Glasses and Jamming: lessons from hard disks in a narrow channel

Mike Moore

School of Physics and Astronomy, University of Manchester, UK

$$
\text { June } 2014
$$

Co-Author:
Mike Godfrey, University of Manchester

Disks in a Narrow Channel

- Packing fraction $\phi=\frac{N \pi(\sigma / 2)^{2}}{H_{d} L}$.
- $h=H_{d}-\sigma$ is the width available to the centres of the disks.

Three ranges for the width:

- $H_{d}<(1+\sqrt{3} / 2) \sigma$ - nearest-neighbour contacts only. (NN case).
- $(1+\sqrt{3} / 2) \sigma \leq H_{d} \leq 2 \sigma$ - nearest and next-nearest neighbour contacts possible. (NNN case).
- $H_{d}>2 \sigma$-disks can move past each other. This case cannot be solved with the transfer matrix approach.

The NN case case first. Figures for $H_{d}=(1+\sqrt{3} / 2) \sigma$.

$H \leftrightarrow \Delta_{a}$

Upper Figure: the jammed state of maximum density. $\phi_{\max }=0.8418$.
Lower Figure: a jammed state with a defect. $\Delta_{a}=\sigma-\sqrt{\sigma^{2}-h^{2}}$ is the extra length associated with the defect.
Note that it interrupts the zigzag structure.

Number of Jammed or Inherent States $S_{c}(\phi)$ for NN case

$$
S_{c}(\phi)=\ln N_{J}(\phi) / N .
$$

S. S. Ashwin, M. Z. Yamchi and R. K. Bowles, PRL 110, 145701 (2013).

Philosophy of approach

- In theoretical physics we can basically solve exactly one-dimensional models or infinite dimensional models (i.e. mean-field theories).
- Mean-field theories for glasses and jamming e.g. RFOT and glass close-packing involve replica symmetry breaking ideas. The "transitions", e.g. at $\phi_{d}, \phi_{K}, \phi_{G C P}$ probably "avoided" transitions in three dimensions.
- Narrow channels are effectively one-dimensional systems, so only "avoided" transitions can be expected for them too.
- Results from our calculation support an old picture of glassy behaviour where the growth of the long-relaxation times is associated with structural changes in the system, e.g. Charles Frank icosahedra, Paddy Royall and Williams, Gilles Tarjus etc..
- In our system we can identify the structural features responsible for the growing time scale. It is the growth of zig-zag order.

NN Equation of State

System can be regarded as a set of hard rods whose distance of closest approach on the x-axis is $\sigma\left(y_{i}, y_{i+1}\right)=\left[\sigma^{2}-\left(y_{i}-y_{i+1}\right)^{2}\right]^{1 / 2}$. The Helmholtz potential A_{L} is

$$
\exp \left(-\beta A_{L}\right)=\frac{1}{\Lambda^{d N} N!} \int_{-h / 2}^{h / 2} \prod_{i} d y_{i}\left[L-\sum_{i=1}^{N} \sigma\left(y_{i}, y_{i+1}\right)\right]^{N}
$$

The sum is the total excluded volume of the hard rods. Define the Gibbs potential via

$$
\exp (-\beta \Phi)=\int_{0}^{\infty} d L \exp \left(-\beta A_{L}\right) \exp (-\beta f L)
$$

f is the force on the confining piston which keeps the N disks in a channel of length L.

$$
\exp (-\beta \Phi)=\frac{1}{(\beta f)^{N+1} \Lambda^{d N}} \int_{-h / 2}^{h / 2} \prod_{i} d y_{i} \exp \left(-\beta f \sum_{i=1}^{N} \sigma\left(y_{i}, y_{i+1}\right)\right)
$$

NN Transfer Matrix

$$
\lambda_{n} u_{n}\left(y_{1}\right)=\int_{-h / 2}^{h / 2} e^{-\beta f \sigma\left(y_{1}, y\right)} u_{n}(y) d y
$$

As $N \rightarrow \infty$

$$
\beta \Phi \rightarrow-N \ln \left(\lambda_{1} / \beta f \wedge^{2}\right) .
$$

λ_{1} is the largest eigenvalue of the integral equation (i.e. transfer matrix). The equation of state is $L=\partial \Phi / \partial f$.
The next largest eigenvalue λ_{2} gives information on the correlation length.

$$
\xi=\frac{1}{\ln \left(\lambda_{1} /\left|\lambda_{2}\right|\right)}
$$

It describes the decay of the zig-zag correlation:

$$
\left\langle y_{i} y_{i+s}\right\rangle \sim(-1)^{s} \exp (-s / \xi)
$$

NN Equation of state and correlation length ξ

Numerically exact equation of state and zig-zag correlation length ξ.
Red lines are the defect based theory which becomes exact at high densities.

What we want to learn about: Hard Spheres in $d=3$

- Fluid - fcc crystal first order transition at $\phi_{c} \approx 0.49$. No genuine phase transitions in one-dimensional channels.
- Onset of slow activated dynamics for hard spheres at $\phi>\phi_{d}=0.58$. This is normally "explained" by mode-coupling theory. ϕ_{d} marks the onset of caging. There is a ϕ_{d} for the NN channel at ≈ 0.48.
- Random close packing density $\phi_{r c p} \approx 0.64$. A related feature exists for the NNN case of the narrow channel.
- ϕ_{J} dependence on compression rate can be understood in the channel.
- Numerical work for hard spheres becomes difficult for $\phi>0.60$. A G-point ϕ_{G} where timescales diverge at finite pressure has been suggested (Berthier and Witten). S_{c} is supposed to vanish at the Kauzmann density ϕ_{K}. The Adam-Gibbs formula is supposed to relate $\tau_{\alpha} \sim \exp \left[A / S_{c}\right]$.
- Do these features arise in narrow channels?

Understanding the equation of state and ξ for the NN case

 at high densitiesAt high densities behaviour is controlled by defects. When disks are on opposite sides of the channel the excluded volume is

$$
\sigma(1,2)=\sqrt{\sigma^{2}-\left(h-z_{1}-z_{2}\right)^{2}} \simeq \sqrt{\sigma^{2}-h^{2}}+\frac{h}{\sqrt{\sigma^{2}-h^{2}}}\left(z_{1}+z_{2}\right) .
$$

(z_{i} denotes the distance of disk i from its confining wall at $y= \pm h / 2$).
When the disks are on the same side i.e. within a defect, it is $\sigma(1,2) \simeq \sigma+\mathrm{O}\left[\left(z_{1}-z_{2}\right)^{2} / \sigma\right]$; there is no term linear in z_{1} or z_{2}.
For M defects, the total excluded volume is
$\sum_{i=1}^{N-1} \sigma\left(y_{i}, y_{i+1}\right) \simeq(N-M) \sqrt{\sigma^{2}-h^{2}}+M \sigma+\sum_{k=1}^{2 M} \frac{h z_{k}}{\sqrt{\sigma^{2}-h^{2}}}+\sum_{k=2 M+1}^{N} \frac{2 h z_{k}}{\sqrt{\sigma^{2}-h^{2}}}$
We can insert this into the expression for $\exp (-\beta \Phi)$ and integrate the z_{i} from 0 to ∞, with negligible error at large density,
$\exp (-\beta \Phi)=\frac{1}{\left(2 \beta f \Lambda^{2}\right)^{N}} \sum_{M} W_{M} e^{-\beta f\left[(N-M) \sqrt{\sigma^{2}-h^{2}}+M \sigma\right]}\left(\frac{\sqrt{\sigma^{2}-h^{2}}}{\beta f h}\right)^{N} 2^{2 M}$,
where the combinatorial factor W_{M} is

$$
W_{M}=\frac{(N-M)!}{M!(N-2 M)!} .
$$

In the thermodynamic limit we can convert the sum over M to an integral over θ, where $M=\theta N$. Then on using steepest descents, at large $\beta f \sigma$

$$
\theta \simeq 4 \exp \left[-\beta f \Delta_{a}\right]
$$

$\Delta_{a}=\sigma-\sqrt{\sigma^{2}-h^{2}}$ is the extra length of the system containing one defect over that of the state of maximum density.

- The work done in increasing the length against the applied force is then $\Delta E=f \Delta_{a}$.
- The exponential is of the Boltzmann form $\exp (-\beta \Delta E)$.

Good agreement with the simulations of Bowles and Saika-Voivod as $\phi \rightarrow \phi_{\text {max }}$.

The equation of state is

$$
\beta f=\frac{2 N}{L-N\left[(1-\theta) \sqrt{\sigma^{2}-h^{2}}+\theta \sigma\right]} .
$$

In the limit $\phi \rightarrow \phi_{\text {max }}, \theta \rightarrow 0$, so

$$
\beta f \simeq \frac{2 N}{L\left(1-\phi / \phi_{\max }\right)}
$$

(cf Salsburg and Wood).
The correlation length

$$
\xi \approx \frac{1}{8} \exp \left(\beta f \Delta_{a}\right)
$$

Notice that ξ is basically the distance between defects $1 / \theta$ and grows exponentially rapidly as $\phi \rightarrow \phi_{\text {max }}$.

Summary: the static and thermodynamic properties of the NN model can be completely determined. Analysis in terms of defects is an excellent approximation at high densities.

The Structure Factor $S\left(k_{x}, k_{y}\right)$

Plots are of $\log S\left(k_{x}, k_{y}\right)$. $\beta f \sigma=3.5$, i.e. low density. $\beta f \sigma=7.5$, a density close to ϕ_{d}.

As the density is increased there is growing "crystalline" as well zig-zag order. Results for $\beta f \sigma=20$.

Onset of Activated Dynamics in the NN model

One can calculate using molecular dynamics the autocorrelation function

$$
F(t)=\frac{1}{N} \sum_{i=1}^{N} \frac{\left\langle y_{i}(0) y_{i}(t)\right\rangle}{\left\langle y_{i}^{2}\right\rangle}
$$

For $\phi>\phi_{d} \approx 0.48$ (Bowles et al.) the time scales are long and activated,

Activated Dynamics and Defects

τ is the time for a single defect to move. Data from MD simulation of Bowles and Saika-Voivod, PRE 73, 011503 (2006). Red line: transition state theory i.e. activated dynamics.

For three dimensional systems it has been suggested that there is perhaps a growing length scale associated with the growing time scale as ϕ_{d} is approached. Only in mean-field type theories does it truly diverge.

Transition State Theory For Motion of a Defect

The saddle point which has to be passed over to move the defect from (say) $(3,4)$ to $(4,5)$ in red. Extra length at the saddle point is $\Delta_{b}=\sqrt{4 \sigma^{2}-h^{2}}-\sigma-\sqrt{\sigma^{2}-h^{2}}$. Then $1 / \tau \sim \exp \left(-\beta f \Delta_{b}\right)$.

Transition state theory for creating Pairs of Defects

The saddle point for the creation of a pair of defects requires an extra length $\Delta_{c}=\sqrt{4 \sigma^{2}-h^{2}}+\sigma-3 \sqrt{\sigma^{2}-h^{2}}$. Rate of pair defect creation $1 / \tau_{D} \sim \exp \left(-\beta f \Delta_{c}\right)$.
(a)

(b)

(C)

(d)

Diffusion Coefficient for Defects

- Defects are typically spaced by ξ and are created and annihilate in pairs.
- When they have moved a distance ξ by a diffusion like process they will typically annihilate.
- Time to annihilation τ_{D} is therefore $\sim D \xi^{2}$, where D is the diffusion coefficient.
- $D \sim \tau_{D} / \xi^{2} \sim 1 / \tau$. D is the rate $1 / \tau$ for a defect to move a single place.
- Transition state estimates of τ_{D} and τ and the estimates of ξ at large densities are all consistent.

Jammed states and the Lubachevsky-Stillinger algorithm

The diameter of the disks is increased at a rate $\gamma=\sigma^{-1} d \sigma / d t$ in the molecular dynamics simulation until the system jams at a packing fraction ϕ_{J}.

(Ashwin, Yamchi and Bowles, PRL 110, 145701 (2013)).

- The slower the compression rate, the higher the final jammed density ϕ_{J}.
- If there are M defects in the jammed state

$$
\begin{aligned}
\phi_{J} & =\frac{N \pi \sigma^{2}}{4 H_{d}\left[M \sigma+(N-M) \sqrt{\sigma^{2}-h^{2}}\right]} \\
& =\frac{\pi \sigma^{2}}{4 H_{d}\left[\theta \sigma+(1-\theta) \sqrt{\sigma^{2}-h^{2}}\right]} .
\end{aligned}
$$

- The Kibble-Zurek hypothesis: the system will fall out of equilibrium when the rate of compression exceeds the rate at which defects can annihilate, $1 / \tau_{D}$.
- At this point θ is frozen in and is not changed by the last stages of the LS compression.
- By equating $1 / \tau_{D}(\theta)$ to γ we obtain the red line for ϕ_{J} versus γ.

Comments on the NN Model versus real glasses

- The structure factor $S\left(k_{x}, k_{y}\right)$ of the NN model in the vicinity of ϕ_{d} changes rapidly as a function of ϕ.
- The structure factor of real glasses and hard spheres hardly alters near ϕ_{d}. Glasses with very similar structure factors can have very different dynamics (Berthier and Tarjus).
- Maybe for them the important changes in the structure causing the change to activated dynamics shows up only in higher correlation functions, reflecting bond angles etc..

The NNN case

$(1+\sqrt{3} / 2)(\approx 1.8660) \sigma<H_{d}<2 \sigma$: the NNN case. Figures for $H_{d}=1.95 \sigma$ when $\phi_{\max } \approx 0.8074$ and $\phi_{K} \approx 0.8053$.
(a)

(b)

Configurational Entropy for the NNN case

$H_{d}=1.95 \sigma, \phi_{\max }=0.8074$

(from S. S. Ashwin and R. K. Bowles, PRL 102, 235701 (2009)).

NNN equation of state

The transfer matrix for the NNN problem is complicated.

Is there a feature in the equation of state associated with the "kink" in S_{c} ?

There is an "apparent" divergence of $\beta F \sigma$ for $\phi=\phi_{K} \approx 0.8053 \equiv \phi_{\text {max. }}$

$\xi_{3}=1 / \ln \left(\lambda_{1} / \lambda_{3}\right)$, corresponding to "crystalline" order as in the $S(k)$ of the hard rod gas as $\phi \rightarrow \phi_{\text {max }}$.
$\xi_{c}=1 / \ln \left(\lambda_{1} /\left|\lambda_{c}\right|\right)$, corresponding to the growth of buckled crystalline order.

Comments on the NNN model

- (a) The "kink" in S_{c},(b) the apparent divergence in the pressure (force), and (c) the peak in ξ_{3} are all close to $\phi=\phi_{K}$.
- There is no true singularity at ϕ_{K} : the "transition" is avoided.
- Question: Does behaviour near ϕ_{K} mimic what is expected for hard spheres at $\phi_{\text {rcp }}$?
- At $\phi_{r c p}$, the pressure apparently diverges, just as at ϕ_{K}, and the jammed states for $\phi>\phi_{\text {rcp }}$ have increasing amounts of fcc order.
- The correlation length associated with ϕ_{d} in the NNN model is still the length scale associated with the growing zig-zag order i.e. $\xi=1 / \ln \left(\lambda_{1} /\left|\lambda_{2}\right|\right)$.
- There are multiple length scales, e.g. $\xi_{,} \xi_{3}$ and ξ_{c} (and therefore time) scales in the system.

