Computing Kleinian modular forms

Aurel Page

June 4, 2014

Warwick, LMFDB workshop

- Motivation
- 2 Arithmetic Kleinian groups
- 3 Algorithms
- Examples

Elliptic curves and automorphic forms

Want a database of elliptic curves over number field *F*?

Elliptic curves and automorphic forms

Want a database of elliptic curves over number field *F*? Start with GL₂ automorphic forms!

Where do you find automorphic forms?

Elliptic curves and automorphic forms

Want a database of elliptic curves over number field *F*? Start with GL₂ automorphic forms!

Where do you find automorphic forms? In the cohomology of arithmetic groups!

Matsushima's formula: Γ discrete cocompact subgroup of connected Lie group G, E representation of G.

$$H^i(\Gamma, E) \cong \bigoplus_{\pi \in \widehat{G}} \operatorname{Hom}(\pi, L^2(\Gamma \backslash G)) \otimes H^i(\mathfrak{g}, K; \pi \otimes E)$$

Where do you find GL₂ automorphic forms?

Where do you find GL₂ automorphic forms?

• $H^*(GL_2(\mathbb{Z}_F), E)$

Where do you find GL₂ automorphic forms?

- $H^*(GL_2(\mathbb{Z}_F), E)$
- Jacquet–Langlands: H*(O[×], E), O order in a quaternion algebra

Where do you find GL₂ automorphic forms?

- $H^*(GL_2(\mathbb{Z}_F), E)$
- Jacquet–Langlands: H*(O[×], E), O order in a quaternion algebra

Kleinian case: $\mathcal{O}^{\times} \subset GL_2(\mathbb{C})$, $H^1(\mathcal{O}^{\times}, E)$

Where do you find GL₂ automorphic forms?

- $H^*(GL_2(\mathbb{Z}_F), E)$
- Jacquet–Langlands: H*(O[×], E), O order in a quaternion algebra

Kleinian case: $\mathcal{O}^{\times} \subset GL_2(\mathbb{C})$, $H^1(\mathcal{O}^{\times}, E)$

Call $H^i(\mathcal{O}^{\times}, E)$ a space of Kleinian modular forms.

Motivation for the Kleinian case

 Elliptic curves, Abelian varieties of GL₂ type over number fields.

Motivation for the Kleinian case

- Elliptic curves, Abelian varieties of GL₂ type over number fields.
- Torsion phenomenon.

Motivation for the Kleinian case

- Elliptic curves, Abelian varieties of GL₂ type over number fields.
- Torsion phenomenon.
- Attached Galois representations: open case.

Motivation
Arithmetic Kleinian groups
Algorithms
Examples

Arithmetic Kleinian groups

Kleinian groups

$$\mathbb{H} := \mathbb{C} + \mathbb{C}j \text{ where } j^2 = -1 \text{ and } jz = \bar{z}j \text{ for all } z \in \mathbb{C}.$$
 The upper half-space $\mathcal{H}^3 := \mathbb{C} + \mathbb{R}_{>0}j.$ Metric $\mathrm{d}s^2 = \frac{|\mathrm{d}z|^2 + \mathrm{d}t^2}{t^2}$, volume $\mathrm{d}V = \frac{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}t}{t^3}.$

Kleinian groups

$$\mathbb{H} := \mathbb{C} + \mathbb{C}j$$
 where $j^2 = -1$ and $jz = \bar{z}j$ for all $z \in \mathbb{C}$.

The upper half-space
$$\mathcal{H}^3 := \mathbb{C} + \mathbb{R}_{>0}j$$
.

Metric
$$ds^2 = \frac{|dz|^2 + dt^2}{t^2}$$
, volume $dV = \frac{dx \, dy \, dt}{t^3}$.

$$egin{pmatrix} a & b \ c & d \end{pmatrix} \cdot w := (aw+b)(cw+d)^{-1} \text{ for } egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbb{C}).$$

Kleinian groups

$$\mathbb{H} := \mathbb{C} + \mathbb{C}j$$
 where $j^2 = -1$ and $jz = \bar{z}j$ for all $z \in \mathbb{C}$.

The upper half-space $\mathcal{H}^3 := \mathbb{C} + \mathbb{R}_{>0}j$. Metric $\mathrm{d}s^2 = \frac{|\mathrm{d}z|^2 + \mathrm{d}t^2}{t^2}$, volume $\mathrm{d}V = \frac{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}t}{t^3}$.

$$egin{pmatrix} a & b \ c & d \end{pmatrix} \cdot w := (aw+b)(cw+d)^{-1} \text{ for } egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbb{C}).$$

Kleinian group: discrete subgroup of $SL_2(\mathbb{C})$. Cofinite if it has finite covolume.

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

A quaternion algebra *B* over a field *F* is a central simple algebra of dimension 4 over *F*.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

Reduced norm: $nrd(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

Reduced norm: $nrd(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

 \mathbb{Z}_F integers of F number field.

Order $\mathcal{O} \subset B$: subring, finitely generated \mathbb{Z}_F -module, $\mathcal{O}F = B$.

A quaternion algebra B over a field F is a central simple algebra of dimension 4 over F.

Explicitly,
$$B = \left(\frac{a,b}{F}\right) = F + Fi + Fj + Fij$$
, $i^2 = a$, $j^2 = b$, $ij = -ji$ (char $F \neq 2$).

Reduced norm: $nrd(x + yi + zj + tij) = x^2 - ay^2 - bz^2 + abt^2$.

 \mathbb{Z}_F integers of F number field.

Order $\mathcal{O} \subset B$: subring, finitely generated \mathbb{Z}_F -module, $\mathcal{O}F = B$.

A place v of F is split or ramified according as whether $B \otimes_F F_v$ is $\mathcal{M}_2(F_v)$ or a division algebra.

Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

 \mathcal{O} order in B, Γ image of reduced norm one group \mathcal{O}^1 in $SL_2(\mathbb{C})$.

Covolume formula

F almost totally real number field: exactly one complex place.

B/F Kleinian quaternion algebra: ramified at every real place.

 \mathcal{O} order in B, Γ image of reduced norm one group \mathcal{O}^1 in $SL_2(\mathbb{C})$.

Theorem

 Γ is a cofinite Kleinian group.

It is cocompact iff B is a division algebra.

If \mathcal{O} is maximal then

$$\mathsf{Covol}(\Gamma) = \frac{|\Delta_F|^{3/2} \zeta_F(2) \prod_{\mathfrak{p} \; \textit{ram.}} (N(\mathfrak{p}) - 1)}{(4\pi^2)^{[F:\mathbb{Q}] - 1}} \cdot$$

Motivation Arithmetic Kleinian groups **Algorithms** Examples

Algorithms

1 Compute B and O

- **1** Compute B and O
- ② Compute \mathcal{O}^1

- **1** Compute B and \mathcal{O}
- **2** Compute \mathcal{O}^1
- **3** Compute $H^1(\mathcal{O}^1)$

- **1** Compute B and O
- ② Compute O¹
- **3** Compute $H^1(\mathcal{O}^1)$
- **Output** Generator δ of ideal of norm \mathfrak{p}

- **1** Compute B and O
- ② Compute O¹
- **Outpute** $H^1(\mathcal{O}^1)$
- **Output** Generator δ of ideal of norm \mathfrak{p}
- **5** Compute Hecke operator T_{δ} on $H^{1}(\mathcal{O}^{1})$

Fundamental domains

 Γ a Kleinian group. An open subset $\mathcal{F}\subset\mathcal{H}^3$ is a fundamental domain if

- $\bullet \ \Gamma \cdot \overline{\mathcal{F}} = \mathcal{H}^3$
- $\mathcal{F} \cap \gamma \mathcal{F} = \emptyset$ for all $1 \neq \gamma \in \Gamma$.

Dirichlet domains

Dirichlet domains

Let $p \in \mathcal{H}^3$ with trivial stabilizer in Γ . The Dirichlet domain

$$\begin{array}{ll} D_p(\Gamma) & := & \{x \in X \mid \ \mathsf{d}(x,p) < \mathsf{d}(\gamma \cdot x,p) \ \forall \gamma \in \Gamma \setminus \{1\}\} \\ & = & \{x \in X \mid \ \mathsf{d}(x,p) < \mathsf{d}(x,\gamma^{-1} \cdot p) \ \forall \gamma \in \Gamma \setminus \{1\}\}. \end{array}$$

Dirichlet domains

Let $p \in \mathcal{H}^3$ with trivial stabilizer in Γ . The Dirichlet domain

$$\begin{array}{ll} D_p(\Gamma) &:= & \{x \in X \mid \ \mathsf{d}(x,p) < \mathsf{d}(\gamma \cdot x,p) \ \forall \gamma \in \Gamma \setminus \{1\}\} \\ &= & \{x \in X \mid \ \mathsf{d}(x,p) < \mathsf{d}(x,\gamma^{-1} \cdot p) \ \forall \gamma \in \Gamma \setminus \{1\}\}. \end{array}$$

is a fundamental domain for Γ that is a hyperbolic polyhedron. If Γ is cofinite, $D_p(\Gamma)$ has finitely many faces.

Structure of the Dirichlet domain

Structure of the Dirichlet domain

 Faces of the Dirichlet domain are grouped into pairs, corresponding to elements g, g⁻¹ ∈ Γ;

Structure of the Dirichlet domain

- Faces of the Dirichlet domain are grouped into pairs, corresponding to elements g, g⁻¹ ∈ Γ;
- Edges of the domain are grouped into cycles, product of corresponding elements in Γ has finite order.

Poincaré's theorem

Theorem (Poincaré)

 The elements corresponding to the faces are generators of Γ. The relations corresponding to the edge cycles generate all the relations among the generators.

Poincaré's theorem

Theorem (Poincaré)

- The elements corresponding to the faces are generators of Γ. The relations corresponding to the edge cycles generate all the relations among the generators.
- If a partial Dirichlet domain D_p(S) has a face-pairing and cycles of edges, then it is a fundamental domain for the group generated by S.

 $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.

```
x \in \mathcal{H}^3, S \subset \Gamma corresponding to the faces of D_p(\Gamma).
```

• if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases
 - repeat

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases
 - repeat
- \rightarrow point $x' = g_k \cdots g_1 x$ s.t. $x' \in D_p(\Gamma)$.

- $x \in \mathcal{H}^3$, $S \subset \Gamma$ corresponding to the faces of $D_p(\Gamma)$.
 - if possible $x \leftarrow gx$ for some $g \in S$ s.t. d(x, p) decreases
 - repeat
- \rightarrow point $x' = g_k \cdots g_1 x$ s.t. $x' \in D_p(\Gamma)$.

In particular for $\gamma \in \Gamma$, take $x = \gamma^{-1}p$, which will reduce to x' = p, to write γ as a product of the generators.

We have:

an explicit formula for the hyperbolic distance;

We have:

- an explicit formula for the hyperbolic distance;
- an explicit formula for bisectors;

We have:

- an explicit formula for the hyperbolic distance;
- an explicit formula for bisectors;
- an algorithm for computing intersections of half-spaces;

We have:

- an explicit formula for the hyperbolic distance;
- an explicit formula for bisectors;
- an algorithm for computing intersections of half-spaces;
- an algorithm for computing the volume of a polyhedron.

Suppose \mathcal{O} maximal.

Suppose \mathcal{O} maximal.

• Enumerate elements of \mathcal{O}^1 in a finite set S

Suppose \mathcal{O} maximal.

- Enumerate elements of \mathcal{O}^1 in a finite set S
- Compute $D = D_p(S)$

Suppose \mathcal{O} maximal.

- Enumerate elements of O¹ in a finite set S
- Compute $D = D_p(S)$
- Repeat until D has a face-pairing and Vol(D) < 2 Covol(Γ)

Why would you care about the complexity?

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

 $SL_2(\mathbb{C})$ action on $L_0^2(\Gamma \backslash SL_2(\mathbb{C}))$ mixes things fast.

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

 $SL_2(\mathbb{C})$ action on $L_0^2(\Gamma \setminus SL_2(\mathbb{C}))$ mixes things fast.

 $\Rightarrow \operatorname{diam}(D_p(\Gamma)) \ll \log \operatorname{\mathsf{Covol}}(\Gamma)$

Why would you care about the complexity?

Bound on the size of the Dirichlet domain:

 $SL_2(\mathbb{C})$ action on $L_0^2(\Gamma\backslash SL_2(\mathbb{C}))$ mixes things fast.

- $\Rightarrow \operatorname{diam}(D_p(\Gamma)) \ll \log \operatorname{Covol}(\Gamma)$
 - Proved complexity: Covol(Γ)^{O(1)}
 - Observed complexity: Covol(Γ)²
 - Lower bound: Covol(Γ)

Cocycles:

$$Z^{1}(\Gamma, E) := \{ \phi : \Gamma \to E \mid \phi(gh) = \phi(g) + g \cdot \phi(h) \ \forall g, h \in \Gamma \}$$

Cocycles:

$$Z^{1}(\Gamma, E) := \{ \phi : \Gamma \to E \mid \phi(gh) = \phi(g) + g \cdot \phi(h) \ \forall g, h \in \Gamma \}$$

Coboundaries:

$$B^1(\Gamma, E) := \{ \phi_{\mathbf{X}} : \mathbf{g} \mapsto \mathbf{X} - \mathbf{g} \cdot \mathbf{X} : \mathbf{X} \in E \} \subset Z^1(\Gamma, E)$$

Cocycles:

$$Z^{1}(\Gamma, E) := \{ \phi : \Gamma \to E \mid \phi(gh) = \phi(g) + g \cdot \phi(h) \ \forall g, h \in \Gamma \}$$

Coboundaries:

$$B^1(\Gamma, E) := \{ \phi_{\mathbf{x}} : \mathbf{g} \mapsto \mathbf{x} - \mathbf{g} \cdot \mathbf{x} : \ \mathbf{x} \in E \} \subset \mathbf{Z}^1(\Gamma, E)$$

Cohomology:

$$H^1(\Gamma, E) := Z^1(\Gamma, E)/B^1(\Gamma, E)$$

Let
$$\delta \in \mathsf{Comm}(\Gamma)$$
. $H^i(\Gamma, M)$

Let
$$\delta \in \mathsf{Comm}(\Gamma)$$
.
$$H^i(\Gamma, M)$$

$$\mathsf{Res} \! \downarrow \! H^i(\Gamma \cap \delta \Gamma \delta^{-1}, M)$$

Let
$$\delta \in \mathsf{Comm}(\Gamma)$$
.
$$H^i(\Gamma, M)$$

$$\mathsf{Res} \! \downarrow \! H^i(\Gamma \cap \delta \Gamma \delta^{-1}, M) \xrightarrow{\widetilde{\delta}} H^i(\delta^{-1} \Gamma \delta \cap \Gamma, M)$$

Let $\delta \in Comm(\Gamma)$.

$$H^i(\Gamma, M)$$
 $H^i(\Gamma, M)$

$$Res \downarrow \qquad \qquad \uparrow Cores$$
 $H^i(\Gamma \cap \delta \Gamma \delta^{-1}, M) \xrightarrow{\tilde{\delta}} H^i(\delta^{-1} \Gamma \delta \cap \Gamma, M)$

Let $\delta \in \mathsf{Comm}(\Gamma)$.

$$H^i(\Gamma, M) \xrightarrow{T_\delta} H^i(\Gamma, M)$$
Res $\downarrow \qquad \qquad \uparrow$ Cores
 $H^i(\Gamma \cap \delta \Gamma \delta^{-1}, M) \xrightarrow{\tilde{\delta}} H^i(\delta^{-1} \Gamma \delta \cap \Gamma, M)$

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

Search in $\mathcal{O}^1 \setminus \{ \text{nrd} = \pi \}$: complexity $\Delta_B^{O(1)}$.

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

Search in $\mathcal{O}^1 \setminus \{ \text{nrd} = \pi \}$: complexity $\Delta_B^{O(1)}$.

Buchmann's algorithm over number fields: subexponential under GRH.

Recall: have to find a generator δ of ideal of norm $\mathfrak{p} = (\pi)$.

Search in $\mathcal{O}^1 \setminus \{ \text{nrd} = \pi \}$: complexity $\Delta_B^{O(1)}$.

Buchmann's algorithm over number fields: subexponential under GRH.

Adapt Buchmann's algorithm over a quaternion algebra: heuristically subexponential.

Motivation Arithmetic Kleinian groups Algorithms Examples

Examples

A quartic example

Let F the unique quartic field of signature (2,1) and discriminant -275. Let B be the unique quaternion algebra with discriminant $11\mathbb{Z}_F$, ramified at every real place of F. Let \mathcal{O} be a maximal order in B (it is unique up to conjugation). Then \mathcal{O}^1 is a Kleinian group with covolume 93.72... The fundamental domain I have computed has 310 faces and 924 edges.

A quartic example

Let F the unique quartic field of signature (2,1) and discriminant -275. Let B be the unique quaternion algebra with discriminant $11\mathbb{Z}_F$, ramified at every real place of F. Let \mathcal{O} be a maximal order in B (it is unique up to conjugation). Then \mathcal{O}^1 is a Kleinian group with covolume 93.72... The fundamental domain I have computed has 310 faces and 924 edges.

Have a look at the fundamental domain!

A quartic example

$N(\mathfrak{p})$	$T_{\mathfrak{p}}$	characteristic polynomial
9	$ \begin{pmatrix} 2 & -4 & -5 \\ -2 & 3 & -2 \\ 0 & 0 & -5 \end{pmatrix} $	$(x+5)(x^2-5x-2)$
9	same	$(x+5)(x^2-5x-2)$
16	$\begin{pmatrix} 1 & 4 & -11 \\ 2 & 0 & -6 \\ 0 & 0 & -8 \end{pmatrix}$	$(x+8)(x^2-x-8)$
19	$\begin{pmatrix} -4 & 0 & 4 \\ 0 & -4 & 2 \\ 0 & 0 & 0 \end{pmatrix}$	$x(x+4)^2$
19	` same ´	$x(x+4)^2$
25	_	$(x+9)(x^2-x-74)$
29	_	$x(x^2+6x-24)$
29	_	$x(x^2 + 6x - 24)$

Bianchi groups: $\Gamma = SL_2(\mathbb{Z}_F)$ with F quadratic imaginary.

Bianchi groups: $\Gamma = \operatorname{SL}_2(\mathbb{Z}_F)$ with F quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes.

Bianchi groups: $\Gamma = \operatorname{SL}_2(\mathbb{Z}_F)$ with F quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Bianchi groups: $\Gamma = \operatorname{SL}_2(\mathbb{Z}_F)$ with F quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda's conjecture)

The set of non-lifted cuspidal newforms in $H^i(\Gamma, E_k)$, modulo twins, forms one Galois orbit.

Bianchi groups: $\Gamma = \operatorname{SL}_2(\mathbb{Z}_F)$ with F quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda's conjecture)

The set of non-lifted cuspidal newforms in $H^i(\Gamma, E_k)$, modulo twins, forms one Galois orbit.

Experiment: always dimension 2 space, except (d, k) = (-199, 2): dimension 4.

Bianchi groups: $\Gamma = \operatorname{SL}_2(\mathbb{Z}_F)$ with F quadratic imaginary. Finis, Grunewald, Tirao: formula for the base-change subspace in $H^i(\Gamma, E_k)$. Remark: very few non base-change classes. Şengün, Rahm: extended their computations.

Conjecture (Modified Maeda's conjecture)

The set of non-lifted cuspidal newforms in $H^i(\Gamma, E_k)$, modulo twins, forms one Galois orbit.

Experiment : always dimension 2 space, except (d, k) = (-199, 2): dimension 4. Two twin Galois orbits with coefficients in $\mathbb{Q}(\sqrt{13})$, swapped by $\mathrm{Gal}(F/\mathbb{Q})$.

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$.

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$. Have a look at the fundamental domain!

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$. Have a look at the fundamental domain! Cuspidal subspace in $H^1(\Gamma,\mathbb{C})$: dimension 2, one Galois orbit in $\mathbb{Q}(\sqrt{5})$.

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$.

Have a look at the fundamental domain!

Cuspidal subspace in $H^1(\Gamma, \mathbb{C})$: dimension 2, one Galois orbit in $\mathbb{Q}(\sqrt{5})$.

Şengün, Dembélé: the Jacobian J of the hyperelliptic curve

$$y^2 = 33x^6 + 110\sqrt{-223}x^5 + 36187x^4 - 28402\sqrt{-223}x^3 - 2788739x^2 + 652936\sqrt{-223}x + 14157596$$

has good reduction everywhere, $\operatorname{End}(J)\otimes \mathbb{Q}\cong \mathbb{Q}(\sqrt{5})$ and matches the Hecke eigenvalues.

Bianchi group for $F = \mathbb{Q}(\sqrt{-223})$.

Have a look at the fundamental domain!

Cuspidal subspace in $H^1(\Gamma, \mathbb{C})$: dimension 2, one Galois orbit in $\mathbb{Q}(\sqrt{5})$.

Şengün, Dembélé: the Jacobian J of the hyperelliptic curve

$$y^2 = 33x^6 + 110\sqrt{-223}x^5 + 36187x^4 - 28402\sqrt{-223}x^3 - 2788739x^2 + 652936\sqrt{-223}x + 14157596$$

has good reduction everywhere, $\operatorname{End}(J)\otimes \mathbb{Q}\cong \mathbb{Q}(\sqrt{5})$ and matches the Hecke eigenvalues.

Looking for more examples in $\mathbb{Q}(\sqrt{-455})$ and $\mathbb{Q}(\sqrt{-571})$.

Can also look at $H_1(\Gamma, \mathbb{Z})_{\text{tor}}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Can also look at $H_1(\Gamma, \mathbb{Z})_{\text{tor}}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Jacquet–Langlands: relation between (co)homology of $\Gamma_0(\mathfrak{N})$ in a Bianchi group and that of Γ coming from a division algebra of discriminant \mathfrak{N} .

Can also look at $H_1(\Gamma, \mathbb{Z})_{\text{tor}}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Jacquet–Langlands: relation between (co)homology of $\Gamma_0(\mathfrak{N})$ in a Bianchi group and that of Γ coming from a division algebra of discriminant \mathfrak{N} .

Calegari, Venkatesh: numerical torsion Jacquet-Langlands correspondence.

Can also look at $H_1(\Gamma, \mathbb{Z})_{\text{tor}}$ and $H_1(\Gamma, \mathbb{F}_p)$.

Jacquet–Langlands: relation between (co)homology of $\Gamma_0(\mathfrak{N})$ in a Bianchi group and that of Γ coming from a division algebra of discriminant \mathfrak{N} .

Calegari, Venkatesh: numerical torsion Jacquet-Langlands correspondence.

Joint with H. Şengün: experimental verification with Hecke operators (still in progress).

Motivation Arithmetic Kleinian groups Algorithms Examples

Thank you for your attention!