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Motivation

Large deviations in time-integrated quantities

Can be thought of as steady states generated by effective
interaction

Two-body? Many-body? Range?

Dependence on strength of bias?

Relevant e.g. for stable glassy states from activity bias,
systems under steady shear

Work so far mainly on one-body problems (Evans, Baule, Simha,

Chetrite, Touchette) or extreme bias (Popkov, Schütz, Simon)

Study effective interactions for East model

. . . with bias towards large activity

. . . across range of biases

Hierarchy of responses, mirrors aging dynamics
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East model & timescale hierarchy

Chain of N spins, ni = 1 up, ni = 0 down

Facilitated spins: up-spin to left

Facilitated spins flip up with rate c, down with rate 1− c
Up-spin concentration c = 1/(1 + eβ)

Hierarchy of timescales: to relax up-spin at distance `,
energy barrier α` = dlog2 `e, timescale τ` ∼ eβα` ∼ c−α`

Path entropy matters once ` ∼ 1/c, timescale
τ1/c = τ0 ∼ eβ

2/(2 ln 2)

For larger `, τ` ∼ c`τ0 from ≈ independent events on length
scale 1/c
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East model with activity bias

Activity K = nr. of spin flips over time tobs

Biased ensemble of trajectories [C(t)]
Prob[C(t), s] ∝ Prob[C(t), 0]e−sK/〈e−sK〉0
s < 0 favours large activity

s > 0 gives inactive state

Dynamical free energy e−NtobsψK(s) = 〈e−sK〉0
ψK(s) has kink at s = 0

Dynamical phase transition there, bimodal distribution of K
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Analogy with equilibrium statistical mechanics

Equilibrium:

Bias configurations by factor ehM

Gibbs free energy

Space-time:

Bias trajectories by factor e−sK

Dynamical free energy
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Activity vs escape rate bias

Dynamical free energy is largest eigenvalue of deformed
master operator WK(s) (Spohn Lebowitz)

WK(s) = W but with all off-diagonal elements mult. by e−s

So esWK(s) = W with all diagonal elements mult. by es

Diagonal elements are (negative) escape rates −r(C)

r(C) =
∑
i

ri, ri = (1− c)ni−1ni + cni−1(1− ni)

So esWK(s) = W − r(C)(es − 1) on diagonals

Deformed master operator for ensemble biased w.r.t.
integrated escape rate R[C(t)] =

∫ tobs
0 dt r(C(t))

Trajectory weights Prob[C(t), ν] ∝ Prob[C(t), 0]eνR

Here ν = 1− es, free energies related by ψR(ν) = esψK(s)
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Auxiliary master operator & effective interaction

Biased trajectories reach a steady state away from transients
near t = 0 and t = tobs

Steady state dynamics is governed by auxiliary master
operator (e.g. Simon, Jack PS)

Obtained from deformed (biased) operator by multiplying
transition rates à la Metropolis, by e[∆V (C)−∆V (C′)]/2 (Evans)

Steady state Ps(C) ∝ e−β
∑

i ni−∆V (C)

∆V (C) is effective interaction

Can in principle be got from uC = e−∆V (C)/2 = leading left
eigenvector of deformed master operator

P Sollich & R Jack East model with biased activity



Intro Response Lin resp Variational Summary

Observables

To understand the effects of bias ν will use:

mean escape rate r(ν) = 〈R〉ν/(Ntobs) = −ψ′R(ν)

susceptibility χR(ν) = r′(ν) = −ψ′′R(ν),
also gives variance of R

spatial correlations C(x) = 〈δniδni+x〉ν ,
at equilibrium C(x) = c(1− c)δx,0
domain size distribution p(d),
for domains defined as 10 . . . 001 . . .
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Range of ∆V ?

p(d) useful probe of interaction range

Exponential in equilibrium: p(d) = c(1− c)d−1

Can show: if ∆V has finite range, p(d) remains exponential
for d > interaction range

Will find that at any ν > 0, p(d) decays faster than
exponential

So ∆V must have infinite range

May be related to question of whether effective potentials are
”Gibbsian”
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Numerical methods

To sample biased ensemble numerically, can use transition
path sampling (N = 32 . . . 64)

Alternatively diagonalize deformed master operator exactly to
find ψR(ν) and ∆V (N = 14)

Checks for finite size effects

convergence to large tobs results in TPS
comparison of N = 12 vs N = 14 for exact method
check that typical domain sizes < N
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Mean escape rate, density, susceptibility
c=0.1
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Susceptibility and linear response regime

Susceptibility χR(ν) grows for ν → 0

Have (proportionality factor is 1/(Ntobs))

χR(ν) ∝ 〈R2〉ν − 〈R〉2ν =
∑
ij

∫ tobs

0
dt dt′〈δri(t) δrj(t′)〉ν

For ν → 0, correlation 〈δri(t)δrj(t′)〉0 decays on timescale of
order τ0

This gives dominant c-dependence of χR(ν)

Linear response up to ν ' r(0)/χR(0) ∼ τ−1
0

Smallest of a hierarchy of scales for ν
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Quasiequilibrium

Some degrees of freedom can remain quasiequilibrated

Formally, some probability ratios Ps(C)/Ps(C′) stay as for
ν = 0, and ∆V (C)−∆V (C′) remains small

E.g. if spin i is facilitated, typical lifetime of facilitating spin
i− 1 is ∼ τ0 � 1/c ⇒ spin i can flip many times

Effect of ν on these local flips small if ν � 1

So probability ratio of configurations
C = . . . 0 . . . 010 . . .
C′= . . . 0 . . . 011 . . .

is as in equilibrium

For correlations get 〈ni−1ni〉ν ≈ 〈ni−1〉νc
. . . and for mean escape rate r(ν) = 2c(1− c)ρ(ν)
where ρ = up-spin density

Each up-spin contributes ≈ 2c to escape rate
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Spatial correlations
c=0.1
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Up spins repel each other, corresponding nearest-neighbour peak
But relatively weak effects
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Domain size distribution
c=0.1
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Large domains suppressed as ν grows

Eventually get peak at emergent lengthscale d∗

Quasiequilibrium: p(1) ≈ c, ok
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Scaling for c→ 0
ν = c2
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Consider small c limit with ν = cb (here b = 2)

Peak becomes sharper: p(d) for d < d∗ shrinks

Consider linear response next to understand this
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Effective interaction

By linear response theory can relate effects of small ν to
equilibrium correlations

For effective interaction find ∆VC = −2νRC +O(ν2)

Here the propensity is

RC ≡
∑
j

∫ ∞
0
dt 〈δrj(t)〉C

Mean change in escape rate when starting in configuration C
Still need to understand how RC depends on C (2N numbers)

But useful for intuition
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Propensity differences

C

C′

d = 3

m = 8ℓ = 5

×

If αd < αm−d, αl then C relaxes to C′ on timescale τd

Main contribution to propensity difference from site ×
Facilitating up-spin has lifetime τd, so RC −RC′ ≈ 2cτd

Hence ∆VC′ −∆VC ≈ 4νcτd

Depends strongly on d (for d = 1 get O(1) difference),
e.g. ∼ νc−b for d = 1 + 2b

Configurations are favoured for having more spins,
but far apart (large d)
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Domain size distribution

With same arguments can estimate linear response of p(d):

p(d)

p0(d)
' 1 +A1ν +O(ν2), d = 1

p(d)

p0(d)
' 1 +Adν/c

αd−1 +O(ν2), 2 ≤ d . 1/c

p(d)

p0(d)
' 1−Adντ0c

2d(cd− 1) +O(ν2), d & 1/c

Suppression of very large domains: reduction in propensity from
down-spins in interior of domain significant
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Hierarchy of responses

Generalization of quasiequilibrium argument for ν � 1

Consider ν � cb−1

Domains of sizes d ≤ 2b weakly affected by ν
(relative linear response correction is � 1)

So p(d) = O(c) for d ≤ 2b

Larger d: relative response large, expect p(d) = O(1)
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Revisit earlier results
ν = c2
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ν = c2 � c = cb−1 with b = 2

So expect p(d) = O(c) for d ≤ 2b = 4

Larger domains have finite probability
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Plateau regions

Consider ν between two scales, cb � ν � cb−1

p(d) = O(c) for d ≤ 2b as before

Larger domains can have p(d) = O(1)

System can maximize its escape rate by making most (all?)
domains of size d = 2b + 1

So should get density ρ = 1/(2b + 1)

E.g. ρ = 1/3 for c� ν � 1

Numerical results consistent with this
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Summary of hierarchy
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Close similarity to hierarchical density evolution during aging

Entropy vanishing in plateaux so non-monotonic in ν?
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Variational approach

Escape rate bias acts only on diagonal elements of W so does
not destroy detailed balance

Can determine dynamical free energy ψR(ν) variationally

Choose tractable classes of effective interactions

Interactions of blocks of B spins: maximal range B − 1,
up to B-body
Bias on p(d): interaction of 1’s separated by string of 0’s
Bias on p(f, e): same with domains defined as string of 1’s
followed by string of 0’s

d = 3 d = 5d = 3

(f, e) = (2, 2)(1, 2) (1, 4)
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Free energy and mean escape rate
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Free energy plotted as ratio with linear baseline −f0 = νr(0)

All approximations decent for larger ν but become worse as ν
decreases

p(f, e) model best
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Domain size distributions
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Where do variational approaches fail?

C′
2

C′
1 ×

×

C1

C2

×

×

(a) (b)

C1 has longer-lived ”superspin” than C2 so is favoured

p(d) model cannot represent this; p(f, e) can, and captures
quasiequilbrium by p(f + 1, e) ≈ cp(f, e+ 1)

But p(f, e) model fails similarly at next level up
(all lengthscales doubled)

Block model will fail once preferred domain size > B − 1
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Summary & outlook

In linear response, have found general link between effective
interaction and propensity

For East model specifically, hierarchical structure of response

Similar to aging case

Conjecture for simple ordered structure of system in plateau
regions of ν, non-monotonic entropy

Variational approaches can be useful but need physical insight

Timescale separation leads to weak interactions on short
lengthscales, may be helpful in other contexts
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