Large deviations of the dynamical activity in the East model: analysing structure in biased trajectories

Peter Sollich, Robert L Jack

Disordered Systems Group, King's College London; Physics, Bath

J. Phys. A, 47:015003, 2014

University of London

Motivation

- Large deviations in time-integrated quantities
- Can be thought of as steady states generated by effective interaction
- Two-body? Many-body? Range?
- Dependence on strength of bias?
- Relevant e.g. for stable glassy states from activity bias, systems under steady shear
- Work so far mainly on one-body problems (Evans, Baule, Simha, Chetrite, Touchette) or extreme bias (Popkov, Schütz, Simon)
- Study effective interactions for East model
- ... with bias towards large activity
- ... across range of biases
- Hierarchy of responses, mirrors aging dynamics

Outline

1 Timescales, activity vs escape rate bias, observables

- 2 Response to bias: overview
- 3 Linear response theory
- 4 Variational approaches
- 5 Summary & outlook

Outline

1 Timescales, activity vs escape rate bias, observables

- 2 Response to bias: overview
- 3 Linear response theory
- 4 Variational approaches
- 5 Summary & outlook

East model & timescale hierarchy

- Chain of N spins, $n_i = 1$ up, $n_i = 0$ down
- Facilitated spins: up-spin to left
- Facilitated spins flip up with rate c, down with rate 1-c
- Up-spin concentration $c = 1/(1 + e^{\beta})$
- Hierarchy of timescales: to relax up-spin at distance ℓ , energy barrier $\alpha_{\ell} = \lceil \log_2 \ell \rceil$, timescale $\tau_{\ell} \sim e^{\beta \alpha_{\ell}} \sim c^{-\alpha_{\ell}}$
- Path entropy matters once $\ell \sim 1/c$, timescale $\tau_{1/c} = \tau_0 \sim {\rm e}^{\beta^2/(2\ln 2)}$
- For larger $\ell,\,\tau_\ell\sim c\ell\tau_0$ from \approx independent events on length scale 1/c

Intro Response Lin resp Variational Summary

East model with activity bias

- Activity K = nr. of spin flips over time t_{obs}
- Biased ensemble of trajectories [C(t)] $\operatorname{Prob}[C(t), s] \propto \operatorname{Prob}[C(t), 0] e^{-sK} / \langle e^{-sK} \rangle_0$
- s < 0 favours large activity
- s > 0 gives inactive state
- Dynamical free energy $e^{-Nt_{obs}\psi_K(s)} = \langle e^{-sK} \rangle_0$
- $\psi_K(s)$ has kink at s=0
- $\bullet\,$ Dynamical phase transition there, bimodal distribution of K

Analogy with equilibrium statistical mechanics

Equilibrium:

- Bias configurations by factor e^{hM}
- Gibbs free energy

Space-time:

- Bias trajectories by factor e^{-sK}
- Dynamical free energy

Activity vs escape rate bias

- Dynamical free energy is largest eigenvalue of deformed master operator $\mathbb{W}_K(s)$ (Spohn Lebowitz)
- $\mathbb{W}_K(s) = \mathbb{W}$ but with all off-diagonal elements mult. by e^{-s}
- So $e^s \mathbb{W}_K(s) = \mathbb{W}$ with all diagonal elements mult. by e^s
- $\bullet\,$ Diagonal elements are (negative) escape rates $-r(\mathcal{C})$

$$r(\mathcal{C}) = \sum_{i} r_{i}, \qquad r_{i} = (1-c)n_{i-1}n_{i} + cn_{i-1}(1-n_{i})$$

- So $e^s W_K(s) = W r(\mathcal{C})(e^s 1)$ on diagonals
- Deformed master operator for ensemble biased w.r.t. integrated escape rate $R[\mathcal{C}(t)] = \int_0^{t_{\rm obs}} dt \, r(\mathcal{C}(t))$
- Trajectory weights $\operatorname{Prob}[\mathcal{C}(t),\nu] \propto \operatorname{Prob}[\mathcal{C}(t),0] \mathrm{e}^{\nu R}$
- Here $\nu = 1 e^s$, free energies related by $\psi_R(\nu) = e^s \psi_K(s)$

Auxiliary master operator & effective interaction

- Biased trajectories reach a steady state away from transients near t=0 and $t=t_{\rm obs}$
- Steady state dynamics is governed by auxiliary master operator (e.g. Simon, Jack PS)
- Obtained from deformed (biased) operator by multiplying transition rates à la Metropolis, by $e^{[\Delta V(\mathcal{C}) \Delta V(\mathcal{C}')]/2}$ (Evans)
- Steady state $P_{
 m s}(\mathcal{C}) \propto {
 m e}^{-\beta\sum_i n_i \Delta V(\mathcal{C})}$
- $\Delta V(\mathcal{C})$ is effective interaction
- Can in principle be got from $u_C = e^{-\Delta V(C)/2} =$ leading left eigenvector of deformed master operator

Observables

To understand the effects of bias ν will use:

- mean escape rate $r(\nu) = \langle R \rangle_{\nu}/(Nt_{\rm obs}) = -\psi_R'(\nu)$
- susceptibility $\chi_R(\nu) = r'(\nu) = -\psi_R''(\nu)$, also gives variance of R
- spatial correlations $C(x) = \langle \delta n_i \delta n_{i+x} \rangle_{\nu}$, at equilibrium $C(x) = c(1-c)\delta_{x,0}$
- domain size distribution p(d), for domains defined as $10 \dots 001 \dots$

Range of ΔV ?

- p(d) useful probe of interaction range
- Exponential in equilibrium: $p(d) = c(1-c)^{d-1}$
- Can show: if ΔV has finite range, p(d) remains exponential for d> interaction range
- Will find that at any $\nu > 0$, p(d) decays faster than exponential
- So ΔV must have infinite range
- May be related to question of whether effective potentials are "Gibbsian"

Outline

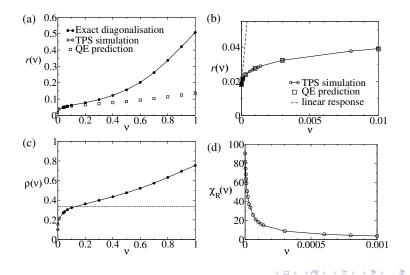
- Timescales, activity vs escape rate bias, observables
- 2 Response to bias: overview
- 3 Linear response theory
- 4 Variational approaches
- 5 Summary & outlook

Numerical methods

- To sample biased ensemble numerically, can use transition path sampling (N = 32...64)
- Alternatively diagonalize deformed master operator exactly to find $\psi_R(\nu)$ and ΔV (N = 14)
- Checks for finite size effects
 - convergence to large $t_{\rm obs}$ results in TPS
 - comparison of N = 12 vs N = 14 for exact method
 - check that typical domain sizes $< {\cal N}$

Intro Response Lin resp Variational Summary

Mean escape rate, density, susceptibility c=0.1



P Sollich & R Jack East model with biased activity

Susceptibility and linear response regime

- Susceptibility $\chi_R(\nu)$ grows for $\nu \to 0$
- Have (proportionality factor is $1/(Nt_{\rm obs})$)

$$\chi_R(\nu) \propto \langle R^2 \rangle_{\nu} - \langle R \rangle_{\nu}^2 = \sum_{ij} \int_0^{t_{\rm obs}} dt \, dt' \langle \delta r_i(t) \, \delta r_j(t') \rangle_{\nu}$$

- For $\nu \to 0$, correlation $\langle \delta r_i(t) \delta r_j(t') \rangle_0$ decays on timescale of order τ_0
- This gives dominant c-dependence of $\chi_R(\nu)$
- Linear response up to $\nu \simeq r(0)/\chi_R(0) \sim \tau_0^{-1}$
- Smallest of a hierarchy of scales for ν

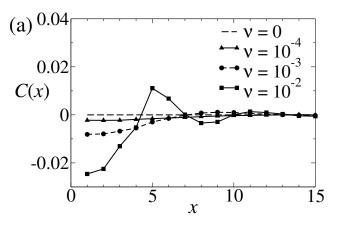
Quasiequilibrium

- Some degrees of freedom can remain quasiequilibrated
- Formally, some probability ratios $P_{\rm s}(\mathcal{C})/P_{\rm s}(\mathcal{C}')$ stay as for $\nu=0,$ and $\Delta V(\mathcal{C})-\Delta V(\mathcal{C}')$ remains small
- E.g. if spin i is facilitated, typical lifetime of facilitating spin i-1 is $\sim \tau_0 \gg 1/c \Rightarrow$ spin i can flip many times
- Effect of ν on these local flips small if $\nu \ll 1$
- So probability ratio of configurations $\begin{aligned} \mathcal{C} &= \dots 0 \dots 010 \dots \\ \mathcal{C}' &= \dots 0 \dots 011 \dots \end{aligned}$

is as in equilibrium

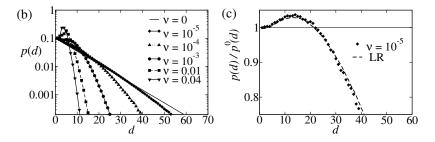
- For correlations get $\langle n_{i-1}n_i \rangle_{\nu} \approx \langle n_{i-1} \rangle_{\nu} c$
- ... and for mean escape rate $r(\nu) = 2c(1-c)\rho(\nu)$ where $\rho = up$ -spin density
- Each up-spin contributes $\approx 2c$ to escape rate

$\underset{c=0.1}{\text{Spatial correlations}}$



Up spins repel each other, corresponding nearest-neighbour peak But relatively weak effects

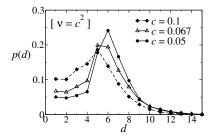
Domain size distribution c=0.1



- Large domains suppressed as ν grows
- Eventually get peak at emergent lengthscale d*
- Quasiequilibrium: $p(1) \approx c$, ok

Intro Response Lin resp Variational Summary

Scaling for $c \to 0$ $\nu = c^2$



- Consider small c limit with $\nu = c^b$ (here b = 2)
- Peak becomes sharper: p(d) for $d < d^*$ shrinks
- Consider linear response next to understand this

Outline

- Timescales, activity vs escape rate bias, observables
- 2 Response to bias: overview
- 3 Linear response theory
- 4 Variational approaches
- 5 Summary & outlook

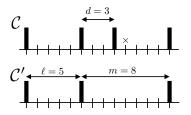
Effective interaction

- By linear response theory can relate effects of small ν to equilibrium correlations
- For effective interaction find $\Delta V_{\mathcal{C}} = -2\nu R_{\mathcal{C}} + O(\nu^2)$
- Here the propensity is

$$R_{\mathcal{C}} \equiv \sum_{j} \int_{0}^{\infty} dt \, \langle \delta r_{j}(t) \rangle_{\mathcal{C}}$$

- $\bullet\,$ Mean change in escape rate when starting in configuration ${\cal C}\,$
- Still need to understand how $R_{\mathcal{C}}$ depends on \mathcal{C} (2^N numbers)
- But useful for intuition

Propensity differences



- If $\alpha_d < \alpha_{m-d}, \alpha_l$ then $\mathcal C$ relaxes to $\mathcal C'$ on timescale τ_d
- Main contribution to propensity difference from site ×
- Facilitating up-spin has lifetime τ_d , so $R_{\mathcal{C}} R_{\mathcal{C}'} \approx 2c\tau_d$
- Hence $\Delta V_{\mathcal{C}'} \Delta V_{\mathcal{C}} \approx 4\nu c\tau_d$
- Depends strongly on d (for d = 1 get O(1) difference), e.g. $\sim \nu c^{-b}$ for $d = 1 + 2^b$
- Configurations are favoured for having more spins, but far apart (large d)

Domain size distribution

With same arguments can estimate linear response of p(d):

$$\frac{p(d)}{p^{0}(d)} \simeq 1 + A_{1}\nu + O(\nu^{2}), \qquad d = 1$$

$$\frac{p(d)}{p^{0}(d)} \simeq 1 + A_{d}\nu/c^{\alpha_{d}-1} + O(\nu^{2}), \qquad 2 \le d \le 1/c$$

$$\frac{p(d)}{p^{0}(d)} \simeq 1 - A_{d}\nu\tau_{0}c^{2}d(cd-1) + O(\nu^{2}), \qquad d \ge 1/c$$

Suppression of very large domains: reduction in propensity from down-spins in interior of domain significant

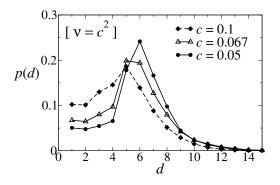
Hierarchy of responses

- $\bullet\,$ Generalization of quasiequilibrium argument for $\nu\ll 1$
- Consider $\nu \ll c^{b-1}$
- Domains of sizes $d \leq 2^b$ weakly affected by ν (relative linear response correction is $\ll 1$)

• So
$$p(d) = O(c)$$
 for $d \le 2^{b}$

• Larger d: relative response large, expect p(d) = O(1)

Revisit earlier results $\nu = c^2$



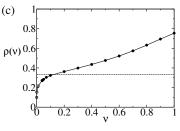
- $\bullet \ \nu = c^2 \ll c = c^{b-1} \text{ with } b = 2$
- \bullet So expect p(d)=O(c) for $d\leq 2^b=4$
- Larger domains have finite probability

Plateau regions

- \bullet Consider ν between two scales, $c^b \ll \nu \ll c^{b-1}$
- p(d) = O(c) for $d \leq 2^b$ as before
- Larger domains can have p(d) = O(1)
- System can maximize its escape rate by making most (all?) domains of size $d = 2^b + 1$
- So should get density $\rho=1/(2^b+1)$

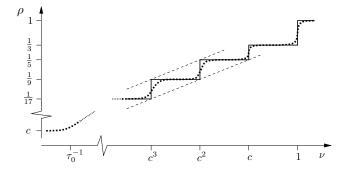
• E.g.
$$\rho=1/3$$
 for $c\ll\nu\ll 1$

• Numerical results consistent with this



P Sollich & R Jack East model with biased activity

Summary of hierarchy



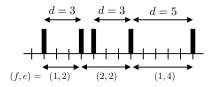
- Close similarity to hierarchical density evolution during aging
- Entropy vanishing in plateaux so non-monotonic in ν ?

Outline

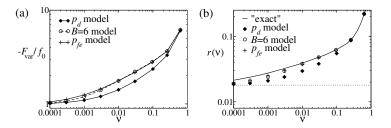
- Timescales, activity vs escape rate bias, observables
- 2 Response to bias: overview
- 3 Linear response theory
- 4 Variational approaches
- 5 Summary & outlook

Variational approach

- Escape rate bias acts only on diagonal elements of W so does not destroy detailed balance
- Can determine dynamical free energy $\psi_R(\nu)$ variationally
- Choose tractable classes of effective interactions
 - Interactions of blocks of B spins: maximal range $B-1, \mbox{ up to } B\mbox{-body}$
 - Bias on p(d): interaction of 1's separated by string of 0's
 - Bias on p(f, e): same with domains defined as string of 1's followed by string of 0's

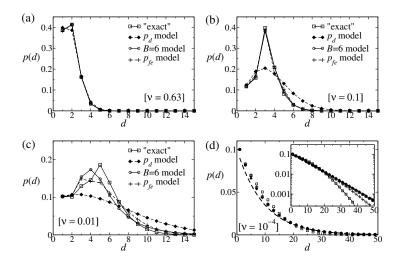


Free energy and mean escape rate c=0.1

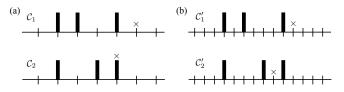


- Free energy plotted as ratio with linear baseline $-f_0 = \nu r(0)$
- All approximations decent for larger ν but become worse as ν decreases
- $\bullet \ p(f,e) \ {\rm model} \ {\rm best}$

Domain size distributions c=0.1



Where do variational approaches fail?



- \mathcal{C}_1 has longer-lived "superspin" than \mathcal{C}_2 so is favoured
- p(d) model cannot represent this; p(f,e) can, and captures quasiequilbrium by $p(f+1,e)\approx cp(f,e+1)$
- But p(f, e) model fails similarly at next level up (all lengthscales doubled)
- Block model will fail once preferred domain size > B 1

Outline

- Timescales, activity vs escape rate bias, observables
- 2 Response to bias: overview
- 3 Linear response theory
- 4 Variational approaches
- 5 Summary & outlook

Summary & outlook

- In linear response, have found general link between effective interaction and propensity
- For East model specifically, hierarchical structure of response
- Similar to aging case
- Conjecture for simple ordered structure of system in plateau regions of ν , non-monotonic entropy
- Variational approaches can be useful but need physical insight
- Timescale separation leads to weak interactions on short lengthscales, may be helpful in other contexts