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Notation

Let

K = a number field

DK its discriminant

Kgal = the normal closure for K/Q
Gal(K) = Aut(Kgal/Q)

rd(K) = |DK |1/[K:Q]

grd(K) = rd(Kgal) (Galois root discriminant)

G = a subgroup of Sn

For a field Kj, we write abbreviate Dj = DKj
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Tabulating number fields: completeness

Given n and G, the set

{K ⊆ C | [K : Q] = n and Gal(K) = G and . . .}

is finite with any of the following restrictions
1 Given B ∈ Z, DK = B
2 Given a finite set of primes S, {p : p | DK} ⊆ S
3 Given a bound B ∈ Z, |DK | ≤ B (equiv. rd(K) ≤ B′)
4 Given a bound B ∈ R, grd(K) ≤ B

We will focus mainly on 3.
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Where complete tables of number fields come from

“Hunter search” (bounds on coefficients of a defining polynomial)

Class field theory

Galois theory
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Where complete tables of number fields come from

“Hunter search” (bounds on coefficients of a defining polynomial)

Class field theory

Galois theory

We may have to relate discriminants of one field to another, e.g.,
K12= Kgal

4 = Kgal
6
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Principles

What is a principle in mathematics?

Extrapolating from the “local-global principle”,

Definition
A principle is a mathematical assertion which . . .
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Algebras and Permutation Representations

Base field K: a finite extension of Q or Qp

Algebra: A ∼=
∏r

i=1 Ki, each Ki a field, [Ki : K] <∞
Equivalently: A ∼= K[x]/〈f 〉
(where f is non-constant and separable, but not necessarily irreducible)

DA/K =
∏

DKi/K

Given a Galois extension M/K, 1-1 correspondence (up to isomorphism):

Algebras A/K such that Agal ⊆ M gives a permutation representation
ρ : Gal(M/K)→ Sn, n = [A : K]

Permutation representation ρ : Gal(M/K)→ Sn gives an algebra Aρ
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Tame Extensions

A a degree n algebra over K

p a maximal ideal of OK s.t. A is tame above p

Discriminant exponent: cp = vp(DA/K)

Tame implies inertia subgroup is cyclic: Ip = 〈σ〉 ≤ Sn

cycle type of σ: n1, . . . n`(σ) gives

cp =
∑

j

(nj − 1) = n− `(σ)

Given ρ : G→ Sn and σ ∈ G, define formal tame discriminant exponent:

cρ(σ) = n− `(ρ(σ))
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Tame-wild principle

Definition
Given ρ and ν, permutation representations of G, define

ρ -t ν ⇐⇒ ∀g ∈ G, cρ(g) ≤ cν(g).

Definition
The local (resp. global) tame-wild principle holds for a group G if for every
Galois extension L/K of local (resp. global) number fields with
Gal(L/K) = G and pair of permutation representations ρ and ν on G,

ρ -t ν =⇒ DAρ/K | DAν/K .
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c.d.-groups

Definition
A finite group is completely decomposible if every non-identity element is
contained in exactly one maximal cyclic subgroup.

Examples of c.d.-groups:

cyclic groups Cn

dihedral groups Dn

groups of exponent p

Frobenius groups of the form Fp = Cp : Cp−1

PGL2(q), q odd

Subgroup or quotient of a c.d.-group (so, e.g., PSL2(q) with q odd)

This includes S5 ∼= PGL2(5) and A6 ∼= PSL2(9)
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c.d.-groups

Definition
A finite group is completely decomposible if every non-identity element is
contained in exactly one maximal cyclic subgroup.

Examples of c.d.-groups:
cyclic groups Cn

dihedral groups Dn

groups of exponent p
Frobenius groups of the form Fp = Cp : Cp−1

PGL2(q), q odd
Subgroup or quotient of a c.d.-group (so, e.g., PSL2(q) with q odd)

This includes S5 ∼= PGL2(5) and A6 ∼= PSL2(9)

Proposition (J, Roberts)
If G is a c.d.-group, then the local and global tame-wild principles hold for G.
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First example

PGL2(5) and PSL2(5) are naturally transitive subgroups of S6

PGL2(5) ∼= S5 and PSL2(5) ∼= A5

Quintic cycle type of g cρ(g) Sextic cycle type of g cν(g)
5 4 51 4
41 3 411 3
32 3 6 5
311 2 33 4
221 2 2211 2
2111 1 222 3
11111 0 111111 0
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5).
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First example

PGL2(5) and PSL2(5) are naturally transitive subgroups of S6

PGL2(5) ∼= S5 and PSL2(5) ∼= A5

Quintic cycle type of g cρ(g) Sextic cycle type of g cν(g)
5 4 51 4
41 3 411 3
32 3 6 5
311 2 33 4
221 2 2211 2
2111 1 222 3
11111 0 111111 0

So D5 | D6 (and D6 | D3
5, and for A5: D6 | D2

5). To compute sextic PGL2(5)
or PSL2(5) fields, search for quintic fields.
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Proof by example

No actual slide, do live demo.
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More Groups

Definition
A finite group is p-inertial if it is an extension of a cyclic group of order prime
to p by a p-group.
A finite group is inertial if it is p-inertial for some prime p.

Proposition (J, Roberts)
1 To prove that the T-W principle holds for a group G, it suffices to prove it

for all inertial subgroups of G
2 The tame-wild principle holds for S3 × C3, A4 × C2, C4 × C2

The tame-wild principle fails for C3 : C4 and C6 × C2 (as Galois groups
for a totally ramified extension)

The tame-wild principle sometimes fails for Q8 (e.g., ok for Galois group
Q8 with K = Q2, but not over other base fields)

The tame-wild principle: a user’s guide John Jones SoMSS



Introduction Statement C.D.-groups Examples

Sextic Galois groups

See the LMFDB!
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Sextic twinning

Out(Sn) is trivial for n 6= 6

PGL2(5) ≤ S6 with index 6

S6 acts on the left cosets giving rise to an outer automorphism S6 → S6

We refer to the corresponding resolvent as sextic twinning

It operates on the level of sextic algebras
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Sextic twinning

Out(Sn) is trivial for n 6= 6

PGL2(5) ≤ S6 with index 6

S6 acts on the left cosets giving rise to an outer automorphism S6 → S6

We refer to the corresponding resolvent as sextic twinning

It operates on the level of sextic algebras
Cycle type cν(g)

6 321 5 3
51 51 4 4
411 411 3 3
42 42 4 4
33 3111 4 2
2211 2211 2 2
222 21111 3 1
111111 111111 0 0
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TW with Galois theory: part 1

For 6T9 ∼= S3 × S3,
“Shortest path” class field theory approach: C3 extension of a V4 field,
but bounds are not good: D4 | D6 and D12 | D2

6 · D4

Instead, compute reducible S3 × S3 polynomials, and then use twinning
By Frobenius computation + tame-wild, D3 | D6

Cycle type cν(g)
6 3 5 2
33 3 4 2
3111 3 2 2
6 21 5 1
222 21 3 1
2211 21 2 1
33 111 4 0
222 111 3 0
111111 111 0 0
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TW with Galois theory: part 2

D3 | D6

if p || D3, then p2 | D6

this filters out many cubic discriminants

in pairing them up, can predict sextic discriminant contribution of tame
primes

relatively few combinations survive

for those, compute the sextic and check its discriminant
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A standard example: 9T16 ∼= C2
3 : D4

9T16 is not a c.d. group, but T-W principle holds for all inertial subgroups

Best route seems to be a C3 extension of a D4 octic

Cycle types
K9 K8 K24

222 2222 222222222222
44 44 444444

2222 2222 222222222222
63 2222 66222222
63 2222 6666

333 1...1 33333333
333 1...1 3333

cj(g)
K9 K8 K24

8
3c9 + c8

3 4 12 12
6 6 18 22
4 4 12 14.6
7 4 16 22.6
7 4 20 22.6
6 0 16 16
6 0 8 16

So |D8| ≤ |D9|4/3
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A standard example: 9T16 ∼= C2
3 : D4

9T16 is not a c.d. group, but T-W principle holds for all inertial subgroups

Best route seems to be a C3 extension of a D4 octic

Cycle types
K9 K8 K24

222 2222 222222222222
44 44 444444

2222 2222 222222222222
63 2222 66222222
63 2222 6666

333 1...1 33333333
333 1...1 3333

cj(g)
K9 K8 K24

8
3c9 + c8

3 4 12 12
6 6 18 22
4 4 12 14.6
7 4 16 22.6
7 4 20 22.6
6 0 16 16
6 0 8 16

So |D8| ≤ |D9|4/3 and |D24| ≤ |D9|8/3 · |D8|
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Stem Field/Galois Closure

For G ≤ Sn, let

α(G) = min
σ∈G−{1}

(n− `(σ))/n
(|σ| − 1)/|σ|

Theorem (J, Roberts)

If K is a degree n number field with G = Gal(K) ≤ Sn,

grd(K)α(G) ≤ rd(K).

Moreover,

α(G) = 1− F(G)

n
where F(G) is the maximal number of fixed points of a non-identity element
of G.
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Using Galois closure: a primitive nonic field

Nonic fields with Galois group 9T15 = C2
3 : C8 are primitive

According to LMFDB, F(9T15) = 1

So α(9T15) = 1− 1
9 = 8

9

Computing all such fields with grd(K) ≤ 40 gives all such with
rd(K) ≤ 408/9 ≈ 26.549.

This gives the first few examples of these fields

Can repeat with totally real fields and a bigger bound to get the first
example there (only other signature for this group).

The grd computation does not need to worry about fancy discriminant
bounds since any subfield L of Kgal satisfies rd(L) ≤ grd(K)

Using CFT, find C3 extensions of C8 fields
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The end

Thank you!
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