Front progression in the East model

Oriane Blondel

LPMA - Paris 7; ENS Paris

Glassy Systems and Constrained Stochastic Dynamics June 9th 2014

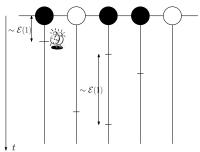
► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).

Ś

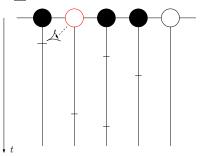
$$\blacktriangleright$$
 Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



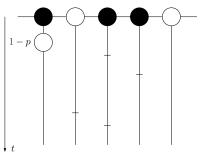
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.

Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



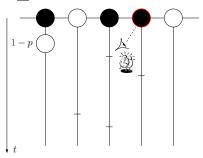
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- Then, if the constraint is satisfied, update x: place a particle at xwith proba p and leave x empty with proba q = 1 - p.

Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



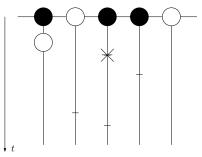
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ▶ Then, if the constraint is satisfied, update x: place a particle at xwith proba p and leave x empty with proba q = 1 - p.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



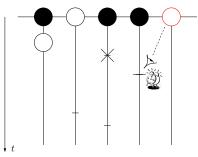
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



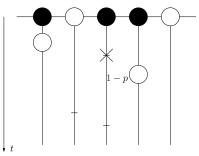
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



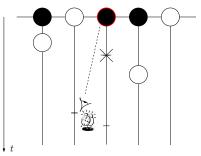
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



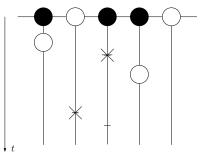
- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

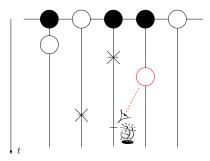
► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).

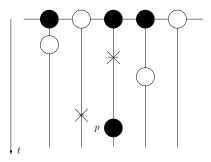
Ś



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

► Constraint: the system can add/remove a particle at x only if the East neighbour (*i.e.* x + 1) is empty ($\omega_{x+1} = 0$).

Ś



- Initial configuration $\omega \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits for an exponential time of parameter 1.
- ► Then, if the constraint is satisfied, update x: place a particle at x with proba p and leave x empty with proba q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- ∢ ≣ ▶

◆ □ ▶ ◆ 合型

э.

Some properties of the East model

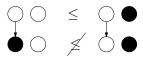
• Oriented: what happens on the left of x does not influence the dynamics in $[x, +\infty)$.

э

글 🖌 🖌 글 🕨

Some properties of the East model

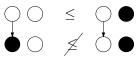
- Oriented: what happens on the left of x does not influence the dynamics in $[x, +\infty)$.
- Non attractive: the (partial) order on configurations is not preserved by the dynamics.



글 🖌 🖌 글 🕨

Some properties of the East model

- ► Oriented: what happens on the left of x does not influence the dynamics in [x, +∞).
- Non attractive: the (partial) order on configurations is not preserved by the dynamics.

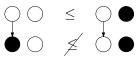


• Equilibrium measure $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}}$ (reversible).

イロト 不得 とくほと 不良 とうほ

Some properties of the East model

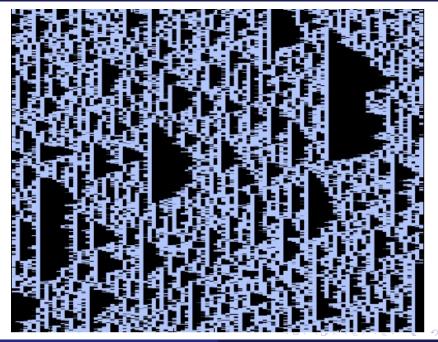
- ► Oriented: what happens on the left of x does not influence the dynamics in [x, +∞).
- Non attractive: the (partial) order on configurations is not preserved by the dynamics.



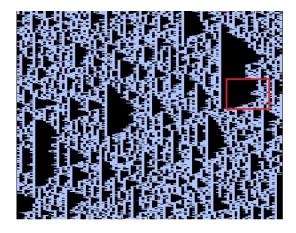
- Equilibrium measure $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}}$ (reversible).
- Positive spectral gap [AD '02] (exponential return to equilibrium, but not uniform).

Recall: $au=\mathrm{gap}^{-1}$ is the smallest quantity s.t. for all $f\in L^2(\mu)$

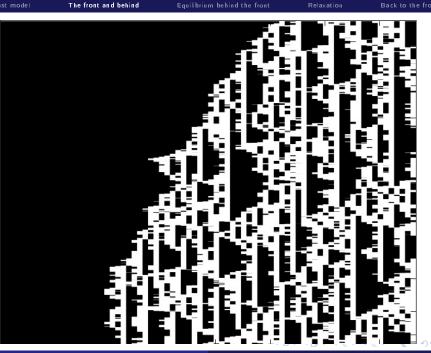
$$\mu\left(\left(\mathbb{E}_{\eta}\left[f(\eta(t))\right]-\mu(f)
ight)^{2}
ight)\leq e^{-2t/ au}\, extsf{Var}_{\mu}(f).$$



æ



イロト イポト イヨト イヨト

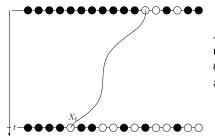


O. Blondel

Front progression

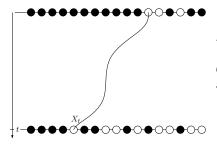
 Start from any configuration with left-most active site at 0.

표 🕨 👘 표



- Start from any configuration with left-most active site at 0.
- Let the East dynamics run for time t.

 X_t : position of the front (*i.e.* the leftmost active site) at time t. $\theta\eta(t)$: configuration seen from the front at time t.



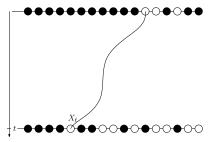
- Start from any configuration with left-most active site at 0.
- Let the East dynamics run for time t.

 X_t : position of the front (*i.e.* the leftmost active site) at time t. $\theta\eta(t)$: configuration seen from the front

 $\theta\eta(t)$: configuration seen from the front at time t.

Questions

• Long-time behaviour of X_t ?



- Start from any configuration with left-most active site at 0.
- Let the East dynamics run for time t.

 X_t : position of the front (*i.e.* the leftmost active site) at time t. $\theta\eta(t)$: configuration seen from the front at time t.

Questions

- Long-time behaviour of X_t ?
- What does the front see? Invariant measure for (θη(t))_{t≥0}? Convergence of (θη(t))_{t≥0}?

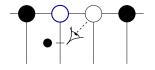
Transitions for the front

N.B.: Only transitions on the front or on its left change its position.

< ∃ >

< D > < P >

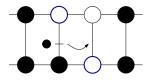
N.B.: Only transitions on the front or on its left change its position.



Ring on the front + constraint satisfied + \bullet

⊒ ⊳

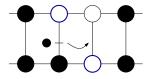
N.B.: Only transitions on the front or on its left change its position.



Ring on the front + constraint satisfied + \bullet

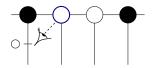
 $egin{array}{rcl} X_t & o & X_t+1 \ heta(\eta(t)) & o & {
m delete} \ {
m the} \ {
m left-most} \ {
m zero} \ {
m and} \end{array}$ translate to the left

N.B.: Only transitions on the front or on its left change its position.



Ring on the front + constraint satisfied $+ \bullet$

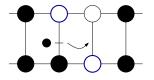
 $egin{array}{rcl} X_t & o & X_t+1 \ heta(\eta(t)) & o & {
m delete} \ {
m the} \ {
m left-most} \ {
m zero} \ {
m and} \end{array}$ translate to the left



Ring on the left of the front (constraint automatically satisfied) $+ \circ$

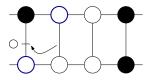
Transitions for the front

N.B.: Only transitions on the front or on its left change its position.



Ring on the front + constraint satisfied + \bullet

 $egin{array}{rcl} X_t & o & X_t+1 \ heta(\eta(t)) & o & {
m delete} \ {
m the} \ {
m left-most} \ {
m zero} \ {
m and} \end{array}$ translate to the left



Ring on the left of the front (constraint automatically satisfied) $+ \circ$

 $egin{array}{rcl} X_t & o & X_t-1 \ heta(\eta(t)) & o & {
m add} \ {
m a \ zero \ to \ the \ left \ and \ trans-} \end{array}$ late to the right.

The East model	The front and behind	Equilibrium behind the front	Relaxation	Back to the front
Results				

Theorem

• [B. '12] There exists v < 0 such that for every initial η as above

$$rac{X_t}{t} \underset{t o \infty}{\longrightarrow} v$$
 in probability.

• [B. '12] The process seen from the front has a unique invariant measure ν and

$$\theta\eta(t) \Longrightarrow \nu$$
 in distribution.

Theorem

• [B. '12] There exists v < 0 such that for every initial η as above

$$\frac{X_t}{t} \xrightarrow[t \to \infty]{} v$$
 in probability.

[Ganguly, Lubetzky, Martinelli '13] + a.s. convergence + normal fluctuations.

• [B. '12] The process seen from the front has a unique invariant measure ν and

$$\theta\eta(t) \Longrightarrow \nu$$
 in distribution.

[Ganguly, Lubetzky, Martinelli '13] + stretched exp. convergence in TV.

- E - N

Theorem

• [B. '12] There exists v < 0 such that for every initial η as above

$$rac{X_t}{t} \xrightarrow[t \to \infty]{} v$$
 in probability.

[Ganguly, Lubetzky, Martinelli '13] + a.s. convergence + normal fluctuations.

• [B. '12] The process seen from the front has a unique invariant measure ν and

$$\theta\eta(t) \Longrightarrow \nu$$
 in distribution.

[Ganguly, Lubetzky, Martinelli '13] + stretched exp. convergence in TV.

N.B.: $v = -(1 - p) + p\nu(1 - \omega_1)$.

《曰》 《國》 《臣》 《臣》

Facts:

- \blacktriangleright ν is NOT equal to μ (correlations close to the front induced by the translations).
- [B. '12] ν exponentially close to μ far from the front.

프 🖌 🛪 프 🕨

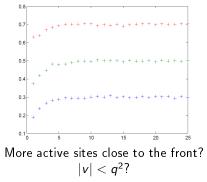
4 D b 4 A b

э.

Facts:

- \blacktriangleright ν is NOT equal to μ (correlations close to the front induced by the translations).
- [B. '12] ν exponentially close to μ far from the front.

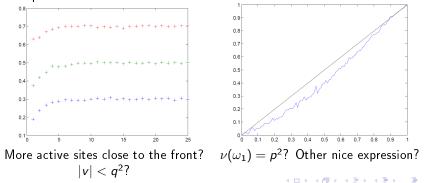
More questions:



Facts:

- \blacktriangleright ν is NOT equal to μ (correlations close to the front induced by the translations).
- [B. '12] ν exponentially close to μ far from the front.

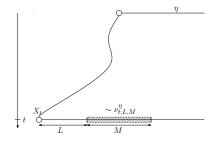
More questions:

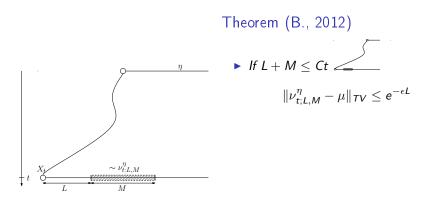


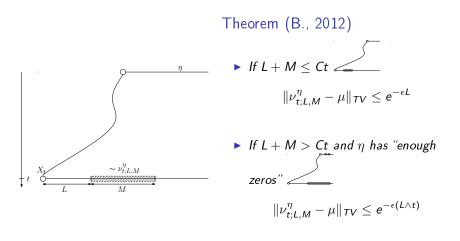
< ∃→

◆ □ ▶ ◆ 合型

æ





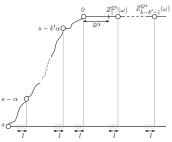


э

Return to equilibrium behind the front

Two steps:

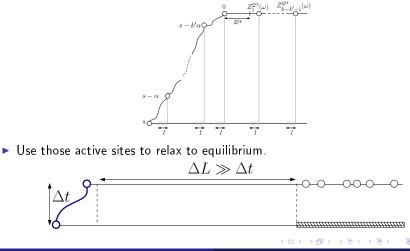
• Guarantee that at all times there are "many" active sites behind the front.



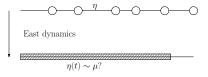
Return to equilibrium behind the front

Two steps:

► Guarantee that at all times there are "many" active sites behind the front.



New problem:

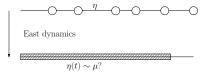


ヘロト ヘアト ヘヨト

- ∢ ≣ ▶

æ

New problem:



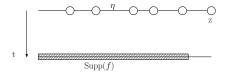
▶ [Cancrini-Martinelli-Schonmann-Toninelli '10] If f has support in $[0, x_+]$ and $\eta_z = 0$ with $z > x_+$

$$|\mathbb{E}_\eta\left[f(\eta(t))
ight]-\mu(f)|\leq \sqrt{Var(f)}\mathcal{K}(p)^ze^{-t/ au}$$
 where $\mathcal{K}(p)=1/(p\wedge(1-p))>1.$

,

New problem:

۱



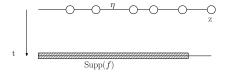
▶ [Cancrini-Martinelli-Schonmann-Toninelli '10] If f has support in $[0, x_+]$ and $\eta_z = 0$ with $z > x_+$

$$|\mathbb{E}_\eta\left[f(\eta(t))
ight]-\mu(f)|\leq \sqrt{Var(f)} \mathcal{K}(p)^z e^{-t/ au}$$
 where $\mathcal{K}(p)=1/(p\wedge(1-p))>1.$

,

.⊒...>

New problem:



► [Cancrini-Martinelli-Schonmann-Toninelli '10] If f has support in $[0, x_+]$ and $\eta_z = 0$ with $z > x_+$

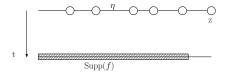
$$|\mathbb{E}_{\eta}[f(\eta(t))] - \mu(f)| \leq \sqrt{Var(f)}K(p)^{z}e^{-t/\tau},$$

where $K(p) = 1/(p \wedge (1-p)) > 1$.

Works well as long as $t \gg z$.

.⊒...>

New problem:



► [Cancrini-Martinelli-Schonmann-Toninelli '10] If f has support in $[0, x_+]$ and $\eta_z = 0$ with $z > x_+$

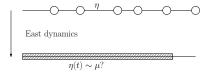
$$|\mathbb{E}_{\eta}[f(\eta(t))] - \mu(f)| \leq \sqrt{Var(f)}K(p)^{z}e^{-t/\tau},$$

where $K(p) = 1/(p \wedge (1-p)) > 1$.

Works well as long as $t \gg z$. Does not take advantage of the many zeros.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 >

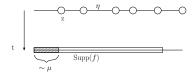


Proposition (B. '12)

f bounded with support in \mathbb{N} , $\eta_z = 0$.

$$\left|\mathbb{E}_{\eta}\left[f(\eta(t))-\mu_{\{0,\ldots,z-1\}}(f)(\eta(t))\right]\right|\leq \sqrt{2}\|f\|_{\infty}\mathcal{K}(p)^{z}e^{-t/\tau}.$$

.⊒...>



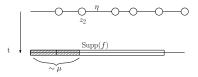
Proposition (B. '12)

f bounded with support in \mathbb{N} , $\eta_z = 0$.

$$\mathbb{E}_{\eta}\left[f(\eta(t))-\mu_{\{0,\ldots,z-1\}}(f)(\eta(t))\right]\right|\leq \sqrt{2}\|f\|_{\infty}\mathcal{K}(p)^{z}e^{-t/\tau}.$$

.⊒...>

Relaxation on large sets



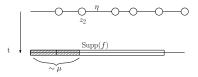
Proposition (B. '12)

f bounded with support in \mathbb{N} , $\eta_z = 0$, $\eta_{z_2} = 0$, $z < z_2$.

$$\left|\mathbb{E}_{\eta}\left[f(\eta(t)) - \mu_{\{0,\dots,z_{2}-1\}}(f)(\eta(t))\right]\right| \leq \sqrt{2} \|f\|_{\infty} \left[K(p)^{z} + K(p)^{z-z_{2}}\right] e^{-t/\tau}.$$

⊒ ⊳

Relaxation on large sets



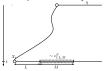
Proposition (B. '12)

f bounded with support in \mathbb{N} , $\eta_z = 0$, $\eta_{z_2} = 0$, $z < z_2$.

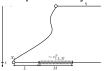
$$\left|\mathbb{E}_{\eta}\left[f(\eta(t)) - \mu_{\{0,...,z_2-1\}}(f)(\eta(t))\right]\right| \leq \sqrt{2} \|f\|_{\infty} \left[K(p)^{z} + K(p)^{z-z_2}\right] e^{-t/\tau}.$$

Works well if max distance between active sites $\ll t$.

Recall: The configuration seen from the front at time t starting from η , $\theta\eta(t)$, is exponentially close to μ in total variation distance.



Recall: The configuration seen from the front at time t starting from η , $\theta\eta(t)$, is exponentially close to μ in total variation distance.



Consequence: let η, σ with left-most active site in 0. We can find (η_t, σ_t) random configurations such that:

- $\blacktriangleright \eta_t \stackrel{(d)}{=} \theta \eta(t),$
- $\blacktriangleright \ \sigma_t \stackrel{(d)}{=} \theta \sigma(t),$
- with probability exponentially close to 1, $\eta_t = \sigma_t$ far from the front.

Goal: starting from η, σ with left-most active site at 0, build a coupling (η_t, σ_t) between $\theta\eta(t)$ and $\theta\sigma(t)$ such that for all $L \in \mathbb{N}$, $P(\eta_t = \sigma_t \text{ on } [0, L]) \xrightarrow[t \to \infty]{} 1$. Ingredients:

- ▶ With the previous theorem, coupling far from the front OK.
- The part close to the front is finite.

-∢ ≣ ▶

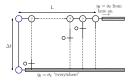
Conclusion: coupling

Goal: starting from η, σ with left-most active site at 0, build a coupling (η_t, σ_t) between $\theta\eta(t)$ and $\theta\sigma(t)$ such that for all $L \in \mathbb{N}$, $P(\eta_t = \sigma_t \text{ on } [0, L]) \longrightarrow 1$. Ingredients:

- With the previous theorem, coupling far from the front OK.
- The part close to the front is finite.

Basic strategy (see [GLM '13] for a more clever one):

Find a good event with positive probability.



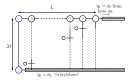
Conclusion: coupling

Goal: starting from η, σ with left-most active site at 0, build a coupling (η_t, σ_t) between $\theta\eta(t)$ and $\theta\sigma(t)$ such that for all $L \in \mathbb{N}$, $P(\eta_t = \sigma_t \text{ on } [0, L]) \xrightarrow[t \to \infty]{} 1$. Ingredients:

- ▶ With the previous theorem, coupling far from the front OK.
- The part close to the front is finite.

Basic strategy (see [GLM '13] for a more clever one):

Find a good event with positive probability.



▶ Try many times. "When one tries continuously, one ends up succeeding..."

Ξ.

< □ > < 圖 > < 圖 > < 图 >

Thank you for your attention!

æ

・ロト ・聞き ・ 国を ・ 国を

Thank you for your attention!

Les devises Shadok

EN ESSAYANT CONTINUELLEMENT ON FINIT PAR RÉUSSIR. DONC: PLUS GA RATE, PLUS ON A DE CHANCES QUE GA MARCHE.