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LThe models

L Setting

m Interface — transition region that separates different phases

®
®
4

A C 74 finite, OA:={x¢ A, ||x —y|| = 1 forsomey € A}
Height Variables (configurations) ¢, € R,x € A
Boundary condition ), such that

¢x =y, when x € OA.

Gradients Vo: Vo = ¢ — ¢y for b = (x,y), |x —y|]| =1

tiltu = (uy,...,us) € R? and tilted boundary condition

Y =x-u,x € OA.

m (Q, F,P) the probability space of the disorder, [E the expectation
w.r.t P, V the variance w.r.t. P and Cov the covariance w.r.t IP.
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LModc] A
Model A
m The Hamiltonian (random external field)
1
HY[EN@) =5 D V(b= )+ D &dn
x,yEAUDA x€A

[x—yl=1
B (&) cze are assumed to be i.i.d. real-valued random variables,

with finite non-zero second moments.

m V € C*(R) is an even function such that there exist 0 < C; < C,
with
C1 < V"(s) < Cyforalls € R.

m The finite volume Gibbs measure on R»

VIEN@) = ZJE exp(— BHYIEN(0)) [T do.

A[ } xeA

where ¢, = v, for x € OA.
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L The models

L Model A

m x is the set of bonds (x,y) which satisfy the plaquette condition
m C,(x) is the set of continuous and bounded functions on x

m The finite-volume V¢-Gibbs measure p/f [€] on  is such that it
satisfies for all F € Cp(x)

[ ieianrm = [ ielas)re)
X
where 1) is any field configuration whose gradient field is p.

(i.e., the distribution of the V ¢-field under the Gibbs measure
»
29
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L Model A

m Infinite-volume gradient Gibbs measure p[£] has to satisfy the
DLR equation

/ ul€](dp) / W2 E)(dn)F () = / €] (dn)F (),

for every finite A C Z¢ and for all F € Cp(x).

m For v € Z4, we define the shift operators 7:
m For the bonds by (7,1)(b) := n(b — v) for b bond and 7 € x
m For the disorder by (1,£)(y) := &(y —v) fory € Z4 and € € RZ',

m A measurable map { — p[] is called a shift-covariant random
gradient Gibbs measure if p[¢] is a V¢— Gibbs measure for
P-almost every &, and if

/ W€](dn)F(n) = / €] (dn)F (),

for all v € Z% and for all F € Cp().
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L Model B

Model B

m For each (x,y) € Z¢ x Z4, |x — y| = 1, we define the measurable
map Véy)(s) t(w,5) € xR =R

] V(ﬁ y) are random variables with uniformly-bounded finite second

moments and jointly stationary distribution.

. w w :
m For some given 0 < (', ) < (7, y,w € €2, with

0 <infioy) E(CY () < supy E(CY ) < 00, V() obey
for P-almost every w € (2 the following bounds, uniformly in the

bonds (x, y)
Ty < (V(“;c’y))"(s) < G5y foralls € R.

m For each fixed w € 2 and for each bond (x,y), Vi € C*(R) is
an even function.
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L The models

L Model B

m The Hamiltonian for each fixed w € €2 (random potentials)

Hk [w](9) := % Z V&y)((;ﬁx — ¢y)

x,yEAUOA, |x—y|=1

m Letw € (2 be fixed. We will denote by p[7,w]| the
infinite-volume gradient Gibbs measure with given Hamiltonian
H[w|(n) :== (HY[w] (Tvn))ACZd,pE)(' This means that we shift the

field of disorded potentials on bonds from V(j’y) to VE‘;C oy
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Questions (for general potentials V):
m Existence and (strict) convexity of infinite volume surface
tension

o(u)€] = lim oa[€](u), oal€](u) ==  logZ} [€].

AT [A]
m Existence of shift-covariant infinite volume gradient Gibbs
measure

plg] == = lim, p4 €]

m Uniqueness of shift-covariant Gibbs measure (maybe under
additional assumptions on the measure).

m Quantitative results for p[¢]: decay of covariances with respect to
V¢, central limit theorem (CLT) results, large deviations (LDP)
results.
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L Known results for gradients without disorder

Known results for gradients without disorder

0<C1§V”SC2:

Existence and strict convexity of the surface tension for d > 1.
Gibbs measures v do not exist ford = 1, 2.
V ¢-Gibbs measures p exist for d > 1.

(Funaki-Spohn) For every u = (uy,...,uq) € R? there exists a
unique shift-invariant ergodic V ¢- Gibbs measure p with
E,[¢e, — ¢0) = ug, forallk =1,...,d.

m Decay of covariances results, CLT results, LDP results

m [mportant properties for proofs: shift-invariance, ergodicity and
extremality of the infinite volume Gibbs measures
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LNL‘\\" results for gradients with disorder

Results for gradients with disorder

m For model A, van Enter-Kiilske (2007): For d = 2, there exists
no shift-covariant gradient Gibbs measure x[¢] with
E | [ pul€](dn)V'(n(b))| < oo for all bonds b.

m For model A, Cotar-Kiilske (2010): For d = 3, 4, there exists no
shift-covariant Gibbs measure.

m Cotar-Kiilske (2014): (Model A) Let d > 3, £(0) with
symmetric distribution and u € RY. Assume 0 < C; < V" < C.
Then there exists exactly one shift-covariant random gradient
Gibbs measure £ — p[¢] with E ([ [€]) ergodic and such that

E ( [ i (dn)nb) = {uy 3y — xp) forall b = (x5, ).

Moreover €] satisfies the integrability condition
E [ p[€](dn)(np)?* < oo for all bonds b.
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m (Model B) Let d > 1 and u € R?. Assume
0<C < (V‘(*;J.))’ " < C, for all w. Then there exists exactly one

shift-covariant random gradient Gibbs measure w — pu[w] with
E ([ p[w]) ergodic and such that

E </M[W] (dﬁ)ﬁb) = (u,yp — xp) for all b = (xp, yp).

Moreover pw] satisfies

E/u[w] (dn)(np)? < oo for all b.
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For our 2nd main result, we need

m Poincaré inequality assumption on the distribution v of the
disorder £(0), (respectively of V( 1)) There exists A > 0 such
that for all smooth enough real- valued functions f on £, we have
for the probability measure ~y

Avar - (f) < /\Vf|2dfy, (1)

where |Vf| is the Euclidean norm of the gradient of f smooth
enough.

m Milman (2010, 2012)-enough for the above to have
semi-convexity assumption
m Let

oF
OuF (1) i= Z 2 10,Fl | = sup 0P (1) and 5= max {1}
nex
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m Cotar-Kiilske (2014): Let u € R
(a) (Model A) Let d > 3. Assume that (£(x)),cz« are i.i.d with mean
0 and the distribution of £(0) satisfies (1). Then if £ — p[] is the
shift-covariant gradient Gibbs measure from uniqueness result,
& — pl€] satisfies the following decay of covariances for all
F,G e Gy(x)

Cov ulel i) e Gl | < ¢ 3 L I=O Gl

b,b’

for some ¢ > 0 which depends only on d, Cy, C, and on the
number of terms b, b’ in F and G.

(b) (Model B) Let d > 1. Assume that VZ’J y) are i.i.d., and they also

satisfy (1) for P-almost every w and uniformly in the bonds (x, y).
Then if w — pfw] is the shift-covariant gradient Gibbs measure
from uniqueness result, w — pfw] satisfies the following decay of
covariances for all F, G € C}(x)

|Cov (uw](F(n)), plw] N<eS Iaszlboollgb/Gloo.
b,b’




rfaces with disorder

ex potentials with disorder

Conjecture for disordered non-convex potentials

m For the potential

sz .r2 kl 1/4
e ') =pe T4 (1-p)e ™7, B =1,k <<k, p= (k>
2

V(s)+

m Biskup-Kotecky (2007): d = 2. Existence of two ergodic
V ¢-Gibbs measures with same expected tilt E,,[¢., — ¢o] = 0,
but with different variances.
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LNnn-tonu:x potentials with disorder

m Cotar-Deuschel (2012 ): d > 2.
Let

V=Vo+g, CI<Vj <G, g"<0.
If
Co<g”<0and +/Blg"||w small(Cy,C).
uniqueness for shift-invariant V ¢-Gibbs measures j such that
E, [pe, — ¢0] = ux fork =1,2,...,d. Our results includes the
Biskup-Kotecky model, but for different range of choices of p, k;
and k».
m Consider the corresponding disordered model

e Vo) .= =) (pe=h ) 4 (1 — pyeholm)*y,
Naive Aizenman-Wehr argument hints at: uniqueness for low

enough d < d,. and uniqueness/non-uniqueness phase transition
for high enough d > d. > 2.
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L Some tools

ForO0< C, < V"< (Cy:
m Brascamp-Lieb Inequality: for allx € A and foralli € A

var y}\b(gbi) < var o (1),
b

77} is the Gaussian Free Field with potential V(s) = Cys?.

m Random Walk Representation Deuschel-Giacomin-Ioffe (2000):
Representation of Covariance Matrix in terms of the Green
function of a particular random walk.

m GFF: Ifx,y € A

cov Vg(qu, ¢y) = Ga(x,y),

where G (x,y) is the Green’s function, that is, the expected
number of visits to y of a simple random walk started from x
killed when it exits A.

m General 0 < C, < V"' <G,
0 < cov ¥ (¢, Py) < W7 |cov uh (Vigw, Viy)| <

¢
Tl
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L Some tools

m The dynamic: SDE satisfied by (¢x) cze

_OH
el

where W, := {W,(t),x € Z} is a family of independent 1-dim
Brownian Motions.

() = (6(0)dt + V2dW, (1), x € Z¢,

m Komlos (1967): If ({,)qen is a sequence of real-valued random
variables with liminf,,_,~, E(|(,|) < oo, then there exists a
subsequence {6, },en of the sequence {(, },cn and an integrable
random variable # such that for any arbitrary subsequence
{0, }nen of the sequence {6, }, we have almost surely that

. 0~1+9~2+...+9n
lim

n—00 n

=0.
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L Some tools

m Gloria-Otto (2012)/ Ledoux (2001): Fix n € N and let
a = (a;)}_, be independent random variables with
uniformly-bounded finite second moments on (2, 7, P). Let
X, Y be Borel measurable functions of a € R” (i.e. measurable
w.r.t. the smallest o-algebra on RY for which all coordinate
functions R"” 5 a — a; € R are Borel measurable). Then

lcov (X, ¥)| <
5 1/2
d]P’> ( J sup,,

max <<, var (a;) > i, <f Supy, i

Oa;

0X

Oa;

) 1/2
dIP’)

where sup,,. %’ denotes the supremum of
1
0Z
78611' ((11, e Ai—1,0i,Ai4 1y - - - ,an)

of Z with respect to the variable a;, forZ = X, Y.

m The independence assumption can be relaxed by using, for
example, Marton (2013) and Caputo, Menz, Tetali (2014)
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L Sketch of proof

We will first prove:
Fixu € R Letforall o € {1,2,...,d}

Ea::{ ’A|Z77 xa:aa

along the sequence with by o, := (x + eq,x) € X.
Then there exists a unique shift-covariant random gradient Gibbs
measure £ — p[€] which satisfies for P-almost every £

UlE)(Ea) = 1, a € {1,2,...,d}.

Moreover, 11[€] satisfies the integrability condition

1) / 1[€](dn)(n(b))* < oo for all bonds b € .
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Existence: We consider first case u = 0.
m Step 1: Define

|A| Z A+x
xeA

where A + x := {z+ x : z € A}. Then there exists a
deterministic subsequence (m;);en such that for P-almost every &

converges as k — oo weakly to u[¢], which is a shift-covariant
random gradient Gibbs measure.
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m Step 2: It suffices to show

2
1 fl f Fo
a3 5 w09 (0 T ) <0

WwE A, xEA

m Step 3: We need to estimate the following 3 terms

# (o (g )
+V ( m +w[ ](ml‘ Z n(bx,oz)>>
M xeA,

(e i )
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General u € R case.
Define

i [{]((|¢) — 1 %erz‘\,)‘ezl\ulfm L(¢)()C)7¢>(y) (u,x y>)
Yshi A =€ x—y|=
Shlft, ”
Shiit,A [5]

e2xen E090) 4o 5, (g ).

Proceed now as in Steps 1-3.
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Uniqueness:
m Suppose that there exist two shift-covariant measures

§ = pl€], € — ple], plé], ml€] € P(x), stationary for the
dynamics which satisfy for P-almost every £

:U'[g](Ea) = 17 ﬂ[f](Ea) = 17 o€ {1727"' 7d}7

and which satisfy the integrability condition

E / €] (dn) (7(5))? < oo, E / AlE] (dn) (7(B))? < oo, forall b,

m For each fixed £ € €2, we construct two independent x,-valued
random variables n = {n(b) } ¢ (z¢)- and 1 = {7(D) },c(z4)- on a
common probability space (T, £, Q[¢]) in such a manner that 7
and 7 are distributed by p[¢] and f[¢] under Q[¢], respectively.
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‘We will first show

m Forall u € R?, we have
- L R ey N2
timyee [ 72 [ D0 e o g [(n(b) — 8))7] arB(a) =0,
b

m There exists a deterministic sequence (m,),en in N such that for
P-almost every &

k .

. 1 [ ok _

hmk—>ook< > m-/o R (nt(b)—nt(b))z} dt) =0.
i=1 """ b
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L Sketch of proof

m This implies for P-almost all £
tim [ 10— B¢ @ndm) =
—00

where P [¢] is a shift-covariant probability measure on y X x
defined by

Byl (dnd) - (Z [ Qg n6). 1)1 < dnam) dt)

The first marginal of P;[¢] is 1[¢] and the second one is fi[€].

m This implies that the Wasserstein distance between p and ji is
zero and hence p[¢] = [¢] for P-almost all .
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L Sketch of proof

Ergodicity of the averaged measure:

m Let i, (x) the o-algebra of shift-invariant events on y. Let

o = ([ Ptag1ute)) can.

We need to show that for all A € F;,,(x), we have pi,,(A) = 0 or
tay(A) = 1. We will show that this holds by contradiction.

m Suppose that there exists A € F,, () such that 0 < 14,(A) < 1.
Then, for P-almost all £ we have 0 < u[€](A) < 1. We define
now for all £ the distinct measures on x

plél(BNA) pl€](BNA°)
pl€l(A) €] (AC)

where we denoted by 7 := o({np : b € x}) the smallest
o-algebra on Y generated by all the edges in x.

nal€](B) = and 10[€](B) = VBET,
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THANK YOU!
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