The tame-wild principle: a user's guide

John Jones

Arizona State University Tempe, AZ

Joint work with David Roberts

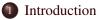
3 June 2014

The tame-wild principle: a user's guide

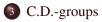
John Jones

C.D.-groups

Outline



2 Statement



Notation

Let

- K = a number field
- D_K its discriminant
- K^{gal} = the normal closure for K/\mathbb{Q}
- $\operatorname{Gal}(K) = \operatorname{Aut}(K^{\operatorname{gal}}/\mathbb{Q})$
- $\operatorname{rd}(K) = |D_K|^{1/[K:\mathbb{Q}]}$
- $grd(K) = rd(K^{gal})$ (Galois root discriminant)
- G = a subgroup of S_n
- For a field K_j , we write abbreviate $D_j = D_{K_j}$

C.D.-groups

Examples

Tabulating number fields: completeness

Given n and G, the set

$$\{K \subseteq \mathbb{C} \mid [K : \mathbb{Q}] = n \text{ and } \operatorname{Gal}(K) = G \text{ and } \dots \}$$

is finite with any of the following restrictions

• Given
$$B \in \mathbb{Z}$$
, $D_K = B$

- **2** Given a finite set of primes S, $\{p : p \mid D_K\} \subseteq S$
- Solution Given a bound $B \in \mathbb{Z}$, $|D_K| \leq B$ (equiv. $rd(K) \leq B'$)
- Given a bound $B \in \mathbb{R}$, $\operatorname{grd}(K) \leq B$

We will focus mainly on 3.

Where complete tables of number fields come from

- "Hunter search" (bounds on coefficients of a defining polynomial)
- Class field theory
- Galois theory

	tion

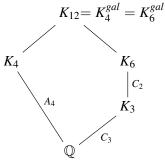
C.D.-groups

Examples

Where complete tables of number fields come from

- "Hunter search" (bounds on coefficients of a defining polynomial)
- Class field theory
- Galois theory

We may have to relate discriminants of one field to another, e.g.,



	tion	

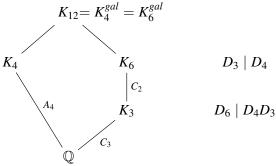
C.D.-groups

Examples

Where complete tables of number fields come from

- "Hunter search" (bounds on coefficients of a defining polynomial)
- Class field theory
- Galois theory

We may have to relate discriminants of one field to another, e.g.,



What is a *principle* in mathematics?

Extrapolating from the "local-global principle",

Definition

A principle is a mathematical assertion which ...

What is a *principle* in mathematics?

Extrapolating from the "local-global principle",

Definition

. . .

A principle is a mathematical assertion which

• reduces something hard to something which is apparently easier

What is a *principle* in mathematics?

Extrapolating from the "local-global principle",

Definition

A principle is a mathematical assertion which

- reduces something hard to something which is apparently easier
- *is true in some important cases*

. . .

What is a *principle* in mathematics?

Extrapolating from the "local-global principle",

Definition

A principle is a mathematical assertion which

- reduces something hard to something which is apparently easier
- is true in some important cases
- is false in general

What is a *principle* in mathematics?

Extrapolating from the "local-global principle",

Definition

A principle is a mathematical assertion which

• reduces something hard to something which is apparently easier

2 is true in some important cases

• is false in general

Examples:

• The local-global principle

What is a *principle* in mathematics?

Extrapolating from the "local-global principle",

Definition

A principle is a mathematical assertion which

- reduces something hard to something which is apparently easier
- *is true in some important cases*
- is false in general

Examples:

- The local-global principle
- The tame-wild principle

uction

C.D.-groups

Examples

Algebras and Permutation Representations

Base field *K*: a finite extension of \mathbb{Q} or \mathbb{Q}_p

- Algebra: $A \cong \prod_{i=1}^{r} K_i$, each K_i a field, $[K_i : K] < \infty$
- Equivalently: $A \cong K[x]/\langle f \rangle$ (where *f* is non-constant and separable, but not necessarily irreducible)

•
$$D_{A/K} = \prod D_{K_i/K}$$

Given a Galois extension M/K, 1-1 correspondence (up to isomorphism):

- Algebras A/K such that $A^{gal} \subseteq M$ gives a permutation representation $\rho : \operatorname{Gal}(M/K) \to S_n, \ n = [A : K]$
- Permutation representation $\rho : \operatorname{Gal}(M/K) \to S_n$ gives an algebra A_ρ

Tame Extensions

- A a degree n algebra over K
- \mathfrak{p} a maximal ideal of \mathcal{O}_K s.t. A is tame above \mathfrak{p}
- Discriminant exponent: $c_{\mathfrak{p}} = v_{\mathfrak{p}}(D_{A/K})$
- Tame implies inertia subgroup is cyclic: $I_{\mathfrak{p}} = \langle \sigma \rangle \leq S_n$
- cycle type of σ : $n_1, \ldots n_{\ell(\sigma)}$ gives

$$c_{\mathfrak{p}} = \sum_{j} (n_j - 1) = n - \ell(\sigma)$$

Given $\rho: G \to S_n$ and $\sigma \in G$, define formal tame discriminant exponent:

$$\mathfrak{c}_{\rho}(\sigma) = n - \ell(\rho(\sigma))$$

troc		

Tame-wild principle

Definition

Given ρ and ν , permutation representations of G, define

$$\rho \precsim_t \nu \iff \forall g \in G, \quad \mathfrak{c}_{\rho}(g) \leq \mathfrak{c}_{\nu}(g).$$

Definition

The local (resp. global) tame-wild principle holds for a group G if for every Galois extension L/K of local (resp. global) number fields with Gal(L/K) = G and pair of permutation representations ρ and ν on G,

$$\rho \precsim_t \nu \implies D_{A_{\rho}/K} \mid D_{A_{\nu}/K}.$$

ISJ SoMSS

c.d.-groups

Definition

A finite group is completely decomposible if every non-identity element is contained in exactly one maximal cyclic subgroup.

Examples of c.d.-groups:

- cyclic groups C_n
- dihedral groups D_n
- groups of exponent p
- Frobenius groups of the form $F_p = C_p : C_{p-1}$
- $PGL_2(q), q \text{ odd}$
- Subgroup or quotient of a c.d.-group (so, e.g., $PSL_2(q)$ with q odd)

This includes $S_5 \cong PGL_2(5)$ and $A_6 \cong PSL_2(9)$

c.d.-groups

Definition

A finite group is completely decomposible if every non-identity element is contained in exactly one maximal cyclic subgroup.

Examples of c.d.-groups:

- cyclic groups C_n
- dihedral groups D_n
- groups of exponent p
- Frobenius groups of the form $F_p = C_p : C_{p-1}$
- $PGL_2(q)$, q odd
- Subgroup or quotient of a c.d.-group (so, e.g., $PSL_2(q)$ with q odd)

This includes $S_5 \cong PGL_2(5)$ and $A_6 \cong PSL_2(9)$

Proposition (J, Roberts)

If G is a c.d.-group, then the local and global tame-wild principles hold for G.

trod		

C.D.-groups

Examples

First example

- $PGL_2(5)$ and $PSL_2(5)$ are naturally transitive subgroups of S_6
- $PGL_2(5) \cong S_5$ and $PSL_2(5) \cong A_5$

Quintic cycle type of g	$ \mathfrak{c}_{ ho}(g) $	Sextic cycle type of g	$\mathfrak{c}_{ u}(g)$
5	4	51	4
41	3	411	3
32	3	6	5
311	2	33	4
221	2	2211	2
2111	1	222	3
11111	0	111111	0

The tame-wild principle: a user's guide Je

troc		

C.D.-groups

Examples

First example

- $PGL_2(5)$ and $PSL_2(5)$ are naturally transitive subgroups of S_6
- $PGL_2(5) \cong S_5$ and $PSL_2(5) \cong A_5$

Quintic cycle type of g	$ \mathfrak{c}_{ ho}(g) $	Sextic cycle type of g	$\mathfrak{c}_ u(g)$
5	4	51	4
41	3	411	3
32	3	6	5
311	2	33	4
221	2	2211	2
2111	1	222	3
11111	0	111111	0

So $D_5 \mid D_6$

Introduction	C.Dgroups
First example	

- $PGL_2(5)$ and $PSL_2(5)$ are naturally transitive subgroups of S_6
- $PGL_2(5) \cong S_5$ and $PSL_2(5) \cong A_5$

Quintic cycle type of g	$ \mathfrak{c}_{ ho}(g) $	Sextic cycle type of g	$\mathfrak{c}_{ u}(g)$
5	4	51	4
41	3	411	3
32	3	6	5
311	2	33	4
221	2	2211	2
2111	1	222	3
11111	0	111111	0

So $D_5 | D_6 \text{ (and } D_6 | D_5^3)$.

Examples

Introduction			
	Introc	inche	m

C.D.-group

Examples

First example

- $PGL_2(5)$ and $PSL_2(5)$ are naturally transitive subgroups of S_6
- $PGL_2(5) \cong S_5$ and $PSL_2(5) \cong A_5$

Quintic cycle type of g	$ \mathfrak{c}_{ ho}(g) $	Sextic cycle type of g	$\mathfrak{c}_{ u}(g)$
5	4	51	4
41	3	411	3
32	3	6	5
311	2	33	4
221	2	2211	2
2111	1	222	3
11111	0	111111	0

So $D_5 | D_6$ (and $D_6 | D_5^3$, and for A_5 : $D_6 | D_5^2$).

Introduction	

So $D_5 \mid D_6 \pmod{D_6} \mid D_5^3$, and for A_5 : $D_6 \mid D_5^2$). To compute sextic PGL ₂ (5)	
or $PSL_2(5)$ fields, search for quintic fields.	

Examples

First example

- $PGL_2(5)$ and $PSL_2(5)$ are naturally transitive subgroups of S_6
- $PGL_2(5) \cong S_5$ and $PSL_2(5) \cong A_5$

Quintic cycle type of g	$\mathfrak{c}_{ ho}(g)$	Sextic cycle type of g	$\mathfrak{c}_{ u}(g)$
5	4	51	4
41	3	411	3
32	3	6	5
311	2	33	4
221	2	2211	2
2111	1	222	3
11111	0	111111	0

C.D.-groups

Proof by example

No actual slide, do live demo.

More Groups

Definition

A finite group is p-inertial if it is an extension of a cyclic group of order prime to p by a p-group. A finite group is inertial if it is p inertial for some prime p

A finite group is inertial if it is p-inertial for some prime p.

Proposition (J, Roberts)

• To prove that the T-W principle holds for a group G, it suffices to prove it for all inertial subgroups of G

2 The tame-wild principle holds for $S_3 \times C_3$, $A_4 \times C_2$, $C_4 \times C_2$

- The tame-wild principle fails for $C_3 : C_4$ and $C_6 \times C_2$ (as Galois groups for a totally ramified extension)
- The tame-wild principle sometimes fails for Q_8 (e.g., ok for Galois group Q_8 with $K = \mathbb{Q}_2$, but not over other base fields)

C.D.-groups

Examples

Sextic Galois groups

See the LMFDB!

The tame-wild principle: a user's guide John Jones

Sextic twinning

 $Out(S_n)$ is trivial for $n \neq 6$

- $PGL_2(5) \le S_6$ with index 6
- S_6 acts on the left cosets giving rise to an outer automorphism $S_6 \rightarrow S_6$
- We refer to the corresponding resolvent as sextic twinning
- It operates on the level of sextic algebras

trod		

C.D.-groups

Examples

Sextic twinning

 $Out(S_n)$ is trivial for $n \neq 6$

- $PGL_2(5) \le S_6$ with index 6
- S_6 acts on the left cosets giving rise to an outer automorphism $S_6 \rightarrow S_6$
- We refer to the corresponding resolvent as sextic twinning
- It operates on the level of sextic algebras

Cycle	\mathfrak{c}_{ν}	(g)	
6	321	5	3
51	51	4	4
411	411	3	3
42	42	4	4
33	3111	4	2
2211	2211	2	2
222	21111	3	1
111111	111111	0	0

KSU SoMSS

TW with Galois theory: part 1

For $6T_9 \cong S_3 \times S_3$,

- "Shortest path" class field theory approach: C₃ extension of a V₄ field, but bounds are not good: D₄ | D₆ and D₁₂ | D₆² ⋅ D₄
- Instead, compute reducible $S_3 \times S_3$ polynomials, and then use twinning
- By Frobenius computation + tame-wild, $D_3 \mid D_6$

Cycle t	ype	\mathfrak{c}_{ν}	(g)
6	3	5	2
33	3	4	2
3111	3	2	2
6	21	5	1
222	21	3	1
2211	21	2	1
33	111	4	0
222	111	3	0
111111	111	0	0

C.D.-groups

TW with Galois theory: part 2

- $D_3 \mid D_6$
- if $p \parallel D_3$, then $p^2 \mid D_6$
- this filters out many cubic discriminants
- in pairing them up, can predict sextic discriminant contribution of tame primes
- relatively few combinations survive
- for those, compute the sextic and check its discriminant

Introduction		C.Dgroups	Examples
A standard example: 97	$T_{16}\cong C_3^2:D_4$		

- $9T_{16}$ is not a c.d. group, but T-W principle holds for all inertial subgroups
- Best route seems to be a C_3 extension of a D_4 octic

	Cycl	e types			$\mathfrak{c}_j(g)$	
<i>K</i> 9	K_8	<i>K</i> ₂₄	<i>K</i> 9	K_8	<i>K</i> ₂₄	$\frac{8}{3}\mathfrak{c}_9+\mathfrak{c}_8$
222	2222	222222222222	3	4	12	12
44	44	44444	6	6	18	22
2222	2222	222222222222	4	4	12	14.6
63	2222	66222222	7	4	16	22.6
63	2222	6666	7	4	20	$22.\overline{6}$
333	11	33333333	6	0	16	16
333	11	3333	6	0	8	16

So $|D_8| \le |D_9|^{4/3}$

Introduction		C.Dgroups	Examples
A standard example: 97	$T_{16}\cong C_3^2:D_4$		

- $9T_{16}$ is not a c.d. group, but T-W principle holds for all inertial subgroups
- Best route seems to be a C_3 extension of a D_4 octic

	Cycl	e types			$\mathfrak{c}_j(g)$	
<i>K</i> 9	K_8	<i>K</i> ₂₄	<i>K</i> 9	K_8	<i>K</i> ₂₄	$\frac{8}{3}\mathfrak{c}_9+\mathfrak{c}_8$
222	2222	222222222222	3	4	12	12
44	44	44444	6	6	18	22
2222	2222	2222222222222	4	4	12	14.6
63	2222	66222222	7	4	16	$22.\overline{6}$
63	2222	6666	7	4	20	$22.\overline{6}$
333	11	33333333	6	0	16	16
333	11	3333	6	0	8	16

So $|D_8| \le |D_9|^{4/3}$ and $|D_{24}| \le |D_9|^{8/3} \cdot |D_8|$

Stem Field/Galois Closure

For $G \leq S_n$, let

$$\alpha(G) = \min_{\sigma \in G - \{1\}} \frac{(n - \ell(\sigma))/n}{(|\sigma| - 1)/|\sigma|}$$

Theorem (J, Roberts)

If K is a degree n number field with
$$G = \text{Gal}(K) \leq S_n$$
,

$$\operatorname{grd}(K)^{\alpha(G)} \leq \operatorname{rd}(K).$$

Moreover,

$$\alpha(G) = 1 - \frac{\mathcal{F}(G)}{n}$$

where $\mathcal{F}(G)$ is the maximal number of fixed points of a non-identity element of G.

	tion	

C.D.-groups

Examples

Using Galois closure: a primitive nonic field

- Nonic fields with Galois group $9T_{15} = C_3^2 : C_8$ are primitive
- According to LMFDB, $\mathcal{F}(9T_{15}) = 1$
- So $\alpha(9T_{15}) = 1 \frac{1}{9} = \frac{8}{9}$
- Computing all such fields with $grd(K) \le 40$ gives all such with $rd(K) \le 40^{8/9} \approx 26.549$.
- This gives the first few examples of these fields
- Can repeat with totally real fields and a bigger bound to get the first example there (only other signature for this group).
- The grd computation does not need to worry about fancy discriminant bounds since any subfield *L* of *K*^{gal} satisfies $rd(L) \leq grd(K)$
- Using CFT, find C_3 extensions of C_8 fields

Thank you!

The tame-wild principle: a user's guide John

John Jones

