxation times is associated
with structural changes in the system, e.g. Charles Frank —
icosahedra, Paddy Royall and Williams, Gilles Tarjus etc..

@ In our system we can identify the structural features responsible for
the growing time scale. It is the growth of zig-zag order.
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NN Equation of State

System can be regarded as a set of hard rods whose distance of closest
approach on the x -axis is o(y;, yis1) = [02 — (vi — yi+1)?]/2. The
Helmholtz potential A, is

exp(—pAL) = /\dNN|/h/2de'[L_Z y,,y,+1)]N
i=1

The sum is the total excluded volume of the hard rods. Define the Gibbs
potential via

exp(—ﬁCD):/O d Lexp(—pBAL) exp(—pfL)

f is the force on the confining piston which keeps the N disks in a channel
of length L.

h/2 N
exp(—pfP) = (5fN+1/\dN/ de; exp <_/8fZU(YiaYI+1)> :
i i=1
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NN Transfer Matrix

h/2
An un(y1) = / e Bfo(yy) un(y) dy .
—h/2

As N — oo
Bb — —Nin (A1/BFN?).

A1 is the largest eigenvalue of the integral equation (i.e. transfer matrix).
The equation of state is L = 0®/0f.
The next largest eigenvalue Ay gives information on the correlation length.

1
S inOa/ )

It describes the decay of the zig-zag correlation:
(i Yirs) ~ (=1)* exp(=s/¢),
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NN Equation of state and correlation length &

Numerically exact equation of state and zig-zag correlation length &.
Red lines are the defect based theory which becomes exact at high densities.
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What we want to learn about: Hard Spheres in d = 3

o Fluid — fcc crystal first order transition at ¢. ~ 0.49. No genuine
phase transitions in one-dimensional channels.

@ Onset of slow activated dynamics for hard spheres at ¢ > ¢4 = 0.58.
This is normally “explained” by mode-coupling theory. ¢4 marks the
onset of caging. There is a ¢4 for the NN channel at =~ 0.48.

@ Random close packing density ¢, ~ 0.64. A related feature exists
for the NNN case of the narrow channel.

@ ¢, dependence on compression rate can be understood in the channel.

@ Numerical work for hard spheres becomes difficult for ¢ > 0.60. A
G-point ¢ where timescales diverge at finite pressure has been
suggested (Berthier and Witten). Sc is supposed to vanish at the
Kauzmann density ¢x. The Adam-Gibbs formula is supposed to
relate 7, ~ exp[A/Sc].

@ Do these features arise in narrow channels?
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Understanding the equation of state and & for the NN case

at high densities

At high densities behaviour is controlled by defects. When disks are on
opposite sides of the channel the excluded volume is

S h
0—(172):\/0'2—(/7—21—22)22 0’2—h2+\/?h2(21+22)
oc —

(z; denotes the distance of disk i/ from its confining wall at y = +h/2).
When the disks are on the same side i.e. within a defect, it is

0(1,2) >~ 0+ O [(z1 — 22)?/c]; there is no term linear in z; or z.
For M defects, the total excluded volume is

N—1

2hz
ZU(YHY:H ~ (N— M)\/ﬂ+MU+Z S, S Z
i=1 \/ﬁ ke 2M+1\/0fh2

We can insert this into the expression for exp(—(®) and integrate the z;
from 0 to oo, with negligible error at large density.
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N

1 —Bf[(N—=M)Vo2—h2+Mo] [ V 02— h? 2M

exp(—p®) = WZ Wiy eIl ) Mol W 277,
M

where the combinatorial factor Wy, is

__(N=M)!
Wh = MU (N = 2M)!’

In the thermodynamic limit we can convert the sum over M to an integral
over 0, where M = ON. Then on using steepest descents, at large Gfo

0 ~ 4exp[—[BfA,].
A, =0 — V0?2 — h? is the extra length of the system containing one

defect over that of the state of maximum density.

@ The work done in increasing the length against the applied force is
then AE = fA,.

@ The exponential is of the Boltzmann form exp(—SAE).
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The equation of state is
B 2N
L= N[(1-6)Vo2—h+60]

In the limit ¢ — @max, § — 0, so

Of

2N
I —
L(1 = ¢/pmax)
(cf Salsburg and Wood).
The correlation length

1
£~ 8 exp(BfA,).

Notice that ¢ is basically the distance between defects 1/6 and grows
exponentially rapidly as ¢ — ¢ max-

Summary: the static and thermodynamic properties of the NN model can
be completely determined. Analysis in terms of defects is an excellent
approximation at high densities.
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The Structure Factor S(k, k)

Plots are of log S(ky, k).
Bfo = 3.5, i.e. low density. Bfo = 7.5, a density close to ¢4.
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As the density is increased there is growing " crystalline” as well zig-zag
order. Results for Gfo = 20.
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Onset of Activated Dynamics in the NN model

One can calculate using molecular dynamics the autocorrelation function

(yi O)y,(t)
0= 53 o

e

For ¢ > ¢4 ~ 0.48 (Bowles et al.) the time scales are long and activated.
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Activated Dynamics and Defects

In(r)
N
T
1

T is the time for a single defect to move. Data from MD simulation of
Bowles and Saika-Voivod, PRE 73, 011503 (2006). Red line: transition
state theory i.e. activated dynamics.
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For three dimensional systems it has been suggested that there is perhaps
a growing length scale associated with the growing time scale as ¢ is
approached. Only in mean-field type theories does it truly diverge.
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Transition State Theory For Motion of a Defect

The saddle point which has to be passed over to move the defect from
(say) (3.4) to (4,5) in red. Extra length at the saddle point is

Db =402 2 — 0 —Jo? — 2. Then 1/7 ~ exp(—Bf D).

- 4,
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Transition state theory for creating Pairs of Defects

The saddle point for the creation of a pair of defects requires an extra
length Ac = V402 — h?2 + 0 — 302 — h%. Rate of pair defect creation

1/7p ~ exp(—=BfAc).
(@
(%8%) —
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Diffusion Coefficient for Defects

@ Defects are typically spaced by £ and are created and annihilate in
pairs.

@ When they have moved a distance £ by a diffusion like process they
will typically annihilate.

@ Time to annihilation 7p is therefore ~ D§2, where D is the diffusion
coefficient.

© D~ 71p/€% ~1/7. D is the rate 1/7 for a defect to move a single
place.

@ Transition state estimates of 7p and 7 and the estimates of £ at large
densities are all consistent.
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Jammed states and the Lubachevsky-Stillinger algorithm

The diameter of the disks is increased at a rate v = o ~1do/dt in the
molecular dynamics simulation until the system jams at a packing fraction
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( Ashwin, Yamchi and Bowles, PRL 110, 145701 (2013)).
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@ The slower the compression rate, the higher the final jammed density
¢y

o If there are M defects in the jammed state

b, = Nro?
! 7 4H Mo + (N — M)Vo? — 12
2
o

T Ao+ (1— 0o -]

@ The Kibble-Zurek hypothesis: the system will fall out of equilibrium
when the rate of compression exceeds the rate at which defects can
annihilate, 1/7p.

@ At this point @ is frozen in and is not changed by the last stages of
the LS compression.

e By equating 1/7p(0) to v we obtain the red line for ¢ versus 7.
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Comments on the NN Model versus real glasses

@ The structure factor S(ky, k) of the NN model in the vicinity of ¢4
changes rapidly as a function of ¢.

@ The structure factor of real glasses and hard spheres hardly alters near
¢4. Glasses with very similar structure factors can have very different
dynamics (Berthier and Tarjus).

@ Maybe for them the important changes in the structure causing the
change to activated dynamics shows up only in higher correlation
functions, reflecting bond angles etc..
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The NNN case

(14 1/3/2)(~ 1.8660) 0 < Hy < 20: the NNN case. Figures for
Hy = 1.950 when ¢« =~ 0.8074 and ¢k ~ 0.8053.

(@
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Configurational Entropy for the NNN case

Hy = 1.950, ¢max = 0.8074
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(from S. S. Ashwin and R. K. Bowles, PRL 102, 235701 (2009)).
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NNN equation of state

The transfer matrix for the NNN problem is complicated.
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equation of state associated with

Is there a feature in the
the “kink” in 5.7

0.010

1/(BF o)
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¢

There is an “apparent” divergence of GFo for ¢ = ¢k .~ 0.8053 < Pmax-
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& = 1/In(A1/A3), corresponding to “crystalline” order as in the S(k) of
the hard rod gas as ¢ — Pmax-

& = 1/1In(A1/|A¢|), corresponding to the growth of buckled crystalline
order.
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Comments on the NNN model

(a) The "kink" in Sc,(b) the apparent divergence in the pressure
(force), and (c) the peak in &3 are all close to ¢ = ¢k.

There is no true singularity at ¢k: the “transition” is avoided.

Question: Does behaviour near ¢ mimic what is expected for hard
spheres at ¢cp?

At ¢rcp, the pressure apparently diverges, just as at ¢, and the
jammed states for ¢ > ¢, have increasing amounts of fcc order.

@ The correlation length associated with ¢4 in the NNN model is still
the length scale associated with the growing zig-zag order i.e.

§=1/In(A1/[A2]).
@ There are multiple length scales, e.g. &, &3 and & (and therefore
time) scales in the system.
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