A short introduction to the brief introduction to motives

Sally Koutsoliotas
Bucknell University

joint work with
David W. Farmer, American Institute of Mathematics Stefan Lemurell, Gothenburg University \&

Chalmers University of Technology

June 3, 2014
LMFDB Workshop
University of Warwick

Objects that give rise to 'arithmetic' L-functions

(\Leftrightarrow algebraic coefficients)

- elliptic curves over any number field
- hyperelliptic curves over any number field
- abelian surfaces
- algebraic varieties over any number field
- number fields
- Artin representations
- modular forms:
- holomorphic
- Siegel
- Bianchi
- Hilbert
- paramodular
- motives

NOT Maass forms

Axioms of an 'arithmetic' L-function

From representation theory,
(Farmer, Pitale, Ryan, and Schmidt)
explicit, concrete expressions are given for:

Dirichlet series

- motivic weight, $w\left(0\right.$ OR $\left.2 \cdot \max \left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\}\right)$ $L_{\text {analytic }}(s)=L_{\text {arithmetic }}\left(s+\frac{w}{2}\right) \Rightarrow a_{n} n^{\frac{w}{2}}$ is an algebraic integer

Functional equation

- level, N
- sign, ε
- spectral parameters, μ_{j}, ν_{k}
(Langlands parameters, Hodge parameters, Г-shifts)

Euler product

- degree, d
- central character, χ

Also, $\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma(s / 2) \quad$ and $\quad \Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$

Definition of 'arithmetic' L-functions (analytic normalisation)
i.e., L-functions with algebraic coefficients

- Dirichlet series: $L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad a_{n} \ll n^{\varepsilon}$
- Functional equation:

$$
\begin{array}{r}
\Lambda(s):=N^{\frac{s}{2}} \prod_{j=1}^{J} \Gamma_{\mathbb{R}}\left(s+\mu_{j}\right) \prod_{k=1}^{K} \Gamma_{\mathbb{C}}\left(s+\nu_{k}\right) L(s)=\varepsilon \bar{\Lambda}(1-s) \\
\quad \text { where } \mu_{j} \in\{0,1\} \text { and } \nu_{k} \in\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \cdots\right\}
\end{array}
$$

- Euler product:

$$
\begin{gathered}
L(s)=\prod_{p} f_{p}\left(p^{-s}\right)^{-1} \quad \text { where } f_{p}(z)=1-a_{p} z+\cdots+(-1)^{d} \chi(p) z^{d} \\
d=J+2 K, \quad \text { and } \quad \chi(-1)=(-1)^{\left(\sum \mu_{j}+\sum\left(2 \nu_{k}+1\right)\right)}
\end{gathered}
$$

Special Case: degree 4, trivial character

$\chi(-1)=1 \Rightarrow$ not every combination of $\Gamma_{\mathbb{R}}$ and $\Gamma_{\mathbb{C}}$ is possible

$$
\begin{array}{ll}
w=0 & \Gamma_{\mathbb{R}}(s)^{4} \\
& \Gamma_{\mathbb{R}}(s)^{2} \Gamma_{\mathbb{R}}(s+1)^{2} \\
& \Gamma_{\mathbb{R}}(s+1)^{4} \\
w=1 & \Gamma_{\mathbb{R}}(s)^{2} \Gamma_{\mathbb{C}}\left(s+\frac{1}{2}\right) \quad \chi(-1)=(-1)\left(\sum \mu_{j}+\sum_{2}\left(2 \nu_{k}+1\right)\right) \\
& \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}\left(s+\frac{1}{2}\right) \quad w: 0 \text { OR } 2 \cdot \max \left\{\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right\} \\
& \Gamma_{\mathbb{C}}\left(s+\frac{1}{2}\right)^{2} \\
w=2 & \Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{R}}(s+1) \Gamma_{\mathbb{C}}(s+1) \\
& \Gamma_{\mathbb{C}}(s+1)^{2} \\
& \\
w=3 & \Gamma_{\mathbb{R}}(s)^{2} \Gamma_{\mathbb{C}}(s+3 / 2) \\
& \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}(s+3 / 2) \\
& \Gamma_{\mathbb{C}}(s+1 / 2) \Gamma_{\mathbb{C}}(s+3 / 2) \\
& \Gamma_{\mathbb{C}}(s+3 / 2)^{2}
\end{array}
$$

Specialising further to the case of rational integer coefficients:
Good News: We can search effectively for these.
Bad News: Some uninteresting examples arise.
(products of L-functions)
If $L(s)=L_{1}(s) \cdot L_{2}(s)$, then

$$
\begin{aligned}
N & =N_{1} \cdot N_{2} \\
\varepsilon & =\varepsilon_{1} \cdot \varepsilon_{2} \\
\chi & =\chi_{1} \cdot \chi_{2} \\
d & =d_{1}+d_{2} \\
w & =\max \left\{w_{1}, w_{2}\right\} \\
a_{p} & =a_{p, 1}+a_{p, 2}
\end{aligned}
$$

Degree 4, weight 0, rational integer coefficients

Case 1: weight $=0$ of form $N^{s / 2} \Gamma_{\mathbb{R}}(s+1)^{4}$.
Computational Theorem: For $N \leq 80$ and trivial character, no such L-functions exist.

There is an L-function with $N=81$: $L\left(s, \chi_{3}\right)^{4}$.
$L\left(s, \chi_{3}\right):$
$3^{s / 2} \Gamma_{\mathbb{R}}(s+1) \quad$ character $=\chi_{3}$
$L\left(s, \chi_{3}\right)^{4}: \quad 81^{s / 2} \Gamma_{\mathbb{R}}(s+1)^{4} \quad$ character $=\left(\chi_{3}\right)^{4}=$ trivial

Computational Theorem: For degree 4, motivic weight 0 , and trivial character, the only L-functions with $N<200$ come from products of Dirichlet L-functions.

Case 2: weight $=1$ of form $N^{s / 2} \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}(s+1 / 2)$

Computational Theorem: There are no L-functions with rational integer coefficients with $N<200$.

So, why didn't we find something at $N=99$?
e.g., $L\left(s, \chi_{3}\right)^{2} L\left(s, E_{11}\right)$
$L\left(s, \chi_{3}\right)$:

$$
3^{s / 2} \Gamma_{\mathbb{R}}(s+1) \quad w=0, \text { character }=\chi_{3}
$$

$L\left(s, E_{11}\right)$:
$11^{s / 2} \Gamma_{\mathbb{C}}(s+1 / 2) \quad w=1$, character $=$ trivial
$L\left(s, \chi_{3}\right)^{2} \cdot\left(s, E_{11}\right): \quad 99^{s / 2} \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}(s+1 / 2)$ $w=1$, character $=$ trivial

$$
\begin{aligned}
p^{t h} \text { coefficient: } & 2 \chi_{3}(p)+a_{p} & & \text { (analytic) } \\
& \left(2 \chi_{3}(p)+a_{p}\right) \sqrt{p} & & \text { (arithmetic) }
\end{aligned}
$$

Some Questions

1. Are there any L-functions with functional equation

$$
\Lambda(s)=N^{\frac{s}{2}} \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}(s+1 / 2) L(s)=\Lambda(1-s)
$$

with rational integer coefficients (in the arithmetic normalisation)? If so, do they come from a motive?
2. From what objects do the dozen possible degree 4 , weight ≤ 3 cases arise? Could they all come from motives?
3. For those that do come from a motive, are there additional restrictions, say, on the Euler factors?
4. If we find such an L-function and suspect that it comes from a motive, how can we find the motive?
5. Why are the first few L-functions non-primitive?

From motives: L-functions of degree 4, trivial character
motivic 「 factors
weight
0
1
1
2

$$
\begin{aligned}
& \Gamma_{\mathbb{R}}(s)^{4} \\
& \Gamma_{\mathbb{R}}(s)^{2} \Gamma_{\mathbb{R}}(s+1)^{2} \\
& \Gamma_{\mathbb{R}}(s+1)^{4}
\end{aligned}
$$

$$
\begin{array}{llll}
\Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{R}}(s+1) \Gamma_{\mathbb{C}}(s+1) & 1 & 2 & 1 \\
\Gamma_{\mathbb{C}}(s+1)^{2} & 2 & 0 & 2
\end{array}
$$

3
Hodge vector

$$
\begin{aligned}
& \Gamma_{\mathbb{R}}(s)^{2} \Gamma_{\mathbb{C}}\left(s+\frac{1}{2}\right) \\
& \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}\left(s+\frac{1}{2}\right) \\
& \Gamma_{\mathbb{C}}\left(s+\frac{1}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{\mathbb{R}}(s)^{2} \Gamma_{\mathbb{C}}(s+3 / 2) \\
& \Gamma_{\mathbb{R}}(s+1)^{2} \Gamma_{\mathbb{C}}(s+3 / 2) \\
& \Gamma_{\mathbb{C}}(s+1 / 2) \Gamma_{\mathbb{C}}(s+3 / 2) \\
& \Gamma_{\mathbb{C}}(s+3 / 2)^{2}
\end{aligned}
$$

$$
\begin{array}{lll}
& 4 & \\
& 4 & \\
& 4 & \\
& & \\
& & \\
& 2 & 2 \\
1 & 2 & 1 \\
2 & 0 & 2
\end{array}
$$

