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For intuition: building a hierarchical free field over Rd

Start with fixing a valency p 2 N, for concreteness we choose p = 3

Now for every ”scale” j 2 Z we pave Rd with blocks of side length pj

j = −1 j = 0 j = 1

Define a sequence of independent Gaussian random fields {ξj (x)}j2Z

For each j 2 Z we set ξj (x) =
∑
∆2Bj

α∆1∆(x) where {α∆}∆2Bj are i.i.d.

N (0, 1) Gaussian r.v.’s conditioned to satisfy the following:

For all �∆ 2 Bj+1,
∑
∆2Bj

∆��∆

α∆ = 0
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Building a hierarchical free field

Let κ 2 (0, d2 ) be a scaling parameter and define the random distribution φ via

"φ :=
∞∑

j=−∞ p−κjξj "

φ is self similar: φ(x)
d
= p−κφ(p−1x).

For x 6= y let lx,y 2 Z be the smallest integer j such that x , y 2 ∆ for some
∆ 2 Bj - we then define

|x − y | = p−κlx,y in which case E[φ(x)φ(y)] ∼ p−2κlx,y =
1

|x − y |2κ

Definition of | � | and φ is natural if Qd
p is used as the space-time - in which case φ

is given by the Gaussian measure on S 0(Qd
p ) determined by the covariance

(−∆)−
d−2κ

2
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The hierarchical φ4 model

Following Brydges, Mitter, Scoppola CMP 2003 we fix d = 3, κ = 3−ε
4 so

our covariance is given by

C−∞ = (−∆)−
3+ε
4 , ε 2 (0, 1]

Model of interest is a critical φ4 model

dν =
1

Z
exp

"
−

∫
Q3

p

d3x g φ4(x) + µ φ2(x)

#
dµC−∞(φ)

dµC−∞ is the law of the Gaussian field with covariance C−∞
g > 0, µ < 0
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UV and IR cut-offs

UV Regularization: Replace original φ with truncated field

φr =
∑∞

j=r p
−κjξj , denote corresponding covariance Cr

Remark: φr can be seen as a lattice field.

IR Regularization: Restrict interaction integral to finite volume

Λs := {x 2 Q3
p : |x | � ps }

dνr ,s =
1

Zr ,s
exp

"
−

∫
Λs

d3x p−εrg φ4
r (x) + p−

3+ε
2

rµ φ2
r (x)

#
dµCr (φ)

Removing UV cut-off (scaling limit) means taking r → −∞, removing

IR cut-off (thermodynamic limit) means taking s →∞.
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Setting things up for RG
Fix L = p`, ` a positive integer (will need to be taken large), this corresponds to
the “magnification ratio” of the RG.

Key fact that motivates second part of the talk: RG will establish control over νr ,s
along sparse subsequences (in r and s) where µ is carefully chosen as a function of
g With this we will be restricted to subsequences `r , `s. Will write r , s to denote
`r and `s.
We introduce the RG by computing partition functions Zr ,s . First we rescale so

the UV cut-off is at scale 0 - using that φr (x)
d
= L−rκφ0(L

−rx) one has:

Zr ,s :=

∫
exp

2
64− ∫

Λs

d3x L−εrg φ4
r (x) + L− 3+ε

2 rµ φ2
r (x)

3
75 dµCr

(φr )

=

∫
exp

2
64− ∫

Λ`(s−r)

d3x g φ4
0(x) + µ φ

2
0(x)

3
75 dµC0

(φ0)

=

∫ ∏
∆2B0

∆�Λ`(s−r)

F0(φ0,∆)dµC0
(φ0)
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Integrating out short range degrees of freedom

φ0(x) =
`−1∑
j=0

p−κjξj (x)︸ ︷︷ ︸
ζ(x)

+φ`(x)

ζ(x) encodes short-range dependence, independent across different L-blocks.

φ`(x) encodes long-range dependence, constant over each L-block.

The RG transformation involves integrating out ζ and rescaling φ` back to φ0 to
generate a sequence of effective potentials:

∫ ∏
∆2B0

∆�Λ`(s−r−j)

Fj (φ0,∆)dµC0
(φ0) =

∫ ∏
∆2B0

∆�Λ`(s−r−j−1)

�
Fj+1(φ0,∆)e

δbj+1

�
dµC0

(φ0)

Where the new functional is given by:

Fj+1(φ0,∆) = e−δbj+1

∫ ∏
∆ 0
2B0

∆ 0
�L∆

Fj (L
−κφ0,∆ + ζ∆ 0) dµΓ (ζ)
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∫ ∏
∆2B0

∆�Λ`(s−r−j−1)

�
Fj+1(φ0,∆)e

δbj+1

�
dµC0

(φ0)

Where the new functional is given by:

Fj+1(φ0,∆) = e−δbj+1

∫ ∏
∆ 0
2B0

∆ 0
�L∆

Fj (L
−κφ0,∆ + ζ∆ 0) dµΓ (ζ)
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The RG Flow

Fj(φ∆) = exp
h
−gj φ

4
∆ − µj φ

2
∆

i
+Rj(φ∆)→ (gj , µj ,Rj) 2 (0,∞)�R�X

gj+1 =Lεgj − a(L, ε)L2εg2
j + ξg (gj , µj ,Rj)

µj+1 =L
(3+ε)

2 µj + ξµ(gj , µj ,Rj)

||Rj+1|| �O(1)L−
1
4 ||Rj ||+ ξR(gj , µj ,Rj)

Can show existence of non-trivial hyperbolic fixed point of RG

denoted (g�, µ�,R�) with g� > 0, along with its local stable manifold

In particular there is an analytic function µcrit(�) defined on a small

non-empty neighborhood U � (0,∞) such that

lim
n→∞RGn [(g , µcrit(g), 0)] = (g�, µ�,R�)

For g 2 U we choose µ = µcrit(g) when defining νr ,s
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Sketch of RG Phase Portrait
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The Flow of Observables
To construct concrete measures corresponding to the φ field and N [φ2] field we control
the following quantity for suitable test functions f and j :

Zr,s(f , j)

Zr,s(0, 0)
= Er,s

h
eφ(f )+N [φ2](j)

i
where

Zr,s(f , j) :=

∫
exp

2
64− ∫

Λs

d3x L−εrgφ4
r (x) + L− 3+ε

2
rµ`,critφ

2
r (x)

3
75

� exp

2
64 ∫
Λs

d3x φr (x)f (x) + L−ηr
�
φ2

r (x) − L−(3−2κ)rγ`,0
�

j(x)

3
75 dµCr (φr )

Observables require us to work in a larger dynamical system with an RG
transformation that acts on a space of spatially varying potentials
Constructing the composite field N [φ2] requires a correction due to eigenvalue of
RG` at the non-trivial fixed point along the unstable manifold, a partial
linearization theorem in the direction of the unstable manifold is used to show that
with this correction one has constructed a non-zero, non-infinite composite field.
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Main Result

Theorem (Abdesselam, C., Guadagni)

For any p prime, for ` sufficiently large, and for ε sufficiently small there exist a
non-empty neighborhood U � (0,∞), analytic map µ`,crit(�) on U such that

The measures ν`r ,`s converge to a limiting measure ν` in the sense of moments as
r → −∞, s →∞
The measure ν` is translation invariant, rotation invariant, and non-Gaussian.

There is a non-zero normal ordered field for N`[φ
2] for ν` which is translation and

rotational invariant.

Additionally the fields constructed have the following partial scale invariance
(which hold in the two field’s joint law) - there exists η` > 0 such that:�

φ(x),N [φ2](y)
�

d
=
�

L−κφ(L−1x), L−2κ−η`N [φ2](L−1y)
�

Earlier Work:
(Bleher, Sinai 73), (Collet, Eckmann ’77), (Gawedzki, Kupianien 83 & 84), (Bleher,
Major 87): Hierarchical model
(Brydges, Mitter, Scoppola 03): Euclidean model, non-trivial fixed point
(Abdesselam 06): Euclidean model, construction of a trajectory between Gaussian and
non-trivial fixed points
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Additionally the fields constructed have the following partial scale invariance
(which hold in the two field’s joint law) - there exists η` > 0 such that:�

φ(x),N [φ2](y)
�

d
=
�

L−κφ(L−1x), L−2κ−η`N`[φ
2](L−1y)

�

Goal of what follows is to prove the following - if one applies the above
construction for some sufficiently large ` and also `+ 1

then the functions µ`,crit
and µ`+1,crit must coincide on the intersection of their domains.

By passing to a common subsequence of scales it would follow that ν` = ν`+1

which means this measure is fully scale invariant. Easy to check that this also
forces η` = η`+1 and that the laws of N`[φ

2] and N`+1[φ
2] must coincide.

Ajay Chandra (UVA) Full Scale Invariance May 30, 2014 14 / 20



Main Result
Theorem (Abdesselam, C., Guadagni)

For any p prime, for ` sufficiently large, and for ε sufficiently small there exists a
non-empty neighborhood U � (0,∞), analytic map µ`,crit(�) on U such that

The measures ν`r ,`s converge to a limiting measure ν` in the sense of moments as
r → −∞, s →∞
The measure ν` is translation invariant, rotation invariant, and non-Gaussian.

There is a non-zero normal ordered field for N`[φ
2] for ν` which is translation and

rotational invariant.

Additionally the fields constructed have the following partial scale invariance
(which hold in the two field’s joint law) - there exists η` > 0 such that:�

φ(x),N [φ2](y)
�

d
=
�

L−κφ(L−1x), L−2κ−η`N`[φ
2](L−1y)

�

Goal of what follows is to prove the following - if one applies the above
construction for some sufficiently large ` and also `+ 1 then the functions µ`,crit
and µ`+1,crit must coincide on the intersection of their domains.

By passing to a common subsequence of scales it would follow that ν` = ν`+1

which means this measure is fully scale invariant. Easy to check that this also
forces η` = η`+1 and that the laws of N`[φ

2] and N`+1[φ
2] must coincide.

Ajay Chandra (UVA) Full Scale Invariance May 30, 2014 14 / 20



Main Result
Theorem (Abdesselam, C., Guadagni)

For any p prime, for ` sufficiently large, and for ε sufficiently small there exists a
non-empty neighborhood U � (0,∞), analytic map µ`,crit(�) on U such that

The measures ν`r ,`s converge to a limiting measure ν` in the sense of moments as
r → −∞, s →∞
The measure ν` is translation invariant, rotation invariant, and non-Gaussian.

There is a non-zero normal ordered field for N`[φ
2] for ν` which is translation and

rotational invariant.

Additionally the fields constructed have the following partial scale invariance
(which hold in the two field’s joint law) - there exists η` > 0 such that:�

φ(x),N [φ2](y)
�

d
=
�

L−κφ(L−1x), L−2κ−η`N`[φ
2](L−1y)

�

Goal of what follows is to prove the following - if one applies the above
construction for some sufficiently large ` and also `+ 1 then the functions µ`,crit
and µ`+1,crit must coincide on the intersection of their domains.

By passing to a common subsequence of scales it would follow that ν` = ν`+1

which means this measure is fully scale invariant.

Easy to check that this also
forces η` = η`+1 and that the laws of N`[φ

2] and N`+1[φ
2] must coincide.

Ajay Chandra (UVA) Full Scale Invariance May 30, 2014 14 / 20



Main Result
Theorem (Abdesselam, C., Guadagni)

For any p prime, for ` sufficiently large, and for ε sufficiently small there exists a
non-empty neighborhood U � (0,∞), analytic map µ`,crit(�) on U such that

The measures ν`r ,`s converge to a limiting measure ν` in the sense of moments as
r → −∞, s →∞
The measure ν` is translation invariant, rotation invariant, and non-Gaussian.

There is a non-zero normal ordered field for N`[φ
2] for ν` which is translation and

rotational invariant.

Additionally the fields constructed have the following partial scale invariance
(which hold in the two field’s joint law) - there exists η` > 0 such that:�

φ(x),N [φ2](y)
�

d
=
�

L−κφ(L−1x), L−2κ−η`N`[φ
2](L−1y)

�

Goal of what follows is to prove the following - if one applies the above
construction for some sufficiently large ` and also `+ 1 then the functions µ`,crit
and µ`+1,crit must coincide on the intersection of their domains.

By passing to a common subsequence of scales it would follow that ν` = ν`+1

which means this measure is fully scale invariant. Easy to check that this also
forces η` = η`+1 and that the laws of N`[φ

2] and N`+1[φ
2] must coincide.

Ajay Chandra (UVA) Full Scale Invariance May 30, 2014 14 / 20



Sketch of Proof:
Proceed by contradiction:
We write µ1(�) = µcrit,`(�), µ2(�) = µcrit,`+1(�) and suppose that µ1(�) > µ2(�)
on some open interval.

RG can be applied to take s →∞ with r fixed at 0. Denoting by L the “lattice”
formed by B0, the earlier RG result now establishes the construction of of
continuous spin Ising ferromagnets at criticality on the lattice L with interaction

Jx,y = J(x − y) = C−1
0 (x − y) > 0, J(x − y) ∼

1

|x − y |
9+ε
2

,

and a φ4 type single spin measure determined by g , µ

dρ(s) = exp
h
−gs4 − (µ+ C−1

0 (0))s2
i

ds

Formally define measures on lattice field configurations φ = {φx }x2L via

dν[g , µ, β, h](φ) =
1

Z
exp

"
β
∑

x,y2L

Jx,yφxφy +
∑
x2L

hφx

# ∏
x2L

dρ(φx )

!
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Sketch of Proof:

Earlier main result can then be seen to imply that for β = 1, h = 0 (suppressed)
and for both i = 1 and 2 one has both

inf
x2L

hφ0φx iν[g ,µi (g)] = 0 absence of long range order (LRO)∑
x2L

hφ0φx iν[g ,µi (g)] =∞ infinite susceptability

Griffiths’ Second Inequality then implies existence of an intermediate phase in the
mass parameter, that is both equations above would be expected to hold for all
(g , µ) with µ 2 (µ1(g), µ2(g)). In fact we would have an open ball corresponding
to an intermediate phase in the (g , µ) plane.

Actually intermediate phase takes more work - our RG is restricted to constructing
infinite volume limits with parameters on stable manifold, not able to construct
general infinite volume limits. Solution: switch from Free Boundary conditions to
Half-Dirichlet boundary conditions so that we can use Griffiths II to construct
infinite volume limits.

Scaling the field allows us translate this into an intermediate phase in the β
parameter for fixed g , µ.
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Should be a contradiction as transition of φ4 Ising ferromagnets should be sharp.
In particular if one fixes g , µ (suppressed) and h = 0 and defines

βLRO = inf

{
β| inf

x2L
hφ0φx iµ[β,0] > 0

}
βχ = sup

{
β|
∑
x2L

hφ0φx iµ[β,0] <∞
}

βχ � βLRO is immediate, βχ = βLRO indicates sharpness of transition.

Essentially already proven! For fixed g , µ define:

βm = inf

{
β| lim

h→0+
hφ0iν[β,h] > 0

}

Theorem (Aizenman, Barsky, Fernandez 1987)

For Ising ferromagnets with translation invariant interactions and single spin measures in
Griffiths-Simon class one has

βm = βχ

Here βm � βχ is immediate (fluctuation dissipation relation). Our proof is done if
we show that spontaneous magnetization implies LRO, that is βLRO � βm.

Natural way to show this - classifying Gibbs measures/pure states for our Ising
models. Defining Gibbs measures in this context takes some care - unbounded spin
system with interactions of slow decay.
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Griffiths-Simon class one has

βm = βχ

Here βm � βχ is immediate (fluctuation dissipation relation). Our proof is done if
we show that spontaneous magnetization implies LRO, that is βLRO � βm.

Natural way to show this - classifying Gibbs measures/pure states for our Ising
models. Defining Gibbs measures in this context takes some care - unbounded spin
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In particular (i) interaction is not well defined for arbitrary boundary conditions,
(ii) need some compactness to prove convergence of measures

Key tools → Ruelle’s superstablity estimates and tempered Gibbs measures [Ruelle
1970], [Lebowitz, Presutti 1976]

Temperedness: Define:

U∞ =

∞[
n=1

{S 2 RL| |Sx |
2 � n2 log(|x |+ 1)}

Measures µ supported on U∞ are called tempered measures.

For boundary conditions in U∞ interaction makes sense.

Superstability: Use exponential factors in dρ to establish exponential bounds on
finite volume Gibbs measures that are are uniform in volume.
These bounds give: compactness of finite volume measures, existence of pressure
independent of boundary conditions

Can also construct analogs of + and − boundary conditions along with
corresponding extremal measures ν[β, h,+], ν[β, h,−]
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Sketch of Proof that Spontaneous Magnetization ⇒ LRO for β > βm: [Lebowitz 76
for classical Ising]

Show limh→0+ ν[β, h] = ν[β, 0,+]. Then spontaneous magnetization ⇒ multiple
Gibbs measures
Let pΛ(β, S) be the pressure at h = 0 in volume Λ with boundary condition S ,
and p(β) be the corresponding infinite volume limit.

For all but countably many β one has p(β) differentiable. For such β one has:

lim
Λ→L

dpΛ
dβ

(β, S) =
dp

dβ
(β)

For such β one can show that for all Gibbs measures ν one has:

lim
Λ→L

∫
U∞

dpΛ
dβ

(β, S)dν(S) =
∑

x2L\0

J(x)hφ0φx iν =
dp

dβ
(β, 0)
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∑
x2L\0 J(x)hφ0φxiν the same for all Gibbs measures ν

⇔ 8x 6= 0, hφ0φxiν the same for all Gibbs measures ν.

We then have:

hφ0φxiν[β,0] = hφ0φxiν[β,0,+]

= hφ0, φxi
T
ν[β,0,+] + hφ0i

2
ν[β,0,+] � hφ0i

2
ν[β,0,+] > 0

Result extends to all β > βm by Griffiths II.

This generates the contradiction (ruling out our intermediate phase)

so full scale invariance is proved.

Thanks for listening to my talk and thanks to the organizers for a

great conference!
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