Critical correlation functions for the 4-dimensional n-component $|\varphi|^{4}$ model

Alexandre Tomberg
joint work with R. Bauerschmidt and G. Slade

Warwick
May 29, 2014

Outline

1. Model and results

- Definition of the model
- Main results

2. Overview of the RG method

- Approximation by the free field

■ Progressive integration
3. Perturbation theory calculations

- Flow equations
- Sketch of the proof for $n=1$

Definition of the model

- We fix a discrete torus $\Lambda=\Lambda_{N}=\mathbb{Z}^{4} / L^{N} \mathbb{Z}^{4}$.
- For every $x \in \Lambda$, we consider n-component continuous spins $\varphi_{x} \in \mathbb{R}^{n}$.
- Given $g>0, \nu \in \mathbb{R}$, let $d \varphi_{x}$ be the Lebesgue measure on \mathbb{R}^{n}, we define the $|\varphi|^{4}$ probability measure as

$$
\frac{1}{Z} e^{-\sum_{x \in \Lambda}\left(\frac{1}{2} \varphi_{x}(-\Delta \varphi)_{x}+\frac{\nu}{2}|\varphi|^{2}+\frac{g}{4}|\varphi|^{4}\right)} \prod_{x \in \Lambda} d \varphi_{x}
$$

- Note that for $n=1$, this is a continuous version of the Ising model.
- We use $\langle\cdot\rangle_{g, \nu, N}$ to denote the expectation with respect the above measure. We are interested in critical correlation functions, in the infinite volume limit $\langle\cdot\rangle_{g, \nu}=\lim _{N \rightarrow \infty}\langle\cdot\rangle_{g, \nu, N}$.
- We also write $\langle F ; G\rangle=\langle F G\rangle-\langle F\rangle\langle G\rangle$, both in finite and infinite volume, for the correlation or truncated expectation of F, G.

Critical ν_{c}

- We define the susceptibility as the limit

$$
\chi(g, \nu, n)=\lim _{N \rightarrow \infty} \sum_{x \in \Lambda_{N}}\left\langle\varphi_{0}^{1} \varphi_{x}^{1}\right\rangle_{g, \nu, N} .
$$

Theorem (BBS 2014)

For $g>0$ small enough, there exists $\nu_{c}=\nu_{c}(g, n)<0$ and a constant $C=C(g, n)$ such that as $\nu \downarrow \nu_{c}$,

$$
\chi(g, \nu, n) \sim \frac{C}{\nu-\nu_{c}}\left(\log \frac{1}{\nu-\nu_{c}}\right)^{\frac{n+2}{n+8}}
$$

Also, $\nu_{c}(g, n)=-\mathrm{ag}+O\left(g^{2}\right)$ with $\mathrm{a}=(n+2)\left(-\Delta_{\mathbb{Z}^{4}}^{-1}\right)_{0,0}>0$ (the Laplacian is the lattice Laplacian on \mathbb{Z}^{4}, and its negative inverse is the massless lattice Green function).

Main result for $n=1$

Theorem

Let $n=1$ and $g>0$ be sufficiently small. There exist constants $C_{1}, C_{1}^{\prime}>0$ such that as $|a-b| \rightarrow \infty$,

$$
\begin{aligned}
& \left\langle\varphi_{a} ; \varphi_{b}\right\rangle_{g, \nu_{c}}=\frac{C_{1}}{|a-b|^{2}}\left(1+O\left(\frac{1}{\log |a-b|}\right)\right), \\
& \left\langle\varphi_{a}^{2} ; \varphi_{b}^{2}\right\rangle_{g, \nu_{c}}=\frac{C_{1}^{\prime}}{|a-b|^{4}} \frac{1}{(\log |a-b|)^{\frac{2}{3}}}\left(1+O\left(\frac{\log \log |a-b|}{\log |a-b|}\right)\right) .
\end{aligned}
$$

- This theorem was proven previously by K. Gawędzki and A. Kupiainen using a different renormalisation group approach.
- A closely related version was also analysed by J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor.

Main result for $n=1$

Theorem

Let $n=1$ and $g>0$ be sufficiently small. There exist constants $C_{1}, C_{1}^{\prime}>0$ such that as $|a-b| \rightarrow \infty$,

$$
\begin{aligned}
\left\langle\varphi_{a} ; \varphi_{b}\right\rangle_{g, \nu_{c}} & \sim \frac{C_{1}}{|a-b|^{2}} \text { with } O\left(\frac{1}{\log |a-b|}\right) \text { corrections, } \\
\left\langle\varphi_{a}^{2} ; \varphi_{b}^{2}\right\rangle_{g, \nu_{c}} & \sim \frac{C_{1}^{\prime}}{|a-b|^{4}} \frac{1}{(\log |a-b|)^{\frac{2}{3}}} \text { with } O\left(\frac{\log \log |a-b|}{\log |a-b|}\right) \text { corrections. }
\end{aligned}
$$

- This theorem was proven previously by K. Gawędzki and A. Kupiainen using a different renormalisation group approach.
- A closely related version was also analysed by J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor.

Main result $(n \geq 2)$

Theorem

Let $n \geq 2$ and let $g>0$ be sufficiently small, depending on n. As $|a-b| \rightarrow \infty$, there exist constants $C_{n}, C_{n}^{\prime}>0$ such that for all i,

$$
\left\langle\left(\varphi_{a}^{i}\right) ;\left(\varphi_{b}^{i}\right)\right\rangle_{g, \nu_{c}} \sim \frac{C_{n}}{|a-b|^{2}} \text { with } O\left(\frac{1}{\log |a-b|}\right) \text { corrections. }
$$

For the correlation of squares, we require that $i \neq j$. Then

$$
\begin{aligned}
& \left\langle\left(\varphi_{a}^{i}\right)^{2} ;\left(\varphi_{b}^{i}\right)^{2}\right\rangle_{g, \nu_{c}} \sim \frac{1}{n} \frac{C_{n}^{\prime}}{|a-b|^{4}}\left[\frac{n-1}{(\log |a-b|)^{\frac{4}{n+8}}}+\frac{1}{(\log |a-b|)^{2 \frac{n+2}{n+8}}}\right] \\
& \left\langle\left(\varphi_{a}^{i}\right)^{2} ;\left(\varphi_{b}^{j}\right)^{2}\right\rangle_{g, \nu_{c}} \sim \frac{1}{n} \frac{C_{n}^{\prime}}{|a-b|^{4}}\left[-\frac{1}{(\log |a-b|)^{\frac{4}{n+8}}}+\frac{1}{(\log |a-b|)^{2 \frac{n+2}{n+8}}}\right],
\end{aligned}
$$

both with $O\left(\frac{\log \log |a-b|}{\log |a-b|}\right)$ corrections.

Main result $(n \geq 2)$

Theorem

Let $n \geq 2$ and let $g>0$ be sufficiently small, depending on n. As $|a-b| \rightarrow \infty$, there exist constants $C_{n}, C_{n}^{\prime}>0$ such that for all i,

$$
\left\langle\left(\varphi_{a}^{i}\right) ;\left(\varphi_{b}^{i}\right)\right\rangle_{g, \nu_{c}} \sim \frac{C_{n}}{|a-b|^{2}} \text { with } O\left(\frac{1}{\log |a-b|}\right) \text { corrections. }
$$

For the correlation of squares, we require that $i \neq j$. Then

$$
\begin{aligned}
& \left\langle\left(\varphi_{a}^{i}\right)^{2} ;\left(\varphi_{b}^{i}\right)^{2}\right\rangle_{g, \nu_{c}} \sim \frac{1}{n} \frac{C_{n}^{\prime}}{|a-b|^{4}}\left[\frac{n-1}{(\log |a-b|)^{\frac{4}{n+8}}}+\frac{1}{(\log |a-b|)^{2 \frac{n+2}{n+8}}}\right] \\
& \left\langle\left(\varphi_{a}^{i}\right)^{2} ;\left(\varphi_{b}^{j}\right)^{2}\right\rangle_{g, \nu_{c}} \sim \frac{1}{n} \frac{C_{n}^{\prime}}{|a-b|^{4}}\left[-\frac{1}{(\log |a-b|)^{\frac{4}{n+8}}}+\frac{1}{(\log |a-b|)^{2 \frac{n+2}{n+8}}}\right],
\end{aligned}
$$

both with $O\left(\frac{\log \log |a-b|}{\log |a-b|}\right)$ corrections.

Remarks about negative correlations

(for the case $n \geq 2$)

- Note that $\left(\varphi_{a}^{i}\right)^{2}$ is more highly correlated with $\left(\varphi_{b}^{i}\right)^{2}$ than is $\left|\varphi_{a}\right|^{2}$ with $\left|\varphi_{b}\right|^{2}$, due to cancellations with the negative correlations of $\left(\varphi_{a}^{i}\right)^{2}$ with $\left(\varphi_{b}^{j}\right)^{2}$ for $i \neq j$. More precisely,

$$
\left.\left.\langle | \varphi_{a}\right|^{2} ;\left|\varphi_{b}\right|^{2}\right\rangle_{g, \nu_{c}} \sim n \frac{C_{n}^{\prime}}{|a-b|^{4}} \frac{1}{(\log |a-b|)^{2 \frac{n+2}{n+8}}} .
$$

- In fact, we prove that $\left.\left.\langle | \varphi_{a}\right|^{2}\right\rangle<\infty$, the field has a typical size.
- Making one component large must come at the cost of making another one small. Thus locally, negative correlations between different components are to be expected.
- Our results show that this effect persists over long distances at the critical point.

Continuous-time WSAW model as $n=0$ case

- Our result also covers the computation of the critical generating function for the "watermelon" network of p mutually- and self-avoiding walks, as the $n=0$ case of the $|\varphi|^{4}$ model.

- The parameter p corresponds to the power p in $\left\langle\left(\varphi_{a}^{1}\right)^{p} ;\left(\varphi_{b}^{1}\right)^{p}\right\rangle_{g, \nu_{c}}$. In the $|\varphi|^{4}$ model, we only allow $p=1,2$, but for the WSAW model, we prove a formula valid for all $p \geq 1$, namely
- This extends the work of R. Bauerschmidt, D. Brydges, and G. Slade on the critical two-point function of the 4-dimensional weakly self-avoiding walk.

Approximation by the free field

- We restrict our attention to the case $n=1$, for simplicity.
- The $|\varphi|^{4}$ measure on $\Lambda=\Lambda_{N}$ has the density

$$
\frac{1}{Z} e^{-U_{g, \nu, 1}(\varphi)} d \varphi, \quad U_{g, \nu, z}(\varphi)=\sum_{x \in \Lambda}\left[\frac{1}{2} z \varphi_{x}(-\Delta \varphi)_{x}+\frac{1}{2} \nu \varphi_{x}^{2}+\frac{1}{4} g \varphi_{x}^{4}\right] .
$$

- For a given $z_{0}>-1$, we split $U_{g, \nu, 1}(\varphi)$ into a Gaussian part and a perturbation

$$
U_{g, \nu, 1}(\varphi)=U_{0, m^{2}, 1}\left(\left(1+z_{0}\right)^{-1 / 2} \varphi\right)+U_{g_{0}, \nu_{0}, z_{0}}\left(\left(1+z_{0}\right)^{-1 / 2} \varphi\right) .
$$

- So that for $C=\left(-\Delta_{\Lambda_{N}}+m^{2}\right)^{-1}$,

$$
\langle F(\varphi)\rangle_{g, \nu, N}=\frac{\mathbb{E}_{C}\left[F\left(\left(1+z_{0}\right)^{1 / 2} \varphi\right) e^{-U_{g_{0}, \nu_{0}, z_{0}}(\varphi)}\right]}{\mathbb{E}_{C}\left[e^{-U_{g_{0}, \nu_{0}, z_{0}}(\varphi)}\right]}
$$

Observable fields

- A standard approach to compute the correlation function is to introduce observable fields and then differentiate.
- This leads us to define for $\sigma_{a}, \sigma_{b} \in \mathbb{R}$,

$$
V_{0}=U_{0}-\sum_{x \in \Lambda} \varphi_{x}^{p}\left(\sigma_{a} \mathbb{1}_{x=a}+\sigma_{b} \mathbb{1}_{x=b}\right)
$$

- Then we have for $p=1,2$

$$
\left\langle\varphi_{a}^{p} ; \varphi_{b}^{p}\right\rangle_{g, \nu, N}=\left.\left(1+z_{0}\right)^{p} \frac{\partial}{\partial \sigma_{a}} \frac{\partial}{\partial \sigma_{b}}\right|_{0} \log \mathbb{E}_{C} e^{-v_{0}}
$$

Progressive integration

- We begin by decomposing the covariance

$$
\left(\Delta_{\mathbb{Z}^{4}}+m^{2}\right)^{-1}=\sum_{j=1}^{\infty} C_{j}
$$

- Since each C_{j} is independent of the torus Λ by the finite range property, $\left(C_{j}\right)_{x y}=0$ if $|x-y|>\frac{1}{2} L^{j}$, for each N, we have

$$
\left(-\Delta_{\Lambda_{N}}+m^{2}\right)^{-1}=\sum_{j=1}^{N-1} C_{j}+C_{N, N}
$$

- We now set $\left(\mathbb{E}_{C} \theta F\right)(\varphi)=\mathbb{E}_{C}^{\zeta} F(\varphi+\zeta)$ to obtain the formula

$$
\mathbb{E}_{C} F=\mathbb{E}_{C_{N, N}} \circ\left(\mathbb{E}_{C_{N-1}} \theta \circ \cdots \circ \mathbb{E}_{C_{1}} \theta F\right)
$$

with $Z_{0}=e^{-V_{0}(\Lambda)}$ and $Z_{j+1}=\mathbb{E}_{C_{j+1}} \theta Z_{j}$. Then $Z_{N}=\mathbb{E}_{C} Z_{0}$.

Cumulant expansion

- If we can define V_{j+1} in such a way so that $\mathbb{E}_{C_{j+1}} \theta e^{-V_{j}} \approx e^{-V_{j+1}}$, we can iterate and rewrite the evolution $Z_{j} \mapsto Z_{j+1}$ in terms of the much simpler $V_{j} \mapsto V_{j+1}$. We use the cumulant expansion

$$
\mathbb{E}_{C} \theta e^{-V}=\exp \left(-\mathbb{E}_{C} \theta V+\frac{1}{2} \mathbb{E}_{C} \theta(V ; V)+O\left(V^{3}\right)\right)
$$

- $\mathbb{E}_{C} \theta(A ; B)=\mathbb{E}_{C} \theta(A B)-\left(\mathbb{E}_{C} \theta A\right)\left(\mathbb{E}_{C} \theta B\right)$.
- For any polynomial P,

$$
\mathbb{E}_{C} \theta P=e^{\mathcal{L}_{C}} P=\left(\sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{L}_{C}^{n}\right) P, \quad \mathcal{L}_{C}=\frac{1}{2} \sum_{u, v \in \Lambda} C_{u v} \frac{\partial}{\partial \varphi_{u}} \frac{\partial}{\partial \varphi_{v}}
$$

- Also $\mathbb{E}_{C} P=\left.e^{\mathcal{L}_{C}}\right|_{0} P$, where $\left.\mathcal{L}_{C}\right|_{0}$ is the \mathcal{L}_{C} operator with derivatives taken at $\varphi=0$.

Approximating the flow

- A natural candidate for V_{j+1} thus comes from the cumulant expansion

$$
V_{j+1} \approx \mathbb{E}_{C_{j+1}} \theta V_{j}-\frac{1}{2} \mathbb{E}_{C_{j+1}} \theta\left(V_{j} ; V_{j}\right)
$$

- We maintain locality of V, that is $V=\sum_{x \in \Lambda} V_{x}$, using a projection operator Loc, that we will not discuss here.
- We are able to preserve the form of V_{j}, that is for all j and $p=1,2$,

$$
\begin{aligned}
& V_{j ; x}=\frac{g_{j}}{4} \varphi_{x}^{4}+\frac{\nu_{j}}{2} \varphi_{x}^{2}+\frac{z_{j}}{2} \varphi_{x}(-\Delta \varphi)_{x}-u_{j} \\
&-\left(\lambda_{j} \varphi_{x}^{p}+t_{j}\right)\left(\sigma_{a} \mathbb{1}_{x=a}+\sigma_{b} \mathbb{1}_{x=b}\right)-q_{j} \sigma_{a} \sigma_{b}
\end{aligned}
$$

where $\lambda_{0}=1, u_{0}=t_{0}=q_{0}=0$ and g_{0}, ν_{0}, z_{0} are obtained from g, ν.

- Constant terms: since $Z_{N}=\mathbb{E}_{C_{N, N}} Z_{N-1}$, the last integration will set all $\varphi=0$ in Z_{N}. Thus, $Z_{N} \approx e^{u_{N}+t_{N}\left(\sigma_{a}+\sigma_{b}\right)+q_{N} \sigma_{a} \sigma_{b}}$ and

$$
\left\langle\varphi_{a}^{p} ; \varphi_{b}^{p}\right\rangle_{g, \nu, N}=\left.\left(1+z_{0}\right)^{p} \frac{\partial^{2}}{\partial \sigma_{a} \partial \sigma_{b}}\right|_{0} \log Z_{N} \approx \text { const } \cdot q_{N}
$$

Flow of coupling constants

- We set $w_{j}=\sum_{i=1}^{j} C_{i}$,

$$
\beta_{j}=(n+8) \sum_{x \in \Lambda}\left(\left(w_{j+1}\right)_{0 x}^{2}-\left(w_{j}\right)_{0 x}^{2}\right) \text { and } \gamma= \begin{cases}0 & (p=1) \\ \frac{n+2}{n+8} & (p=2)\end{cases}
$$

- We also define the coalescence scale $j_{a b}$ to be the smallest j such that $\left(C_{j}\right)_{a b} \neq 0$. By the finite range property, $\left(C_{j}\right)_{a b}=0$ if $|a-b|>\frac{1}{2} L^{j}$, so $j_{a b}=\left\lfloor\log _{L}(2|a-b|)\right\rfloor$.
- Then the coefficients in V_{j+1} are given by

$$
\begin{aligned}
g_{j+1} & =g_{j}-\beta_{j} g_{j}^{2}+\ldots \\
\lambda_{j+1} & = \begin{cases}\lambda_{j}\left(1-\gamma \beta_{j} g_{j}\right)+\ldots & \left(j<j_{a b}\right) \\
\lambda_{j_{a b}}+\ldots & \left(j \geq j_{a b}\right)\end{cases} \\
q_{j+1} & =q_{j}+p!\lambda_{j}^{2}\left[\left(w_{j+1}\right)_{a b}^{p}-\left(w_{j}\right)_{a b}^{p}\right]+\ldots
\end{aligned}
$$

- Providing the control of the non-perturbative part of V, that we indicated by the (...), is a major challenge, but is not part of our discussion here.

Sketch of proof for q

- Let us assume that $V_{j+1} \approx \mathbb{E}_{C_{j+1}} \theta V_{j}-\frac{1}{2} \mathbb{E} C_{j+1} \theta\left(V_{j} ; V_{j}\right)$ and

$$
\begin{aligned}
& V_{j ; x}=\frac{g_{j}}{4} \varphi_{x}^{4}+\frac{\nu_{j}}{2} \varphi_{x}^{2}+\frac{z_{j}}{2} \varphi_{x}(-\Delta \varphi)_{x}-u_{j} \\
&-\left(\lambda_{j} \varphi_{x}^{p}+t_{j}\right)\left(\sigma_{a} \mathbb{1}_{x=a}+\sigma_{b} \mathbb{1}_{x=b}\right)-q_{j} \sigma_{a} \sigma_{b} .
\end{aligned}
$$

- We want to reach out and grab the coefficient of the constant monomial containing $\sigma_{a} \sigma_{b}$ in V_{j+1}, call it $\pi_{a b} V_{j+1}$.
- $\pi_{a b} \mathbb{E}_{C_{j+1}} \theta\left(V_{j}\right)=-q_{j}$ and $\pi_{a b} \frac{1}{2} \mathbb{E}_{C_{j+1}} \theta\left(V_{j} ; V_{j}\right)=\frac{2}{2} \mathbb{E}_{C_{j+1}} \theta\left(\lambda_{j} \varphi_{a}^{p} ; \lambda_{j} \varphi_{b}^{p}\right)$.

$$
\pi_{a b} \frac{1}{2} \mathbb{E}_{C_{j+1}} \theta\left(V_{j} ; V_{j}\right)=\pi_{a b} \lambda_{j}^{2} \sum_{n=1}^{p} \frac{1}{n!} \mathcal{L}_{C_{j+1}}^{n}\left(\varphi_{a}^{p} \varphi_{b}^{p}\right)=\frac{(p!)^{2}}{p!} \lambda_{j}^{2}\left(C_{j+1}\right)_{a b}^{p}
$$

- Therefore, we get $-q_{j+1}=-q_{j}-p!\lambda_{j}^{2}\left(C_{j+1}\right)_{a b}^{p}$. By expanding the definition of w_{j}, we have $\left(C_{j+1}\right)_{a b}^{p}=\left(\left(w_{j+1}\right)_{a b}-\left(w_{j}\right)_{a b}\right)^{p}$, while the formula that I claimed to be true was

$$
q_{j+1}=q_{j}+p!\lambda_{j}^{2}\left[\left(w_{j+1}\right)_{a b}^{p}-\left(w_{j}\right)_{a b}^{p}\right] .
$$

Analyzing the g flow

- Let us begin by analyzing the recursion

$$
g_{j+1}=g_{j}-\beta_{j} g_{j}^{2}
$$

- For $m^{2}=0, \beta_{j} \rightarrow \beta_{\infty}=\bar{\beta} \log L$, where $\bar{\beta}=\frac{n+8}{16 \pi^{2}}$.
- If we assume that $\beta_{j}=\beta_{\infty}$, we can solve the recursion and obtain a formula for g_{j}

$$
g_{j} \sim \frac{g_{0}}{1+g_{0} \beta_{\infty} j} \sim \frac{1}{\beta_{\infty} j} \text { as } j \rightarrow \infty
$$

- In fact, we prove that, as $|a-b| \rightarrow \infty$,

$$
g_{j_{a b}}=\frac{1}{\bar{\beta} \log |a-b|}\left(1+O\left(\frac{\log \log |a-b|}{\log |a-b|}\right)\right) \sim \frac{1}{\log |a-b|} .
$$

- Recall that $j_{a b}=\left\lfloor\log _{L}(2|a-b|)\right\rfloor$, so that $\beta_{\infty} j_{a b} \sim \bar{\beta} \log |a-b|$.

Analyzing the λ flow

- The recursion defining λ depends on g_{j} and the coalescence scale $j_{a b}$.

$$
\lambda_{j+1}=\left\{\begin{array}{ll}
\lambda_{j}\left(1-\gamma \beta_{j} g_{j}\right) & \left(j<j_{a b}\right) \\
\lambda_{j_{a b}} & \left(j \geq j_{a b}\right),
\end{array} \text { where } \gamma= \begin{cases}0 & (p=1) \\
\frac{n+2}{n+8} & (p=2)\end{cases}\right.
$$

- Since $\frac{g_{j+1}}{g_{j}} \sim 1-\beta_{j} g_{j}$, we can write $\left(\frac{g_{j+1}}{g_{j}}\right)^{\gamma} \sim 1-\gamma \beta_{j} g_{j}$.
- Inserting this into the recursion, produces a simpler expression for the leading terms in the flow of λ for both choices $p=1,2$

$$
\lambda_{j+1}=\lambda_{j}\left(1-\gamma \beta_{j} g_{j}\right) \sim \lambda_{0} \prod_{k=0}^{j}\left(1-\gamma \beta_{k} g_{k}\right) \sim\left(\frac{g_{j+1}}{g_{0}}\right)^{\gamma} .
$$

- In particular, the limit $\lim _{m^{2} \downarrow 0} \lambda_{j_{a b}}^{2}$ exists and obeys, as $|a-b| \rightarrow \infty$,

$$
\lim _{m^{2} \downarrow 0} \lambda_{j_{a b}}^{2} \sim\left(\frac{1}{\log |a-b|}\right)^{2 \gamma}
$$

Analyzing the q flow

- As $\left(C_{j}\right)_{a b}=0$ for all $j<j_{a b}$, we can sum the equation for q_{j} and obtain a telescoping sum

$$
q_{N} \approx \sum_{j=j_{a b}}^{N} p!\lambda_{j}^{2}\left[\left(w_{j+1}\right)_{a b}^{p}-\left(w_{j}\right)_{a b}^{p}\right]=p!\lambda_{j_{a b}}^{2}\left(w_{N}\right)_{a b}^{p}
$$

- By definition, as $N \rightarrow \infty, q_{N} \rightarrow q_{\infty}\left(m^{2}\right)=p!\lambda_{j_{j b}}^{2}\left(-\Delta_{\mathbb{Z}^{4}}+m^{2}\right)_{a b}^{-p}$.
- The limit of $\left(-\Delta_{\mathbb{Z}^{4}}+m^{2}\right)_{a b}^{-p}$ as $m^{2} \downarrow 0$ is well-known

$$
\lim _{m^{2} \downarrow 0}\left(-\Delta_{\mathbb{Z}^{4}}+m^{2}\right)_{a b}^{-1}=\left(-\Delta_{\mathbb{Z}^{4}}\right)_{a b}^{-1} \sim \frac{1}{|a-b|^{2}}
$$

- Finally, for $\nu_{c}=\nu_{c}(g, 1)$ and as $|a-b| \rightarrow \infty$,

$$
\begin{aligned}
\left\langle\phi_{a} ; \phi_{b}\right\rangle_{g, \nu_{c}} & \sim \frac{1}{|a-b|^{2}}, \\
\left\langle\phi_{a}^{2} ; \phi_{b}^{2}\right\rangle_{g, \nu_{c}} & \sim \frac{1}{|a-b|^{4}(\log |a-b|)^{\frac{2}{3}}},
\end{aligned}
$$

since $\gamma=\frac{n+2}{n+8}=\frac{1}{3}$.

Thank you.

