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Definition of the model

I We fix a discrete torus Λ = ΛN = Z4/LNZ4.

I For every x ∈ Λ, we consider n-component continuous spins ϕx ∈ Rn.

I Given g > 0, ν ∈ R, let dϕx be the Lebesgue measure on Rn, we
define the |ϕ|4 probability measure as

1

Z
e
−
∑

x∈Λ

(
1
2
ϕx (−∆ϕ)x+ ν

2
|ϕ|2+ g

4
|ϕ|4
) ∏

x∈Λ

dϕx .

I Note that for n = 1, this is a continuous version of the Ising model.

I We use 〈 · 〉g ,ν,N to denote the expectation with respect the above
measure. We are interested in critical correlation functions, in the
infinite volume limit 〈 · 〉g ,ν = limN→∞〈 · 〉g ,ν,N .

I We also write 〈F ; G 〉 = 〈FG 〉 − 〈F 〉 〈G 〉, both in finite and infinite
volume, for the correlation or truncated expectation of F ,G .
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Critical νc

I We define the susceptibility as the limit

χ(g , ν, n) = lim
N→∞

∑
x∈ΛN

〈ϕ1
0ϕ

1
x〉g ,ν,N .

Theorem (BBS 2014)

For g > 0 small enough, there exists νc = νc(g , n) < 0 and a constant
C = C (g , n) such that as ν ↓ νc ,

χ(g , ν, n) ∼ C

ν − νc

(
log

1

ν − νc

) n+2
n+8

.

Also, νc(g , n) = −ag + O(g 2) with a = (n + 2)(−∆−1
Z4 )0,0 > 0 (the

Laplacian is the lattice Laplacian on Z4, and its negative inverse is the
massless lattice Green function).
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Main result for n = 1

Theorem

Let n = 1 and g > 0 be sufficiently small. There exist constants
C1,C

′
1 > 0 such that as |a− b| → ∞,

〈ϕa ;ϕb〉g ,νc =
C1

|a− b|2

(
1 + O

(
1

log |a− b|

))
,

〈ϕ2
a ;ϕ2

b〉g ,νc =
C ′1

|a− b|4
1

(log |a− b|)
2
3

(
1 + O

(
log log |a− b|

log |a− b|

))
.

I This theorem was proven previously by K. Gawȩdzki and A. Kupiainen
using a different renormalisation group approach.

I A closely related version was also analysed by J. Feldman, J. Magnen,
V. Rivasseau, and R. Sénéor.
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Main result (n ≥ 2)

Theorem

Let n ≥ 2 and let g > 0 be sufficiently small, depending on n. As
|a− b| → ∞, there exist constants Cn,C

′
n > 0 such that for all i ,

〈(ϕi
a) ; (ϕi

b)〉g ,νc ∼
Cn

|a− b|2
with O

(
1

log |a−b|

)
corrections.

For the correlation of squares, we require that i 6= j . Then

〈(ϕi
a)2 ; (ϕi

b)2〉g ,νc ∼
1

n

C ′n
|a− b|4

[
n − 1

(log |a− b|)
4

n+8

+
1

(log |a− b|)2 n+2
n+8

]
,

〈(ϕi
a)2 ; (ϕ j

b)2〉g ,νc ∼
1

n

C ′n
|a− b|4

[
− 1

(log |a− b|)
4

n+8

+
1

(log |a− b|)2 n+2
n+8

]
,

both with O
(

log log |a−b|
log |a−b|

)
corrections.
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Remarks about negative correlations
(for the case n ≥ 2)

I Note that (ϕi
a)2 is more highly correlated with (ϕi

b)2 than is |ϕa|2
with |ϕb|2, due to cancellations with the negative correlations of
(ϕi

a)2 with (ϕ j
b)2 for i 6= j . More precisely,

〈|ϕa|2 ; |ϕb|2〉g ,νc ∼ n
C ′n

|a− b|4
1

(log |a− b|)2 n+2
n+8

.

I In fact, we prove that 〈|ϕa|2〉 <∞, the field has a typical size.

I Making one component large must come at the cost of making
another one small. Thus locally, negative correlations between
different components are to be expected.

I Our results show that this effect persists over long distances at the
critical point.
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Continuous-time WSAW model as n = 0 case

I Our result also covers the computation of the critical generating
function for the “watermelon” network of p mutually- and
self-avoiding walks, as the n = 0 case of the |ϕ|4 model.

ba p = 2 ba p = 4 ba p = 6

I The parameter p corresponds to the power p in 〈(ϕ1
a)p ; (ϕ1

b)p〉g ,νc . In
the |ϕ|4 model, we only allow p = 1, 2, but for the WSAW model, we
prove a formula valid for all p ≥ 1, namely

W
(p)
a,b(g , νc(0)) ∼ C

|a− b|2p
1

(log |a− b|)
1
2 (p2)

.

I This extends the work of R. Bauerschmidt, D. Brydges, and G. Slade
on the critical two-point function of the 4-dimensional weakly
self-avoiding walk.

Alexandre Tomberg May 30, 2014 10 / 21



Approximation by the free field

I We restrict our attention to the case n = 1, for simplicity.

I The |ϕ|4 measure on Λ = ΛN has the density

1

Z
e−Ug,ν,1(ϕ)dϕ, Ug ,ν,z(ϕ) =

∑
x∈Λ

[
1

2
zϕx(−∆ϕ)x +

1

2
νϕ2

x +
1

4
gϕ4

x

]
.

I For a given z0 > −1, we split Ug ,ν,1(ϕ) into a Gaussian part and a
perturbation

Ug ,ν,1(ϕ) = U0,m2,1((1 + z0)−1/2ϕ) + Ug0,ν0,z0((1 + z0)−1/2ϕ).

I So that for C = (−∆ΛN
+ m2)−1,

〈
F (ϕ)

〉
g ,ν,N

=
EC

[
F
(
(1 + z0)1/2ϕ

)
e−Ug0,ν0,z0 (ϕ)

]
EC

[
e−Ug0,ν0,z0 (ϕ)

] .
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Observable fields

I A standard approach to compute the correlation function is to
introduce observable fields and then differentiate.

I This leads us to define for σa, σb ∈ R,

V0 = U0 −
∑
x∈Λ

ϕp
x (σa1x=a + σb1x=b) .

I Then we have for p = 1, 2

〈
ϕp
a ; ϕp

b

〉
g ,ν,N

= (1 + z0)p
∂

∂σa

∂

∂σb

∣∣∣∣
0

logECe−V0 .
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Progressive integration

I We begin by decomposing the covariance

(
∆Z4 + m2

)−1
=
∞∑
j=1

Cj .

I Since each Cj is independent of the torus Λ by the finite range
property, (Cj)xy = 0 if |x − y | > 1

2 Lj , for each N, we have

(
−∆ΛN

+ m2
)−1

=
N−1∑
j=1

Cj + CN,N .

I We now set (ECθF )(ϕ) = EζCF (ϕ+ ζ) to obtain the formula

ECF = ECN,N
◦
(
ECN−1

θ ◦ · · · ◦ EC1θF
)
,

with Z0 = e−V0(Λ) and Zj+1 = ECj+1
θZj . Then ZN = ECZ0.
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Cumulant expansion

I If we can define Vj+1 in such a way so that ECj+1
θe−Vj ≈ e−Vj+1 , we

can iterate and rewrite the evolution Zj 7→ Zj+1 in terms of the much
simpler Vj 7→ Vj+1. We use the cumulant expansion

ECθe−V = exp

(
−ECθV +

1

2
ECθ(V ; V ) + O(V 3)

)
.

I ECθ(A; B) = ECθ (AB)− (ECθA) (ECθB).

I For any polynomial P,

ECθP = eLC P =

( ∞∑
n=0

1

n!
LnC

)
P, LC =

1

2

∑
u,v∈Λ

Cuv
∂

∂ϕu

∂

∂ϕv
.

I Also ECP = eLC
∣∣
0

P, where LC |0 is the LC operator with derivatives
taken at ϕ = 0.
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Approximating the flow
I A natural candidate for Vj+1 thus comes from the cumulant expansion

Vj+1 ≈ ECj+1
θVj −

1

2
ECj+1

θ(Vj ; Vj)

I We maintain locality of V , that is V =
∑

x∈Λ Vx , using a projection
operator Loc, that we will not discuss here.

I We are able to preserve the form of Vj , that is for all j and p = 1, 2,

Vj ;x =
gj
4
ϕ4
x +

νj
2
ϕ2
x +

zj
2
ϕx(−∆ϕ)x − uj

− (λjϕ
p
x + tj) (σa1x=a + σb1x=b)− qjσaσb,

where λ0 = 1, u0 = t0 = q0 = 0 and g0, ν0, z0 are obtained from g , ν.
I Constant terms: since ZN = ECN,N

ZN−1, the last integration will set

all ϕ = 0 in ZN . Thus, ZN ≈ euN+tN(σa+σb)+qNσaσb and

〈ϕp
a ;ϕp

b〉g ,ν,N = (1 + z0)p
∂2

∂σa∂σb

∣∣∣∣
0

log ZN ≈ const · qN .
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Flow of coupling constants
I We set wj =

∑j
i=1 Ci ,

βj = (n + 8)
∑
x∈Λ

(
(wj+1)2

0x − (wj)
2
0x

)
and γ =

{
0 (p = 1)
n+2
n+8 (p = 2).

I We also define the coalescence scale jab to be the smallest j such that
(Cj)ab 6= 0. By the finite range property, (Cj)ab = 0 if |a− b| > 1

2 Lj ,
so jab = blogL(2|a− b|)c.

I Then the coefficients in Vj+1 are given by

gj+1 = gj − βjg 2
j + . . .

λj+1 =

{
λj(1− γβjgj) + . . . (j < jab)

λjab + . . . (j ≥ jab)

qj+1 = qj + p!λ2
j

[
(wj+1)pab − (wj)

p
ab

]
+ . . .

I Providing the control of the non-perturbative part of V , that we
indicated by the (. . .), is a major challenge, but is not part of our
discussion here.
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Sketch of proof for q
I Let us assume that Vj+1 ≈ ECj+1

θVj − 1
2ECj+1

θ(Vj ; Vj) and

Vj ;x =
gj
4
ϕ4
x +

νj
2
ϕ2
x +

zj
2
ϕx(−∆ϕ)x − uj

− (λjϕ
p
x + tj) (σa1x=a + σb1x=b)− qjσaσb.

I We want to reach out and grab the coefficient of the constant
monomial containing σaσb in Vj+1, call it πabVj+1.

I πabECj+1
θ (Vj) = −qj and πab

1
2ECj+1

θ(Vj ; Vj) = 2
2ECj+1

θ(λjϕ
p
a ;λjϕ

p
b).

πab
1

2
ECj+1

θ(Vj ; Vj) = πabλ
2
j

p∑
n=1

1

n!
LnCj+1

(ϕp
aϕ

p
b) =

(p!)2

p!
λ2
j (Cj+1)pab.

I Therefore, we get −qj+1 = −qj − p!λ2
j (Cj+1)pab. By expanding the

definition of wj , we have (Cj+1)pab =
(
(wj+1)ab − (wj)ab

)p
, while the

formula that I claimed to be true was

qj+1 = qj + p!λ2
j

[
(wj+1)pab − (wj)

p
ab

]
.
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Analyzing the g flow

I Let us begin by analyzing the recursion

gj+1 = gj − βjg 2
j .

I For m2 = 0, βj → β∞ = β̄ log L, where β̄ = n+8
16π2 .

I If we assume that βj = β∞, we can solve the recursion and obtain a
formula for gj

gj ∼
g0

1 + g0β∞j
∼ 1

β∞j
as j →∞.

I In fact, we prove that, as |a− b| → ∞,

gjab =
1

β̄ log |a− b|

(
1 + O

(
log log |a− b|

log |a− b|

))
∼ 1

log |a− b|
.

I Recall that jab = blogL(2|a− b|)c, so that β∞jab ∼ β̄ log |a− b|.
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Analyzing the λ flow

I The recursion defining λ depends on gj and the coalescence scale jab.

λj+1 =

{
λj(1− γβjgj) (j < jab)

λjab (j ≥ jab),
where γ =

{
0 (p = 1)
n+2
n+8 (p = 2).

I Since
gj+1

gj
∼ 1− βjgj , we can write

(
gj+1

gj

)γ
∼ 1− γβjgj .

I Inserting this into the recursion, produces a simpler expression for the
leading terms in the flow of λ for both choices p = 1, 2

λj+1 = λj(1− γβjgj) ∼ λ0

j∏
k=0

(1− γβkgk) ∼
(

gj+1

g0

)γ
.

I In particular, the limit limm2↓0 λ
2
jab

exists and obeys, as |a− b| → ∞,

lim
m2↓0

λ2
jab
∼
(

1

log |a− b|

)2γ

.
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Analyzing the q flow
I As (Cj)ab = 0 for all j < jab, we can sum the equation for qj and

obtain a telescoping sum

qN ≈
N∑

j=jab

p!λ2
j

[
(wj+1)pab − (wj)

p
ab

]
= p!λ2

jab
(wN)pab.

I By definition, as N →∞, qN → q∞(m2) = p!λ2
jab

(−∆Z4 + m2)−pab .

I The limit of (−∆Z4 + m2)−pab as m2 ↓ 0 is well-known

lim
m2↓0

(−∆Z4 + m2)−1
ab = (−∆Z4)−1

ab ∼
1

|a− b|2
.

I Finally, for νc = νc(g , 1) and as |a− b| → ∞,

〈φa ; φb〉g ,νc ∼
1

|a− b|2
,〈

φ2
a ; φ2

b

〉
g ,νc
∼ 1

|a− b|4(log |a− b|)
2
3

,

since γ = n+2
n+8 = 1

3 .
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Thank you.
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