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• In search of an effective theory and an appropriate 
order parameter for the glass transition: dynamic or 
thermodynamic?

•Contrasting the dynamical facilitation and the 
landscape approaches. Enlarging the phase diagram.

•Mean-field dynamical transitions.

•Beyond mean-field: Constraints and pinning fields.
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There are hints that glass formation involves
✴some form of universality
✴some form of collective/cooperative 

behavior
Yet, of an unusual kind...

➡Search for effective theories of glass-forming 
liquids

➡What is the appropriate local order 
parameter? A thermodynamic/structural or a 
purely kinetic approach?

The glass transition: 
What makes the problem interesting...



Some theoretical ingredients

•Frustration: The energy of a system cannot be minimized by 
simultaneously minimizing all the local interactions.

=> Multiplicity of low-energy (‶metastable″) states.

•Thermal activation in a rugged (free) energy landscape: 
Presence of an exponentially large number of metastable states that 
may trap the system. 

=> Relaxation slowdown is associated with thermally 
      activated escape from metastable states. 

•Dynamical facilitation: Mobility triggers mobility in nearby regions.
=> Spatial correlations in the dynamics.

Different ways to incorporate the ingredients in a general 
theory!



Local order parameter(s)

•Local structural order: Observables characterizing the locally 
preferred molecular arrangement in the liquid, if present (e.g., related 
to bond-orientational order).

=> e.g., poly-tetrahedral/icosahedral in metallic glasses.

• Similarity or ‶overlap″ between configurations: Measures of the 
similarity between two equilibrium configurations of the liquid.

High overlap => in the same state (‶localized″)
Low overlap => in different states (‶delocalized″)

•Local mobility field: Mobility or activity defined by following the 
dynamics in small volumes of space over short periods of time.

=> Easier at low T where mobility is localized and scarce.



Which is the best starting point 
to describe glassy liquids?



Weak constraints from comparison to 
experimental data...

With the help of (unavoidable ?) adjustable parameters, 
several theories fit the same data equally well

log(viscosity or time) vs Tg/T

Configurational entropy/RFOT 
(Wolynes et al.)

Facilitation (Garrahan-Chandler) Frustration (Kivelson-GT)



Focus on:

Dynamical facilitation & KCM’s 
(rarefaction of dynamical paths)

 vs
 free-energy landscape approach
(rarefaction of metastable states) 

Contrasting the predictions  by 
enlarging the parameter space



The configurational entropy/landscape 
scenario as the mean-field theory of 

glass-forming liquids

• Exponentially large number of metastable states 
that may trap the liquid (configurational entropy) 
between two temperatures, a dynamical transition 
at Td and a “random first-order transition” at TK.

• Order parameter = overlap between equilibrium 
configurations => build a Landau functional 
through the replica formalism.

• Found in mean-field spin glasses, in mean-field-like 
approximations of liquids (HNC, DFT), in the hard-sphere fluid in 
the limit of infinite spatial dimension [Kurchan-Zamponi-Parisi, 2013-14]

• Role of fluctuations in finite dimensions ????????????
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FIG. 1: Appearance of an exponentially large number of
meta-stable configurations and the possibility for a system to
realize these configurations gives rise to the configurational
entropy. The latter serves as the driving force for the struc-
ture change in the glassy phase. The energy cost to match the
boundaries between the different density configurations gives
rise to the energy barriers. The fluctuations of the configura-
tional entropy give rise to the energy barrier fluctuations.

dependence of the static barrier fluctuations and of the
exponent β for stretched exponential relaxation as well
as the variation of the dielectric response with frequency
and temperature.

This paper is organized as follows. In the next sec-
tion we introduce the replica effective potential formal-
ism to analyze barrier fluctuations in glassforming liq-
uids. We motivate the approach by starting from a den-
sity functional approach to liquids and using an equi-
librium replica theory to derive the mean field theory as
starting point of our calculation. Next we analyze fluctu-
ations of the configurational entropy in bulk, summarize
the effective potential approach of Ref.19 and the instan-
ton calculation that yields the mean barrier F ‡. Finally
we demonstrate how higher moments of the barrier dis-
tribution can be derived within the same formalism. At
the end of the section we present our results for physical
observables. The paper is concluded with a summarizing
section.

II. THE REPLICA EFFECTIVE POTENTIAL
FORMALISM

A. Motivation and cloned replica approach

We start our description of glassy systems from the
point of view that there exists a density functional, φ [ρ],
that describes a supercooled liquid undergoing a mean
field glass transition. Initially, such an approach was
used in Ref.27 where it was shown that it allows one to
describe the emergence of a metastable amorphous solid,
Fig. 2. Following the classical approach to freezing into
ordered crystalline states28, the density was assumed to

be ρ (r) =
(

α
π

)3/2 ∑
i e−α(r−ri)

2

. Here, α determines the

Lindemann length, α−1/2 over which particles are local-
ized. In distinction to crystallization, the mean positions,
ri, of an amorphous solid were taken to be those of a ran-
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FIG. 2: The typical energy landscape in the structural glassy
phase as a function of density (left panel) and the effective
potential, which is used to describe the transition between
the nonergodic glassy states and the ergodic liquid state (right
panel).

dom hard sphere packing29, instead of the periodic crys-
tal lattice positions. The free energy of this amorphous
solid was shown to have a global minimum at α = 0 and
a local minimum for finite α. If α ! V −2/3 → 0, the
particles are delocalized and the system in an ergodic
liquid state with homogeneous density ρ0 = N

V . Finite
α corresponds to a frozen amorphous solid i.e. a glassy
state. For T > TK the amorphous solid is metastable
with respect to the liquid, and higher in free energy by
TSc. It is of course always metastable with respect to the
crystalline solid. Essentially the same mean field physics
can be described in terms of a formally more precise
replica approach, introduced by Monasson30. Here one
determines the partition function in the presence of a bias
configuration ρ̂ (r):

Z [ρ̂] =

∫
Dρe−βφ[ρ]−g

R
ddx(ρ(x)−bρ(x))2 (10)

Here,
∫

Dρ... corresponds to the statistical sum over all
density configurations of the system. The free energy of
a bias configuration is

f [ρ̂] = −T log Z [ρ̂] . (11)

Physically f [ρ̂] can be interpreted as the free energy for
a metastable amorphous configuration of atoms, for ex-
ample with density ρ̂ (x) being a sum over Gaussians dis-
cussed above. In the replica formalism, no specific config-
uration like this needs to be specified in order to perform
the calculation. Rather, the assumption is made that the
probability distribution for metastable configurations is
determined by f [ρ̂] according

P [ρ̂] ∝ exp (−βefff [ρ̂]) (12)

and is characterized by the effective temperature Teff =
β−1

eff ≥ T . This allows one to determine the mean free
energy

F =

∫
Dρ̂f [ρ̂]P [ρ̂] (13)

 [Wolynes, Kirkpatrick, Thirumalai, 80’s + Parisi-Mezard-Franz +many!!!]



The importance of adding fields/constraints...

This is a way to enlarge the phase diagram, possibly generating 
bona fide transitions. 
=> One can check qualitative behavior and universality classes 
without recourse to adjustable parameters.

Non-equilibrium phase diagram T versus s [soft constraint, Elmatad et al., PNAS, 2010]
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We generalize the simplest kinetically constrained model of a glass-

forming liquid by softening kinetic constraints, allowing them to be

violated with a small finite rate. We demonstrate that this model

supports a first-order dynamical (space-time) phase transition, sim-

ilar to those observed with hard constraints. In addition, we find

that the first-order phase boundary in this softened model ends in

a finite-temperature dynamical critical point, which we expect to

be present in natural systems. We discuss links between this crit-

ical point and quantum phase transitions, showing that dynamical

phase transitions in d dimensions map to quantum transitions in the

same dimension, and hence to classical thermodynamic phase tran-

sitions in d + 1 dimensions. We make these links explicit through

exact mappings between master operators, transfer matrices, and

Hamiltonians for quantum spin chains.

glass transition | large deviations

Abbreviations: KCM, kinetically constrained model; FA, Fredrickson-Andersen;

sFA, ‘softened’ FA; QPT, quantum phase transition

Introduction

As a liquid is cooled through its glass transition, it freezes
into an amorphous solid state, known as a glass [1]. The
transition from fluid to solid typically requires only a small
change in temperature and is accompanied by characteris-
tic large fluctuations, known as dynamical heterogeneity [2].
Based on these observations, several theories draw analogies
between the glass transition and phase transitions that oc-
cur in model systems [3, 4, 5, 6]. However, experimental glass
transitions are not thermodynamic phase transitions, since re-
sponses to thermodynamic fields such as temperature or pres-
sure are never observed to diverge. On the other hand, models
of glass-forming liquids have been shown to exhibit a dynam-
ical phase transition, which is controlled not just by temper-
ature, but also by a biasing field that moves the system away
from equilibrium [7, 8, 9, 10, 11, 12]. Here, we demonstrate
the existence of a non-trivial critical point associated with this
transition.

The phase transition that we consider occurs in trajec-
tory space. We bias the system towards an ‘ideal glass’
phase by enhancing the probability of trajectories where par-
ticle motion is slow. The parameter that controls this bias
– the field s – can be varied continuously in computer sim-
ulations. For models of glass-forming liquids, the response
to this change can be large and discontinuous, correspond-
ing to a first-order phase transition. Such transitions between
an ergodic (fluid) state and a non-ergodic (glass) state were
first demonstrated [9] for kinetically-constrained lattice mod-
els (KCMs) [13]. More recently, evidence for such a transition
has been found in the molecular dynamics of an atomistic
model of a supercooled liquid [11].

In KCMs, the transition to the inactive phase takes place
when the biasing field s is infinitesimally small, and this re-
sult is independent of the temperature. However, very gen-
eral arguments based on ergodicity breaking (see, for example,
Refs. [12, 14, 15]) indicate that this transition must disappear

at high temperature in molecular systems, and it is also ex-
pected that transitions in ergodic molecular fluids should take
place at finite s. In this context, the essential difference be-
tween KCMs and molecular systems is that forces constraining
dynamics in the former are infinite (i.e., hard) while those in
the latter are finite (i.e., soft). Infinitely long-lived inactive
metastable states exist in KCMs because the constraints are
hard. The dynamic first-order phase transition detailed in
Refs. [9, 10] coincides with a non-equilibrium biasing that
stabilizes these inactive states. But because constraints in
molecular systems are soft, it is not obvious that this first-
order transition will persist in natural systems. Here, we ad-
dress this issue by considering the effects of softening con-
straints in the simplest of all KCMs – the one-spin facilitated
Fredrickson-Andersen (FA) [16] model.

In this softened FA (sFA) model, we find two main results,
illustrated schematically in Fig 1. Firstly, we prove that the
dynamic phase transition found in the original FA model still
occurs when the constraint forces are finite, but the transition
now takes place at non-zero s. This result means that the
sFA model – a system with finite short-ranged forces of inter-
action, one that exhibits long relaxation times and dynamic
heterogeneity without equilibrium thermodynamic transitions
of mode-coupling theory [5] and random first-order theory [3]
– has a dynamical non-equilibrium glass transition. The so-
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Fig. 1. (a) Generic space-time phase diagram for KCMs [9]. There is a first
order phase boundary that occupies the s = 0 axis, separating an active fluid phase
from an inactive ‘glass’. The critical point s = T = 0 is identified with a filled
circle: no motion takes place in this state, and the approach to this point is charac-
terized by scaling behavior and slow dynamical relaxation [19, 20]. (b) Sketch of
the space-time phase diagram for the softened FA model, under the assumption that
the probability of violating constraints � has an Arrhenius form, as described in the
main text. The first-order phase boundary moves away from the s = 0 axis and
ends in a new finite-temperature critical point, identified with an open circle. The
scaling behavior in the vicinity of this point is analogous to the critical behavior near
liquid-vapor transitions, and is different from the scaling near s = T = 0.
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For instance: In KCM’s (dynamical facilitation), add a source s 
conjugate to the mobility field



The importance of adding fields/constraints...

T versus the concentration of 
randomly pinned particles 

[Cammarota-Biroli, PNAS 2012]
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FIG. 1: Phase diagram for the spherical 3-spin model with spins pinned from an equilibrium configuration. The full
line represents the thermodynamic transition cK(T ) and the dotted lines correspond to dynamical transitions. The

dynamic transition at higher c, cd(T ), is the usual Mode-Coupling transition line found in the study of the
equilibrium dynamics. The other one, called cdf

(T ), that we report for completeness can be only found through the
study of non-equilibrium dynamics, as shown in41. Note that as discussed in the main text, and contrary to the case
of completely random pinned spins, it is possible to continuously connect the liquid and the glassy phase through a

closed path around the final critical point of the cK(T ) line.

coincides with the one found in the dynamical analysis presented in [41].
The secondary minimum, which appears at cd(T ), becomes the global one when:

−
1

2T 2
(c+ (1 − c)q1)

p − (1− c)[log(1− q1) + q1] = 0 . (13)

This equation defines the line of thermodynamic transition cK(T ). As noticed in the previous paragraph, since the
metastable state associated to the initial configuration is statistically similar to all other ones, this means that at
cK(T ) the free energy of the liquid state becomes equal to the one of a given metastable state, i.e. the configurational
entropy is zero. In consequence, the transition at cK is an entropy vanishing transition as the one reached for T → TK .
For c > cK the equilibrium phase of the pinned system is given by the state associated to the initial configuration.
In this regime, there are still other states but they are characterized by a higher free energy. In App. A we present a
more detailed general argument to explain why the equal value of the action at cK(T ) implies sc(c, T ) = 0. In App. C
we directly compute sc(c, T ) by generalizing the Franz and Parisi ε-coupling approach to the case of a system with
pinned particles and confirm that sc(c, T ) ↓ 0 for c ↑ cK(T ).
The complete phase diagram for the p = 3-spin model is shown in Fig. 1. As shown, the RPGT line stops at a
critical point at which the dynamical transitions merge with the static one. At this point the glass transition becomes
continuous, i.e. the difference between the high and low overlap values vanishes. The two lines cd(T ) and cK(T ) have
been obtained by a numerical solution of the corresponding two sets of equations. They had been already shown in
the phase diagram of [9] and [41].

C. Random pinning from completely random configurations

As already stressed before, it is natural to wonder how much the results presented in the previous section depend on
the pinning protocol, in particular what is the difference between pinning from a random versus from an equilibrium
configuration. Our expectation, based on heuristic arguments, was that the difference is substantial9. In this section
we confirm this by repeating the analysis performed above when cN spins are blocked in a completely random
configuration.
In this case the average over the reference configuration Cf is performed over a flat distribution. The computation in
this case requires the simple introduction of n replicas all constrained to have the same (random) spin values on cN
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FIG. 1. Typical Mean Field phase diagram in the T − ε plane for the annealed and the quenched

constructions. Left panel: The annealed construction phase diagram. The central (red) line marks

the first order phase transition between a confined high overlap phase above and an unconfined

phase below. The green line is the line of dynamical (MCT-like) glass transition. The confined

phase is a glass to the left of the brown point where the red line and the green line meet and

it is a liquid to its right. The blue lines are the spinodal lines of the confined (lower curve) and

unconfined (upper curve) phases. In the inset we show the typical isothermal and coexistence

lines in the q − ε plane. From top to bottom we have an isothermal in the single phase region

T > TCr, the critical isothermal T = TCr and a isothermal in the two phase region T < TCr, the

horizontal line corresponds to Maxwell construction. The cyan line is the Widom line: the locus

of points where the potential has an inflection and g3 = 0 and the susceptibility χ4 = d〈p〉/dε has

a maximum. Right panel: Phase diagram of the quenched construction The transition line and

its corresponding spinodal are similar to the annealed case, however here the coupling does not

induces new glass transitions. Glassyness appears at the dynamical glass transition temperature

Td of the unconstrained model (vertical green line). Notice the different scales in the two panels.

The quenched critical point lies at lower temperature and coupling than the annealed one. We

have used here the spherical p-spin model [35] for p = 3 for which the dynamical (MCT) transition

temperature is Td = 0.612 and the Kauzmann transition temperature is Tk = 0.586.

It should be noted the fundamental asymmetry between X0, which is just a random equilib-

rium configuration and the system X which feels an attraction towards X0. The reference

configuration can be considered as a sort of quenched disorder in which the system evolves.
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Similar spirit yet quite different: Adding equilibrium/
thermodynamic constraints induces new phase transitions and 
critical points in the mean-field theory of glass-forming liquids 
and structural glasses (random-first order transition scenario)

Field ε conjugate to the overlap 
versus T 

[Franz-Parisi, PRL 1997]
εc,Tc



Contrasting dynamical-facilitation and 
configurational-entropy scenarios

T

T

0 ε

Tc, εc

Td
MCT

TK
RFOT

I

II

III

LOW

HIGH 
OVERLAP

: First-order transition

: Spinodal(s)

: Terminal critical point

: Dynamical (MCT) singularity

: Thermodynamical RFOT

Tc, εc 

Td

TK

Diagram T vs field ε conjugate to the overlap (sketch from 
mean-field theory): 3 regions of interest I, II, III



Contrasting dynamical-facilitation and 
landscape scenarios

T

Obstacles for a direct comparison:

• Dynamical facilitation and KCM’s have trivial thermodynamics.

• The landscape/configurational-entropy approach is essentially 
formulated at the mean-field level.

=> Introduce a mean-field limit in the dynamical facilitation 
models.

=> Map back KCM’s on models without kinetic constraints and 
with nontrivial static (multi-spin) interactions.

=> Include fluctuations in the landscape approach.



Contrasting ...: Region I near the (mean-
field) dynamical glass transition

T

• Quasi-equilibrium description of the beta-regime near the MCT 
transition (Td): Critical phenomenon can be described as a cubic field 
theory in a random source (RFIM spinodal, dsup=8) for the fluctuations of 
the overlap between configurations [Franz, Parisi and coll., 2011-2013]

• KCM’s on Bethe lattice and regular random graphs [a mean-field limit for 
dynamical facilitation]: The transition has the same character as MCT 
(discontinuous, relations between exponents, etc).

• Yet, the order parameters for the quasi-equilibrium description are very 
different: ‶nonlocal mapping″ [Foini et al, J. Stat. Mech. 2012, Franz-Sellitto, J. 
Stat. Mech., 2013]

• Beyond mean-field: seemingly very different behaviors....

+ Digression on KCM’s and bootstrap percolation on hyperbolic lattices 
[Sausset et al., J. Stat. Phys., 2010]



Contrasting ...: Region II near the terminal 
critical point in a nonzero applied source 

coupled to the overlap

T

T

0 ε

Tc, εc

Td

TK

II

• For the landscape/thermodynamic 
approach: Add fluctuations to the 
mean-field description -> Biroli, 
Cammarota, Tarzia, GT, PRL, 2014  

• For the dynamical-facilitation 
approach: Consider spin models 
with plaquette interactions (duality 
with KCM’s) -> Garrahan, PRE 
2014

Mean-field RFOT-like phase diagram



The overlap between configurations as an 
order parameter: Sketch of formalism (I)

• Liquid (N,V,T): Hamiltonian H[rN], with rN = atomic configuration.
Pick an equilibrium reference configuration r0N and define the 
microscopic overlap between rN  and r0N  as

• Define an overlap field p(x) and its associated effective hamiltonian:

• The correlation functions are generated by the functional W[ε; r0N]:

q̂x[r
N , r0

N ] =
N�

i,j=1

f(|rj − r0
i|)δ(x− rj + r0i

2
)

where f(r) = 0 for r > a with a << atomic diameter

W [�; r0
N ] = − log

�
Dp e−S[p;r0

N ]+
�
x �(x)p(x)

S[p; r0
N ] = − log

�
drN

N !
δ[p− q̂[rN , r0

N ]] e−βH[rN ]



• One is interested in the cumulants of W[ε; r0N], S[p; r0N], etc, when 
averaged over r0N 
=> The reference configuration r0N plays the role of a ‶quenched 
disorder″.

• Goal: To derive an effective theory for the overlap field p(x) => 
approximate form for S[p; r0N] or its cumulants by integrating out 
short-distance fluctuations (through liquid-state theory, general 
Landau-like arguments, etc).

• To generate the cumulants: Introduce replicas raN, a=1,...,n, each 
coupled to a distinct field εa

=> Now, one can define replicated overlap fields pa(x) between raN 
and  r0N and overlap fields qab(x) between raN and  rbN.

Sketch of formalism (II)



• Generically, the effective hamiltonian for the overlap fields pa(x) is 
obtained from

where S[{pa,qab}] is obtained by integrating 
out short-distance fluctuations (through 
liquid-state theory, general Landau-like 
arguments, etc) and at the Landau level 
for pa=qab =Q has the typical form 
illustrated here:

• Crucial: The fields pa  can be critical (near the terminal critical 
point) but never the fields qab due to the external field provided by 
the coupling with the pa’s !!!!!!

Sketch of formalism (III)
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FIG. 7. The annealed potential VA(q) as a function of q for p = 4 and various values of T , in order of decreasing temperatures

from top to bottom. For p = 4 one has Tc = 0.503 and Ts = 0.544. The curves are normalized to have VA(0) = 0.

IV. REAL GLASSES

A. The Model

We have tested the ideas presented in this note for binary fluids. Although we did not perform a systematic study
of the phase transition line, we found evidence for a first order transition in presence of coupling among replicas both
in the annealed and in the quenched case. The model we consider is the following. We take a mixture of soft particle
of different sizes. Half of the particles are of type A, half of type B and the interaction among the particle is given by

H(x) =
∑

i<k

(

σ(i) + σ(k)

|xi − xk|

)12

, (15)

where the radii (σ(i)) depend on the type of particles. This model has been carefully studied studied in the past [7].
It is known that a choice of the radii such that σB/σA = 1.2 strongly inhibits crystallization and the systems goes
into a glassy phase when it is cooled. Using the same conventions of the previous investigators we consider particles
of average diameter 1. More precisely we set

σ3
A + 2(σA + σB)3 + σ3

B

4
= 1. (16)

Due to the simple scaling behavior of the potential, the thermodynamic quantities depend only on the quantity T 4/ρ,
T and ρ being respectively the temperature and the density. For definiteness we have taken ρ = 1.

This is one of the simplest models of glass forming materials and we have chosen it because of its simplicity. The
model as been widely studied especially for this choice of the parameters. It is usual to introduce the quantity Γ ≡ β4.
The glass transition is known to happen around Γ = 1.45 [7]. It has been shown that aging appears below this
temperature, and that the the time dependent correlation and response functions are well in agreement with the
prediction of one step replica symmetry breaking below this temperature [8].

Our simulation are done using a Monte Carlo algorithm, which is easier to deal with than molecular dynamics.
Each particle is shifted by a random amount at each step, and the size of the shift is fixed by the condition that the
average acceptance rate of the proposal change is about .5. Particles are placed in a cubic box with periodic boundary
conditions.

Following the discussion in the introduction, we have introduced two copies x and y of the same system e have
introduced the quantity q defined as

11

Q0

Td>T> TK

e−Srep[{pa}] = exp(−
n�

a=1

S[pa; r0N ]) ∝
� �

ab �=
Dqabe

−S[{pa,qab}]



Evidence from finite-size computer simulations 
=> Landau-like potential with cubic term

Relevance of the 2-state, first-order-like, 
effective description after integrating out 

short-distance fluctuations 

A new method to measure the configurational entropy in supercooled liquids

Ludovic Berthier
Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France

(Dated: July 31, 2013)

We propose a new method to measure the configurational entropy in supercooled liquids, based
on the direct estimate of the free energy cost to localize a system in a single metastable state. We
apply this idea to a simple glass-forming liquid, and show that the temperature dependence of the
configurational entropy can easily be followed over a broad temperature range. This allows a new
test of the Adam-Gibbs relation connecting relation time to configurational entropy. Finally we
discuss the differences with earlier definitions of the configurational entropy.

PACS numbers: 05.10.-a, 05.20.Jj, 64.70.Q-

The configurational entropy or complexity Σ(T ) plays
an important role in the glass transition because it serves
to quantify the temperature evolution of the configura-
tional space which is believed to control thermodynamic
and dynamic properties of liquids approaching the glass
transition.

Experiments and simulations approximate Σ(T ) by
subtracting a ‘vibrational’ contribution to the total en-
tropy of the system. While the latter is well-defined, the
vibrational contribution requires some approximations.
Moreover, the above decomposition often relies in as-
suming that the system typically vibrates around a given
‘state’, a concept that is not well-defined and is assumed
to be equivalent to a local energy minimum (or ‘inherent
structure’).

Here we propose a novel computational method to
measure the configurational entropy which is directly
based on free energy measurements. The idea is to esti-
mate the entropic cost of preventing a system from ex-
ploring distinct metastable states. In cases where it can
be computed analytically, our approach would be exact.

In practice, we measure the free energy V (Q) for two
copies of the system at ’distance’ Q and compute the free
energy difference

Σ = β [V (Qlow) − V (Qhigh)] . (1)

To measure V (Q) we use the method described in
Ref. [1], where we showed that Qhigh can only be de-
fined for temperatures T < Tc, where Tc is a second
order critical point.

In Fig. 1 (top) we show how Σ(T ) is measured in prac-
tice. When T > Tc ≈ 10, the complexity does not exist,
while it has a finite value (of order 1) for lower tempera-
tures.

We show the temperature evolution of Σ(T ) in the
bottom panel of Fig. 1 which demonstrates the abrupt
emergence of the complexity near the onset temperature.
When temperature is decreased, Σ(T ) does not change
very much but its temperature evolution becomes steeper
as temperature is decreased further.

We would need data at lower temperatures to extrap-
olate its behaviour, but the data are qualitatively similar
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FIG. 1: Top: Definition of the complexity. Bottom: Temper-
ature dependence of the complexity.

to earlier determinations of the configurational entropy
in other models.

One important difference with previous estimates is
that the complexity is not defined at high temperatures,
while it is smooth function of T in previous approaches.

Finally, having masured Σ we can test the Adam-Gibbs
relation,

log τα = log τ0 +
A

TΣ(T )
. (2)

The results are presented in Fig. 2. As expected, the

Effective ‶annealed″ potential (left, Berthier, PRE 2013) and its derivative (right, 
Parisi-Soane, PRE 2014) for a glass-forming liquid model plotted versus the overlap 
at different temperatures for a small system size

3

procedure in a similar problem). Indeed, in the umbrella sam-
pling approach, one needs to compute p(q) to obtain the over-
lap potential [W (q) =− 1

N logP(q)], which is much costlier in
time and less precise than only recording the central point of
the distribution and performing a line integral with it.

We run simulations at 0.3 ≤ ! ≤ 0.57 at 21 values of q
evenly spaced between 0 and 1. In addition, we consider five
(100 for N = 500 and 50 for N = 250 for 0.54≤ ! ≤ 0.57) re-
alizations of each experiment, and results presented here are
averaged over all these samples. The set up is the follow-
ing. We start with a thermalization of each of the two repli-
cas. We consider thermalizations of "0 elementary MC steps
(EMCSs)[39], defining EMCS as N attempts at ordinary indi-
vidual random particle moves. Only once the initial config-
urations are thermalized, we run the tethered simulations at
fixed q using the weight (11). In order to ensure the thermal-
ization, we consider two alternative experiments. On the one
hand, we move sequentially from q = 1 to 0 in steps of 0.05,
and on the other, we consider the reverse procedure. At each
value of q we remain "int = 0.1"0 EMCS, and using the latter
0.05"0 EMCS in the analysis. We completely avoid hystere-
sis effects for ! ≤ 0.57. We have systematically checked that
both cycles are compatible, but the results presented in this
paper correspond only to the q-descending cycle.

The generalization of this formalism to the presence of an
external field # coupling the two replicas is straightforward.
Indeed, the probability distribution density for q at a given #
is just the free one, multiplied by a constant exponential factor,
i.e., P#(q) $ exp [−(NW (q)− #q)]. Furthermore [17],

log P̂#(q2)− logP̂#(q1) = N
∫ q2

q1
dq

[

〈#̂〉q− #
]

, (13)

with 〈#̂〉q = Ŵ ′(q) given by (9). Thus, one just needs to sim-
ulate the # = 0 case, and the results for # > 0 are obtained
by displacing 〈#̂〉q precisely by # . We display in the main
panel of Fig. 1 the replica field W ′(q) obtained at different
values of ! . In the thermodynamically stable region Ŵ ′(q) is
monotonically growing from zero, and the equilibrium state
(the maximum of P# ) is given by the single root Ŵ ′(q) = # .
The situation is rather different when metastability begins.
In finite systems, the phase separation has the direct conse-
quence of the apparition of spinoidals in Ŵ ′(q) corresponding
to the low and high overlap regions. The coexistence condi-
tion P#co(q low) = P#co(qhigh), as can be directly obtained from
(13), is equivalent to a Maxwell construction. We show the
inset of Fig. 1 the phase diagram obtained with this process.

As was discussed before, the first order transition line is
expected to extend within the liquid phase in the presence
of an external field but terminates in a critical point. This
point cannot be detected by the Maxwell construction so we
propose a different approach. Besides, the coexistence line
can be extended beyond the critical point by what is known
as the Widom line [27] that is characterized by W ′′′(q) = 0.
With this idea in mind, we look for the # value that makes the
distribution P#(q) balanced. In particular, we seek the # that
causes the skewness to vanish. In the metastability region, the
#(!) line obtained with this method (see Fig. 3) is numerically
indistinguishable from the one computed using the Maxwell
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FIG. 1: (Color online) Derivative of the replica potential, Ŵ ′(q) ob-
tained as (9) at different packing fractions. Inset: Phase diagram
(#,!) extracted from the Maxwell construction for different system
sizes. The errors are computed using the jackknife method.

construction (as we would expect in the infinite volume limit).
Indeed, it finds the field at which the probability distribution
function has two peaks of equal probability. Once it is under-
stood that this line contains the second order transition point,
we can try to infer its location by seeking universal behav-
ior. At least in mean field, this point should belong to the
d = 3 Ising model universality class [14], which means that
its critical exponents are known [28], thus making easier the
computation of !c.

We start with the static susceptibility % = N[
〈

q2〉−〈q〉2].
As usual in the vicinity of a second order transition, it should
scale as % $ |! −!c|−& , in this case with & = 1.2372. As can
be seen in Fig. 2 (top) we find a collapse of the data at dif-
ferent system sizes below !c using this scaling (at least for
N ≥ 124). We obtain !Nc from an extrapolation to a second
order polynomial (see Table I for the fitting details). These
values agree with the area of ! where the kurtosis of the dis-
tribution,

' =
〈m〉4

〈m2〉2 with m= q−〈q〉 , (14)

intersects for increasing N, as shown in Fig. 2 (bottom). In-
deed, the kurtosis is related to the Binder cumulant [29], by
B = 1−'/3. Like this cumulant, the kurtosis is universal at
the critical point, and its value is known ' = 1.6043(10) [30].
Within the precision, we can say that the data are compatible
with both statements.

The quantity #(!) carries similar information as the con-
figurational entropy and should go to zero at the Kauzmann
transition (see [31] for a recent similar approach). Indeed, in
the quenched case, Scon $ q # near the transition. The ap-
proach followed here has the advantage that it is ambiguity
free [32]. The extrapolation at !K should not present problems
in the quenched case (at least in the mean field limit). In the
present annealed case a more careful analysis should be done.
We can try to infer the location of !NK from a second order



• If present, the terminal critical point is in the universality class of 
the RFIM (random field Ising model). Effective (disordered) 
hamiltonian for the overlap fluctuations ϕ(x)=p(x)-pc (up to ϕ4):

h(x) random field (most relevant).Expressions for the parameters

• When one proceeds instead to an ‶annealed calculation″ (just two 
coupled replicas): universality class of pure Ising model (no 
quenched disorder)

[Confirmed via a different method by Franz-Parisi: J. Stat. Mech.,2014]

Results: Universality class
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One can evaluate the effective parameters of the RFIM description 
for specific models: 
The transition exists if the ratio of the effective disorder strength 
to the effective interaction (surface tension) is small enough => 
accounts for long-distance fluctuations. 
From simulations of the 3D RFIM, the critical ratio ≃ 2.3.

=> The Wolynes et al Landau theory for the fragile glass-forming 
liquid o-TP: Ratio ≃ 0.94, the transition seems to survive.

=> The disordered p-spin model with p=3, Ratio ≃ 4.48, no 
transition [cf. also Cammarota et al, PRB 2013]

Results: Existence of a 
critical point in D=3?



The terminal critical point in plaquette spin 
models

Annealed computation (2 coupled replicas) for the 2D triangular 
plaquette spin model (Garrahan, 2014)

Transition in coupled replicas may not imply a finite temperature ideal glass
transition in glass forming systems

Juan P. Garrahan

School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
(Dated: November 25, 2013)

A key open question in the glass transition field is whether a finite temperature thermodynamic
transition to the glass state exists or not. Recent simulations of coupled replicas in atomistic
models have found signatures of a static transition as a function of replica coupling. This can be
viewed as evidence of an associated thermodynamic glass transition in the uncoupled system. We
demonstrate here that a different interpretation is possible. We consider the triangular plaquette
model, an interacting spin system which displays (East model-like) glassy dynamics in the absence
of any static transition. We show that when two replicas are coupled there is a curve of equilibrium
phase transitions, between phases of small and large overlap, in the temperature-coupling plane
(located on the self-dual line of an exact temperature/coupling duality of the system) which ends
at a critical point. Crucially, in the limit of vanishing coupling the finite temperature transition
disappears, and the uncoupled system is in the disordered phase at all temperatures. We discuss
interpretation of atomistic simulations in light of this result.

A series of recent simulation works [1–3] have studied

in some detail the thermodynamic properties of (reason-

ably realistic) glass-forming systems when two copies (or

replicas) of the system are coupled. These studies have

produced evidence for an equilibrium transition between

static phases of small and large overlap between the repli-

cas [1–3]. This phase transition seems to be first-order

and the coexistence curve in the temperature (or density,

in the case of hard-spheres) and replica coupling plane

terminates at a critical point [2, 3]. Such a behaviour

of the coupled system is consistent with theoretical pre-

dictions [4–7] from the random first-order transition the-

ory (RFOT) [8–10]. Furthermore, these numerical re-

sults could be interpreted as evidence for the existence

of a thermodynamic transition to the glass state in the

uncoupled system. This is an important issue, since a

central unresolved question in the understanding of the

kinetic phenomenon we term “glass transition” [11–14]

is whether it is caused by an underlying thermodynamic

singularity or not. In particular, it may seem that the

observations of [2, 3] are difficult to reconcile with purely

dynamical approaches such as dynamic facilitation [15].

The purpose of this paper is to show that this is not the

case, and that it is possible to explain the behaviour of

coupled replicas without recourse to a thermodynamic

singularity in the uncoupled system.

Our results are summarised in Fig. 1. The figure shows

the phase diagram in the temperature, T , and replica

coupling, ε, plane for two coupled copies of a specific

glass model, the triangular plaquette model (TPM) [16–

20]. The TPM is one of a class of interacting spin models

which map to kinetically constrained models [17–19], i.e.

that display complex glassy dynamics with simple ther-

modynamics. The dynamics of the TPM in particular is

that of the East model [17–19, 21], the facilitated model

which captures best the phenomenology of glass formers

[22, 23]. Figure 1 shows that the TPM also has a first-
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FIG. 1. Exact phase diagram of two coupled triangular pla-
quette glass models. The temperature, T , and coupling, �, are
in units of the energy constant of the model, J . The full line
is a curve of first-order transitions from a phase with low over-
lap between the replicas to a phase of high overlap between
the replicas. The transition line, T̄ (ε), is on the self-dual
curve of the model (dashed line), and ends at a critical point
(εc/J, Tc/J) = [1, 1/ log (1 +

√
2)]. The phase transition dis-

appears in the limit of vanishing coupling, T̄ (ε → 0) = 0 and
there is no finite T singularity in the uncoupled system.

order transition between static phases of low and high

overlap occuring at a temperature T̄ that depends on

the coupling, T̄ = T̄ (ε). The curve T̄ (ε) terminates at

a critical point (εc/J, Tc/J). Crucially, the coexistence

curve meets the T axis at T = 0, that is, T̄ (ε → 0) = 0,

and the transition vanishes in the absence of coupling.

The upshot is two-fold: (i) from a facilitation perspec-

tive it is indeed possible to account for the static be-

haviour observed in simulations at finite coupling ε; (ii)
the static transition may disappear when the coupling

vanishes, and thus one needs to be carful about extrapo-

lations of finite ε results for interpretations of what occurs
in the uncoupled system.
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Critical endpoint = universality class of the 2D 4-state Potts 
model ≠ 2D Ising model (ν=2/3, α=2/3 vs ν=1, α=0). 
No finite-T transition when ε=0.



Contrasting ...: Region III near the mean-
field static transition (RFOT)

T

• Interesting per se and to compare with the dynamic facilitation 
picture: in the latter, the presence of localized defects destroys 
any finite-T transition in the absence of constraints.

• Difficulty for deriving an effective theory for the overlap with a 
reference configuration: All overlap fields are now affected by 
the presence of static point-to-set correlations (that precisely 
diverge in mean-field at the RFOT TK) => more tricky to integrate 
out the qab’s for fixed pa’s.

• Work in progress: indication for a RFIM with a renormalized 
effective external field (configurational entropy) and 
antiferromagnetic interactions on top of the ferromagnetic ones.



24

Conclusion

• Contrasting the dynamical facilitation and the landscape 
approaches => Enlarging the phase diagram by applying 
fields/constraints.

• Transitions in the enlarged diagram give info on the 
structure of the configurations and metastable states. 
Describable by a 2-state Ising theory or not? Consequences 
for the nature of the defects?

• Need more systematic investigation in the dynamical-
facilitation approach: quenched case, 3D, more models...

• More easily testable in simulations of liquid models.


