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Viscosity shoots up

Angell plot
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Relaxation can take for ever

<5p(k, t)5,0(—k, O)>
PoSk

0.8

Figure 9 Evolution of the self-intermediate scattering function for A-type atoms for

the same supercooked Lennard-Jones mixture as in Fig. 6, at ger,, = 7.251,

corresponding to the first peak of the static structure factor of species A (ref. 92), Here 0.8
g is the magnitude of the wave vector. Temperature and time are in units of £,,/k; and
ir,(mi48e,)'"”, mspectively. Temperatures from keftto rightare 5, 4,3, 2,1, 0.8,

0.6, 0.55, 0.5, 0.475, and 0.468, The self-intermediate scattering function is the 0.4
space Fourier transform of the van Hove function G,(r, £}, which is proportional to the
probability of observing a particle at r+drat time tgiven that the same particle was at

the origin at £ = 0. Note the two-step relaxation behaviour upon decreasing T, 0.2
Molecular dynamics simulations of 1,000 atoms. (Adapted from refs 9 and 92.)

0.0
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Also in colloidal systems (PMMA)

o . Wn[cFQ,T)/SIQ,)]

T(s)
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FIG. 1. Semilogarithmic plots of the dynamic structure fac-
tor [cF(Qm,7)/S(0x)], measured at the main peaks of the
static structure factor, against delay time 1 for suspensions of

Pusey & Van Megen, PRL (1987) collodial spheres (samples A to H, see Table 1). For the “non-
ergodic” samples F, G, H an enlarged scattering volume was
used, leading to a reduced amplitude ¢ (see text). Note (i) ini-
tial rapid and longer-time slow decays and (i) marked diver-
gence of the slow decay time with increasing concentration
(A— H).
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More recent experiments (PMMA)

10 4 — 1.0 4
b
0.8 | ) 087 Y
' %
| 0.6 - |
~ 0.6 T | R‘ 3;
o _ = a
T 041 teemed = 0.4 E
voo m=10 1 a
Py Mffﬂ ces -"b ses =i R=2.68 q&
0.21 saameg 1O ‘ 02 im0 \E’
i | ooom=1 qR=3.42 o
tes m=40 ‘ e m=40 ]
Uqﬂ"""""'_‘ ........ Uﬂ lllllllllll - g
0 2 4 6 8 10 0 z 4 6 8 10
logio[ 7(usec)] logyo[ 7(usec)]

FIG. 3. Intermediate scattering functions versus the loga-
rithm of the delay time 7 for (a) ¢=0.574 and (b) $=0.535 es-
timated from Egs. (16) and (22) using different numbers m of in-
dependent measurements of time-averaged intensities and inten-
sity autocorrelation functions. See Sec. IIIB for details. The
ISF’s shown here and in subsequent figures are normalized so
that f(g,0)=1.
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Local heterogenous picture

Fig. 2. A typical trajectory for 100 min for & =
0.56. Particles spent most of their time con-
fined in cages formed by their neighbors and
moved significant distances only during quick,
rare cage rearrangements. The particle shown
took —500 s to shift position. The particle was
tracked in 3D; the 2D projection is shown.

Weeks, Crocker, Levitt,
Schofield & Weitz, Science (2000)
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Heterogeneities

Taken from E. Weeks, 3D
confocal microscope

imaging (at 56% volume
fraction)
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Heterogeneities

R. Colin & B. Abou (2013), pNIPAM, 32 °C
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What is a glass?

 Viscosity increase
» Slow relaxation and dynamical arrest
 Dynamical heterogeneities and intermittency
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Energy landscape

Transition
BESII'I states
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Debenedetti & Stillinger, Nature (2001)
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Energy landscape
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Statics based theories

» Cooperatively rearranging regions, adam & Gibbs, 1965
e Free volume, cohen & Turnbull, 1970

* Energy landscape, coldstein, 1969
e Random First Order, Kirkpatrick, Thirumalai & Wolynes, 1989

° Repllcas, Mézard & Parisi, 1999, based on an idea from Monasson
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Landscape

For N interacting particles,

/ = /d3r1 L dPrye PR

ZV r; —r;)

Z#J
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Landscape

Alternatively

7 — /Dpe—ﬁ]‘"[ﬂ]

FId =T [ plupt 5 [ Ve =)ol
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Landscape

Alternatively

7 — /Dpe—ﬁ]‘"[ﬂ]

FId =T [ plup+ 5 [ Ve =)l

energy
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Density Functional Theory

Search (and find) the minima of

1 / /
Fld =7 [ pup 5 [ p@Vie =)t
Many local minima. No a priori knowledge.

Kaur & Das, Phys. Rev. Lett. (2001)
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Replicas

Use a copy of the system to help the original
system polarize into a metastable state.

Z(m, B) = / [ Dpae?Ta Fa=hes Tap pawle=ron(x")
a=1

e =small

w(ry —rb) =attractive potential between replicas
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Replicas

Phase transition with
((p1(r) = po)(p2(r’) = po)) = (op1(r)dp2(x’))

as the order parameter when temperature Is
decreased.

ldentified as the glass transition.
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Replicas

Phase transition with

((p1(r) — po)(p2(r’) — po)) = (dp1(r)dp2(r’))
lim lim lim (5p'® (k)5p® (—k))

m—1e—0 N—o0

as the order parameter when temperature Is
decreased.

ldentified as the glass transition.
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Dynamics based theories

Colloidal particles dispersed in a solution:

« Positions r,(¢), j=1,...,N

e Density PO rather than tTe volume fraction ¢ = poémﬁ
 Temperature 1 = 3
e Pairwise interactions V(r)=¢(1—7r/0)"O(c —r)

with r=r; —r;
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Dynamics based theories

Overdamped Langevin dynamics

dz
a :—ZVV r; —r;)+ V2T¢,

Wkl
(€2 ()E () = 6°P5;0(t — 1)

Peoqlire}]| = 7 le=B2 ;5 V(ri—r;)

Fluctuation-Dissipation theorem holds.
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Or systems with constrained
dynamics

This Is a phenomenological description, not a theory.

Lattice models with dynamical evolution rules such
that

The stationary equilibrium distribution is that of an ideal
gas (flat energy landscape);

Dynamics are extremely slow.
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Playing with dynamics

Markov process with states C
Transition rates that fulfill the detailed balance
condition wrt

Peq (C) —

Z

W(C — C")Pey(C) = W(C" — C)Poq(C")
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Choice 1:

De Dominicis, Orland, Lainée, J. Physique Lett. (1985)

Rates

W(C — C') = Pug(C')

Relaxation rate is -1 (highly degenerate).
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Choice 2:

Koper & Hilhorst, Physica A (1989)

Rates
W(C — C') = Be'VeVer = e~ 2HCE)=H(C)

o—BH(C) o+BH(C)  4+BH(C)

Eigenvalues:

0=X <’ Z(—pB) < Xy <P2Z(—p) < ...
Beware: mean-field dynamics.
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Langevin version

Particle in a potential landscape:

dr _ v

= INT(t
Ly T YI'n(t)
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Langevin version

Particle in a potential landscape:

dr _ v

= INT(t
Ly T YI'n(t)

Multiplicative noise: 7 — ()

dZEIt() dV ’}//
— = — -l — 4+ /21 'n(t
Ly . S v 29Tn(t)
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Langevin version

Particle in a potential landscape:

dr _ v

= INT(t
Ly T YI'n(t)

Multiplicative noise: v — v(z) =™V
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Kramers escape problem

Particle in a potential landscape:
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Brownian dynamics:
glassy vs trivial

Langevin dynamics of interacting colloids
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Towards the Dean-Kawasaki
equation

Individual particle dynamics

dz
= NV (- ) + V2TE,

J 71

U. of Warwick, June 2014 FvW, Model B dynamics



Collective dynamics

Particle dynamics is given. Collective density

modes
N

p(x,t) = > 6 (x —r;(1))

j=1

must evolve according to

Orp=—V -jr(x,1)

Dean, JPA (1995)
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Collective dynamics

Physics

j; = Fick’s law + force density + noise
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Collective dynamics

Physics

j; = Fick’s law + force density + noise

—T'Vp
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Collective dynamics

Physics

j; = Fick’s law + force density + noise

/

p(x,t) / (=ViV(x—y))p(y,t)
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Collective dynamics

Physics

j; = Fick’s law + force density + noise

i
v 2T p€(x, 1)

(€% (x, €7 (%, 1)) = 67761 (x —x)o(t — ')
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Collective dynamics

Summary
j — —,OV— 4 \/ﬁ£ Dean, JPA (1995)
FDT-fulfilling form of the noise ensures that

A

Poq =
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Collective dynamics

Langevin dynamics

Jr = —pV— + /2T p&

Density evolves in the landscape F|p|with
diffusion constant p

dx
Thinkof Vg = —V'(z) + /29T¢

U. of Warwick, June 2014 FvW, Model B dynamics



THE dynamics based theory

Mode-coupling theory leading to an
approximate evolution equation for

C(k,?) = (0p(k,?)0p(—k,0))
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THE dynamics based theory

Mode-coupling theory leading to an
approximate evolution equation for

C(k,?) = (0p(k,?)0p(—k,0))

=: g B fi

Wolfgang Gotze

Complex Dynamics of
Glass-Forming Liquids

U. of Warwick, Ju A Mode-coupling theory




THE dynamics based theory

Mode-coupling theory leading to an
approximate evolution equation for

C(k,?) = (0p(k,?)0p(—k,0))

U. of Warwick, Ju




THE dynamics based theory

Structure factor

C(k,t) = (0p(k,t)dp(—k,0)), C(k,0) = poSk

t
0,C +Tk*(1+ BpoV(k))C = —/ drM (k,t — 7)C(k, T)
0
Mori-Zwanzig projection techniques

Szamel & Lowen, PRA (1991)
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THE dynamics based theory

Tk? )
at0+_kc_ g;Q/dT/k qcq + k- (k—q)ex— q)

q7 t — T)C(k q, t — T)
x0;C(k, T)

where Sk = (1 — pock) ™!

Szamel & Lowen, PRA (1991)
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MCT's predictions

Introduce the non-ergodicity parameter

_ o Ok, t)
fk:tliglo POk

Solve for the long-time limit:

Sk POk / 2
= SaSk— (k -qcqg + k- (k — q)ck_ ) fa k-
1 — f 2kt |, aPk—q a a) JaJk—q
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Mode-coupling theory (MCT)

Drawbacks
- applies to 2 point functions only;

- not a systematic expansion,;
Szamel, Flenner & Hayakawa, EPL (2013)

- no small parameter;

- spurious predictions at low
temperature,;

- and violates the FDT.
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Brownian dynamics:
glassy vs trivial

Model B version of the dynamics
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Probe the influence of dynamics

Postulate alternative dynamics for the density modes

g = —,OOV— + /2T po&

Density evolves in the landscape 7 |¢] with diffusion
constant 0o

Alters dynamics, but statics Is unchanged:

P =2te P”
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Claim: exponential relaxation

Consider again

C(k,t) = {op(k,t)op(—k,0))

U. of Warwick, June 2014 FvW, Model B dynamics



Claim: exponential relaxation

Consider again

C(k,t) = {op(k,t)op(—k,0))

We will argue that ~ C(k,t) ~ e "/
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Entering technicalities
Starting point
Problp(t),0 <t <t] = e~ Jd'2¢&
where ¢|p] such that dip = -V - jg

JB :—POV— v 2T po§

This is a model B-like dynamics.

U. of Warwick, June 2014 FvW, Model B dynamics



Entering technicalities

Martin-Siggia-Rose-Janssen-De Dominicis
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FDT is a symmetry

JOF

p <0tp — poV —> — Tpo(Vp)?

Action S[p, p] :/ 5

t,x

IS Invariant under

U. of Warwick, June 2014 FvW, Model B dynamics



FDT is a symmetry

o0F

Action S[p,p] = / p <5tp — poV? 5p> — Tpo(Vp)

t,x

IS split Into

[ So = [ p(0:bp +Tk(1 + BpoV (K))op — poTk*p
A NG

/\\

Symmetry not an issue anymore.
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FDT is a symmetry

. _ B al _
Action S[Pa P] — / P (atﬂ — P0V2§> — TPO(VP)2
t,x

Correlations

P
o P /0 Rkt
p R(k,—-t) C(k,?)
R(k,t) = (p(=k, 0)dp(k,t)) = pok’true response function

il ) = _po;k2 Ok, 1) \*<5p(x t))

U. ot Warwick, June 2014 FvW, Model B dynamics




Luttinger-Ward functional

Work at fixed correlations

S%S+;ﬁMG<g>

Determine
['|G| = generating functional of 2PI diagrams

such that physics is given by the solution of
oI

oG physical G

U. of Warwick, June 2014 FvW, Model B dynamics
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In practice: Shwinger-Dyson

This becomes
GG =1-3[G]G

Y|G] = sum of 2PI two-point vertex functions

Andx[G] can be found from

) )
Sint — /—pQTV2ﬁ9[p], H = In (1 4+ _p> _ _’0
Po Po
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A few remarks

Interaction part independent of the potential.

Up to a constant, same as in a model A.

Potential appears only through -
Tk*> — Tk? (1 + BpoV (Kk))

U. of Warwick, June 2014 FvW, Model B dynamics
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An evolution equation

Luttinger-Ward functional
Y[G] = X[C] by virtue of FDT: R = —C/(poTk?)

+ relations between the components via the FDT.

Exact relationship (nontrivial):

o+ 2 ey = 2 /td (k. t — 7)9,C(k, 7)
t Sk ’ —IOQTkQ . T 9 T )Ur » T
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No ergodic/non-ergodic transition

For the non-ergodicity parameter

U. of Warwick, June 2014 FvW, Model B dynamics



Simplest MCT-like truncation

For the simplest truncation

| Clan Sy

—()—

1
1 i[kfk T T2 X(k,t=00) B[C] ~ - / SqOk-afalk—q

9

No kernel, no convergence, no nontrivial solution.
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Improved

Any order

Sl [ TL Sa0-to) TI Sata

a: arrowed r: regular

No kernel, no convergence, no nontrivial solution.
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Infinite resummation: dynamics

All vertices, up to order 2

Z[C] ~ / H C(q,t _ 7-) % C(O, O)# of petals

qg€inside leg

Divergent series (can perhaps be resummed).
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Infinite resummation: dynamics

All vertices, up to order 2

pink partis Ak, t) = (8(k,t)6(—k,0))

9:1H(1+5—p>—5—p
Lo PO
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Renormalized kernel

Resummed kernel Is
Y[C] x A(k, t)

But A = (69) Is unknown. However, If B = (6p09)

— —,OQT]CQB
— —poTk2A

{ 0:C + Tk*(1+ BpoV (k))C
0B +Tk*(1+ BpoV (k))B
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Renormalized kernel

Resummed kernel Is
YOl < Ak, t) ()

But A = (69) Is unknown. However, If B = (6p09)

— —IOQTICQB (2)
:—poTsz (3)

{ 0:C + Tk*(1+ BpoV (k))C
0B +Tk*(1+ BpoV (k))B
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Exponential relaxation

Find
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Physical interpretation

Physical picture: Kramers escape problem

Viz)

L

flux = Diff. cst. x e PVm ~ e7FVm

ot

fAux = Diff. cst. x e PVo ~ = FV0
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Physical interpretation

. . . 1
Diffusion equation: jg=-1TV (;Vp)

/
flux = O(1)

U. of Warwick, June 2014 FvW, Model B dynamics
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Brownian dynamics:
glassy vs trivial

Unsettled issues
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What about replicas?

1. Under which dynamics are replica calculations
meaningful?

2. Barriers in high-dimensional space are not
relevant, but dynamic entropy Is. In what sense?
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Replicas and Dynamics

(0p™M (k)ép? (—k))
PoSk

Crisantli has shown a result that implies that the
long-time limit of the dynamic nonergodicity
parameter Is the same as in replicas (1RSB), If
model B dynamics is used (or model A).

Let fi =

Crisanti, Nucl. Phys. B (2008)
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Lattice versions

“Langevin dynamics” on a lattice

W(nianj — Ny — 1,nj 1) — Dnie—g(E'_m

Energy of a configuration

1
E = 5 ;nk‘/(k — O)ny

Lefevre & Biroli, JSTAT (2007)
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Lattice versions

“Model B dynamics” on a lattice

1 1
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Lattice versions

“Model B dynamics” evolution operator

Weer = 1coer —

o~ 5 (F(C")—F(C))

_c

Laplacian+external potential.

U. of Warwick, June 2014

FvW, Model B dynamics
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