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Facilitating adaptation

 In the real world, 
the adaptive 
landscape 
fluctuates like a 
“choppy sea”.



What do organisms adapt?
• Phenotype: the set of 

observable 
characteristics of an 
organism resulting from 
the interaction of its 
genes with other 
factors, such as the 
environment



How do organisms adapt?
• Natural selection on the 

genes
• Developmental plasticity 

(within a generation)
• Maternal effects: the 

influence of the phenotype 
(e.g. body size) of the mother 
on her offspring independent 
of the inherited genes



Why are maternal effects important?

• They may...
–Be implicated in human obesity
–Boost the initial colonisation 

ability of plants
– Increase early survival in insects 
–Expand potential for evolution 

in vertebrates
–Provide a flexible way of 

maximising fitness in a 
changing environment



Bypassing genetic constraints

• Maternal effects are 
“epigenetic influences of 
parental phenotypes on 
offspring”
– Badyaev (2009) Phil. Trans. Roy. Soc. B 

364:1125–1141 doi: 10.1098/rstb.2008.0285.

• Enable rapid fine-tuning of 
the phenotype in response 
to a changing environment.



Questions

• Do maternal effects 
influence the rate of 
adaptation to environmental 
change? 

• Can maternal effects be 
adaptive?





If a rapid response to environmental 
upheaval is a critical coping mechanism in 

evolutionary biology, then why do 
estimates of  maternal 
inheritance  frequently 
suggest it does not accelerate but 

retards adaptation?
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A quantitative genetic model

Add fixed maternal effects to Lande’s (2009) reaction norm that describes the 
dependence of offspring phenotype on genes and the environment

Gaussian population mean fitness around an optimal phenotype that is a 
linear function of the environment
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m>0 speeds up adaptation 
to new environment

−10  0    100  10000

A

A+B  

generations

ph
en

ot
yp

e

−10  0    100  10000

1

generations

lo
g(

m
ea

n 
fit

ne
ss

)

−10  0    100  10000
0

  B

B

generations

pl
as

tic
ity

−10  0    100  10000

A

A+B  

generations

ad
di

tiv
e 

ge
ne

tic
 c

om
po

ne
nt

ρτ

δ

δ

Figure 1: Expected evolution of the average phenotype E(z̄t), log mean fitness log(E(W̄ )),

plasticity E(b̄) and the additive genetic component E(ā) in the presence (dark grey, m = 0.45,

light grey, m = 0.8) and absence (black, m = 0) of fixed maternal inheritance via the maternal

effect coefficient m. The values of the model parameters follow [8]: A = 0, B = 2, δ = 10,

ρτ = 0.25, σ2
e = 0.5, σξ = 2.0, Gaa = 0.5, Gbb = 0.045, ω2 = 50.0 and Wmax = 1.0.
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m>0 can provoke oscillations 
in the phenotypic dynamics
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No difference to expected 
equilibrium phenotypes
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m>0 reduces fitness at 
equilibrium
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m>0 lowers expected equilibrium 
additive genetic component
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m>0 reduces expected 
equilibrium plasticity
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m>0 reduces transient 
peak in plasticity
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Phenotypic oscillations driven by 
phenotypic plasticity
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Stable environments favour negative m
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‣ m>0 accelerates adaptation to a novel environment.
‣ m<0 maximises fitness in relatively stable environments.

‣ Hoyle, R.B. & Ezard, T.H.G. (2012) The benefits of maternal effects in novel 
and in stable environments. J. R. Soc. Interface, 9:2403-2413, doi: 10.1098/
rsif.2012.0183

‣ m>0 optimal if environmental change is predictable across generations 
(and there is time to adapt)
‣ T.H.G. Ezard, R. Prizak and R.B. Hoyle [2014] The fitness implications of 

adaptation via phenotypic plasticity and maternal effects. Funct. Ecol., 
28:693-701, doi:10.1111/1365-2435.12207.

‣ Evolved maternal effects speed up the response to sudden 
environmental change, improve fitness when environmental change is 
predictable, and may facilitate the evolution of phenotypic plasticity
‣ B. Kuijper and R.B. Hoyle [2014] An evolutionary model of maternal effects.
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m > 0 favoured where environment is more predictable 
(and you can adapt fast enough)

𝜏=0.05

𝜏=0.20

𝜏=0.35

m>>0,	  no	  lag	  effect	   m≈0,	  larger	  for	  shorter	  𝜏
m≈0,	  lag	  changes	  
max	  fitness	  only

lag (fraction of a generation) 
between development and selection
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lower	  m	  in	  less	  
predictable	  
environments

op>mal	  
phenotype
far	  from	  peak	  
plas>city

E(a)	  varies	  with	  m	  
owing	  to	  nonergodicity	  of	  
evolu>onary	  dynamics	  
under	  stochas>c	  forcing

Trade-off between within generation 
plasticity and transgenerational effects
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Nonergodicity of evolutionary 
dynamics under stochastic forcing



‣ m>0 accelerates adaptation to a novel environment.
‣ m<0 maximises fitness in relatively stable environments.

‣ Hoyle, R.B. & Ezard, T.H.G. (2012) The benefits of maternal effects in novel 
and in stable environments. J. R. Soc. Interface, 9:2403-2413, doi: 10.1098/
rsif.2012.0183

‣ m>0 optimal if environmental change is predictable across generations 
(and there is time to adapt)
‣ T.H.G. Ezard, R. Prizak and R.B. Hoyle [2014] The fitness implications of 

adaptation via phenotypic plasticity and maternal effects. Funct. Ecol., 
28:693-701, doi:10.1111/1365-2435.12207.

‣ Evolved maternal effects speed up the response to sudden 
environmental change, improve fitness when environmental change is 
predictable, and may facilitate the evolution of phenotypic plasticity
‣ B. Kuijper and R.B. Hoyle [2014] An evolutionary model of maternal effects.
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Evolving maternal effects

Now let maternal effects vary across the population and be subject to 
selection:

Assumptions
• Maternal effects are under offspring control in generation t. (Doesn’t seem 

to make much difference if they are under maternal control.)
• Gam=Gbm=0 and Gmm is constant
• Everything is multivariate normally distributed
• There are costs of both plasticity and maternal effects

Let mt evolve according to 

Fully stochastic simulations (no expectation over distribution of environments)
Details are technically messy, involving updates for zt and its covariances and 
variance, but more or less tractable

zt = at + bt✏t�⌧ +mtz
⇤
t�1 + et

�m̄ = Gmm
@

@m
ln W̄



Extraordinary new environment (unpredictable)

• maternal effect coefficient initially negative, evolves to be positive at    
environmental shift, and then back to negative at long times

•



Extraordinary new environment (unpredictable)

• fitness returns quicker if both plasticity and maternal effects present, but long-
term fitness is better with plasticity only



Extraordinary new environment (unpredictable)

• plasticity evolves to larger values if maternal effects also present
• additive genetic component evolves to larger values if maternal effects present



Sinusoidal environment (predictable)

• maternal effects larger (and positive) when plasticity also present
• plasticity smaller when maternal effects present



Sinusoidal environment (predictable)

• additive genetic component smaller in presence of plasticity



Sinusoidal environment (predictable)

• mean fitness highest when both plasticity and maternal effects present
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Evolving maternal effects summary

Maternal effects evolve to be positive at environmental shift and 
then back to negative when the change is complete
When change is predictable, then a mixture of maternal effects and 
phenotypic plasticity is optimal
Maternal effects and phenotypic plasticity may each facilitate the 
evolution of the other



‣ m>0 accelerates adaptation to a novel environment.
‣ m<0 maximises fitness in relatively stable environments.

‣ Hoyle, R.B. & Ezard, T.H.G. (2012) The benefits of maternal effects in novel 
and in stable environments. J. R. Soc. Interface, 9:2403-2413, doi: 10.1098/
rsif.2012.0183

‣ m>0 optimal if environmental change is predictable across generations 
(and there is time to adapt)
‣ T.H.G. Ezard, R. Prizak and R.B. Hoyle [2014] The fitness implications of 

adaptation via phenotypic plasticity and maternal effects. Funct. Ecol., 
28:693-701, doi:10.1111/1365-2435.12207.

‣ Evolved maternal effects speed up the response to sudden 
environmental change, improve fitness when environmental change is 
predictable, and may facilitate the evolution of phenotypic plasticity
‣ B. Kuijper and R.B. Hoyle [2014] An evolutionary model of maternal effects.
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