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Gradient interfaces with disorder

The models

Setting

Interface — transition region that separates different phases

Λ ⊂ Zd finite, ∂Λ := {x /∈ Λ, ||x− y|| = 1 for some y ∈ Λ}
Height Variables (configurations) φx ∈ R, x ∈ Λ

Boundary condition ψ, such that

φx = ψx, when x ∈ ∂Λ.

Gradients∇φ: ∇φb = φx − φy for b = (x, y), ||x− y|| = 1
tilt u = (u1, . . . , ud) ∈ Rd and tilted boundary condition
ψu

x = x · u, x ∈ ∂Λ.

(Ω,F ,P) the probability space of the disorder, E the expectation
w.r.t P, V the variance w.r.t. P and Cov the covariance w.r.t P.
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Model A

Model A
The Hamiltonian (random external field)

Hψ
Λ [ξ](φ) :=

1
2

∑
x,y∈Λ∪∂Λ
|x−y|=1

V(φx − φy) +
∑
x∈Λ

ξxφx,

(ξx)x∈Zd are assumed to be i.i.d. real-valued random variables,
with finite non-zero second moments.
V ∈ C2(R) is an even function such that there exist 0 < C1 < C2
with

C1 ≤ V ′′(s) ≤ C2 for all s ∈ R.

The finite volume Gibbs measure on RΛ

νψΛ [ξ](φ) :=
1

ZψΛ [ξ]
exp(−βHψ

Λ [ξ](φ))
∏
x∈Λ

dφx,

where φx = ψx for x ∈ ∂Λ.
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Model A

χ is the set of bonds (x, y) which satisfy the plaquette condition

Cb(χ) is the set of continuous and bounded functions on χ

The finite-volume∇φ-Gibbs measure µρΛ[ξ] on χ is such that it
satisfies for all F ∈ Cb(χ)∫

χ
µρΛ[ξ](dη)F(η) =

∫
RZd

νψΛ [ξ](dφ)F(∇φ),

where ψ is any field configuration whose gradient field is ρ.
(i.e., the distribution of the∇φ-field under the Gibbs measure
νψΛ )
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Model A

Infinite-volume gradient Gibbs measure µ[ξ] has to satisfy the
DLR equation∫

µ[ξ](dρ)

∫
µρΛ[ξ](dη)F(η) =

∫
µ[ξ](dη)F(η),

for every finite Λ ⊂ Zd and for all F ∈ Cb(χ).
For v ∈ Zd, we define the shift operators τv:

For the bonds by (τvη)(b) := η(b− v) for b bond and η ∈ χ
For the disorder by (τvξ)(y) := ξ(y− v) for y ∈ Zd and ξ ∈ RZd

.

A measurable map ξ → µ[ξ] is called a shift-covariant random
gradient Gibbs measure if µ[ξ] is a∇φ− Gibbs measure for
P-almost every ξ, and if∫

µ[τvξ](dη)F(η) =

∫
µ[ξ](dη)F(τvη),

for all v ∈ Zd and for all F ∈ Cb(χ).
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The models

Model B

Model B

For each (x, y) ∈ Zd × Zd, |x− y| = 1, we define the measurable
map Vω(x,y)(s) : (ω, s) ∈ Ω× R→ R.

Vω(x,y) are random variables with uniformly-bounded finite second
moments and jointly stationary distribution.

For some given 0 < Cω1,(x,y) < Cω2,(x,y), ω ∈ Ω, with
0 < inf(x,y) E

(
Cω1,(x,y)

)
< sup(x,y) E

(
Cω2,(x,y)

)
<∞, Vω(x,y) obey

for P-almost every ω ∈ Ω the following bounds, uniformly in the
bonds (x, y)

Cω1,(x,y) ≤ (Vω(x,y))
′′(s) ≤ Cω2,(x,y) for all s ∈ R.

For each fixed ω ∈ Ω and for each bond (x, y), Vω(x,y) ∈ C2(R) is
an even function.
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The models

Model B

The Hamiltonian for each fixed ω ∈ Ω (random potentials)

Hψ
Λ [ω](φ) :=

1
2

∑
x,y∈Λ∪∂Λ,|x−y|=1

Vω(x,y)(φx − φy)

Let ω ∈ Ω be fixed. We will denote by µ[τvω] the
infinite-volume gradient Gibbs measure with given Hamiltonian
H̄[ω](η) :=

(
Hρ

Λ[ω](τvη)
)

Λ⊂Zd,ρ∈χ. This means that we shift the
field of disorded potentials on bonds from Vω(x,y) to Vω(x+v,y+v).
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Questions

Questions (for general potentials V):

Existence and (strict) convexity of infinite volume surface
tension

σ(u)[ξ] = lim
Λ↑Zd

σΛ[ξ](u), σΛ[ξ](u) :=
1
|Λ|

log Zψ
u

Λ [ξ].

Existence of shift-covariant infinite volume gradient Gibbs
measure

µ[ξ] := lim
Λ↑Zd

µρΛ[ξ]

Uniqueness of shift-covariant Gibbs measure (maybe under
additional assumptions on the measure).

Quantitative results for µ[ξ]: decay of covariances with respect to
∇φ, central limit theorem (CLT) results, large deviations (LDP)
results.
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Known results for gradients without disorder

0 < C1 ≤ V ′′ ≤ C2 :

Existence and strict convexity of the surface tension for d ≥ 1.

Gibbs measures ν do not exist for d = 1, 2.

∇φ-Gibbs measures µ exist for d ≥ 1.

(Funaki-Spohn) For every u = (u1, . . . , ud) ∈ Rd there exists a
unique shift-invariant ergodic∇φ- Gibbs measure µ with
Eµ[φek − φ0] = uk, for all k = 1, . . . , d.

Decay of covariances results, CLT results, LDP results

Important properties for proofs: shift-invariance, ergodicity and
extremality of the infinite volume Gibbs measures
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Results for gradients with disorder

For model A, van Enter-Külske (2007): For d = 2, there exists
no shift-covariant gradient Gibbs measure µ[ξ] with
E
∣∣∫ µ[ξ](dη)V ′(η(b))

∣∣ <∞ for all bonds b.

For model A, Cotar-Külske (2010): For d = 3, 4, there exists no
shift-covariant Gibbs measure.

Cotar-Külske (2014): (Model A) Let d ≥ 3, ξ(0) with
symmetric distribution and u ∈ Rd. Assume 0 < C1 ≤ V ′′ ≤ C2.
Then there exists exactly one shift-covariant random gradient
Gibbs measure ξ → µ[ξ] with E

(∫
µ[ξ]

)
ergodic and such that

E
(∫

µ[ξ](dη)ηb

)
= 〈u, yb − xb〉 for all b = (xb, yb).

Moreover µ[ξ] satisfies the integrability condition
E
∫
µ[ξ](dη)(ηb)2 <∞ for all bonds b.
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(Model B) Let d ≥ 1 and u ∈ Rd. Assume
0 < C1 ≤ (Vω(i,j))

′′ ≤ C2 for all ω. Then there exists exactly one
shift-covariant random gradient Gibbs measure ω → µ[ω] with
E
(∫
µ[ω]

)
ergodic and such that

E
(∫

µ[ω](dη)ηb

)
= 〈u, yb − xb〉 for all b = (xb, yb).

Moreover µ[ω] satisfies

E
∫
µ[ω](dη)(ηb)2 <∞ for all b.



Gradient interfaces with disorder

Results

New results for gradients with disorder

For our 2nd main result, we need

Poincaré inequality assumption on the distribution γ of the
disorder ξ(0), (respectively of Vω(0,e1)): There exists λ > 0 such
that for all smooth enough real-valued functions f on Ω, we have
for the probability measure γ

λvar γ(f ) ≤
∫
|∇f |2 dγ, (1)

where |∇f | is the Euclidean norm of the gradient of f smooth
enough.

Milman (2010, 2012)-enough for the above to have
semi-convexity assumption

Let

∂bF(η) :=
∂F(η)

∂ηb
, ||∂bF||∞ := sup

η∈χ
|∂bF(η)| and ]|b|[= max{|xb|, 1}.
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New results for gradients with disorder

Cotar-Külske (2014): Let u ∈ Rd.
(a) (Model A) Let d ≥ 3. Assume that (ξ(x))x∈Zd are i.i.d with mean

0 and the distribution of ξ(0) satisfies (1). Then if ξ → µ[ξ] is the
shift-covariant gradient Gibbs measure from uniqueness result,
ξ → µ[ξ] satisfies the following decay of covariances for all
F,G ∈ C1

b(χ)

|Cov (µ[ξ](F(η)), µ[ξ](G(η))) | ≤ c
∑
b,b′

||∂bF||∞||∂b′G||∞
]|b− b′|[d−2 ,

for some c > 0 which depends only on d,C1, C2 and on the
number of terms b, b′ in F and G.

(b) (Model B) Let d ≥ 1. Assume that Vω(x,y) are i.i.d., and they also
satisfy (1) for P-almost every ω and uniformly in the bonds (x, y).
Then if ω → µ[ω] is the shift-covariant gradient Gibbs measure
from uniqueness result, ω → µ[ω] satisfies the following decay of
covariances for all F,G ∈ C1

b(χ)

|Cov (µ[ω](F(η)), µ[ω](G(η))) | ≤ c
∑
b,b′

||∂bF||∞||∂b′G||∞
]|b− b′|[d

.
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Non-convex potentials with disorder

Conjecture for disordered non-convex potentials

For the potential

e−V(s) = pe−k1
s2
2 +(1−p)e−k2

s2
2 , β = 1, k1 << k2, p =

(
k1

k2

)1/4

V(s)

0 s

Biskup-Kotecký (2007): d = 2. Existence of two ergodic
∇φ-Gibbs measures with same expected tilt Eµ[φek − φ0] = 0,
but with different variances.
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Non-convex potentials with disorder

Cotar-Deuschel (2012 ): d ≥ 2.
Let

V = V0 + g, C1 ≤ V ′′0 ≤ C2, g′′ < 0.

If
C0 ≤ g′′ < 0 and

√
β||g′′||L1(R) small(C1,C2).

uniqueness for shift-invariant∇φ-Gibbs measures µ such that
Eµ [φek − φ0] = uk for k = 1, 2, . . . , d. Our results includes the
Biskup-Kotecký model, but for different range of choices of p, k1
and k2.
Consider the corresponding disordered model

e−Vb(ηb) := e−ωb(ηb)2
(pe−k1(ηb)2

+ (1− p)e−k2(ηb)2
).

Naive Aizenman-Wehr argument hints at: uniqueness for low
enough d ≤ dc and uniqueness/non-uniqueness phase transition
for high enough d > dc ≥ 2.
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Some tools

For 0 < C1 ≤ V ′′ ≤ C2 :

Brascamp-Lieb Inequality: for all x ∈ Λ and for all i ∈ Λ

var
νψΛ

(φi) ≤ var
ν̃ψΛ

(φi),

ν̃ψΛ is the Gaussian Free Field with potential Ṽ(s) = C1s2.
Random Walk Representation Deuschel-Giacomin-Ioffe (2000):
Representation of Covariance Matrix in terms of the Green
function of a particular random walk.

GFF: If x, y ∈ Λ

cov ν0
Λ

(φx, φy) = GΛ(x, y),

where GΛ(x, y) is the Green’s function, that is, the expected
number of visits to y of a simple random walk started from x
killed when it exits Λ.
General 0 < C1 ≤ V ′′ ≤ C2 :
0 ≤ cov νψΛ

(φx, φy) ≤ C
]|x−y|[d−2 , |cov µρΛ

(∇iφx,∇jφy)| ≤
C

]|x−y|[d−2+δ
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Some tools

The dynamic: SDE satisfied by (φx)x∈Zd

dφx(t) = − ∂H
∂φx

(φ(t))dt +
√

2dWx(t), x ∈ Zd,

where Wt := {Wx(t), x ∈ Zd} is a family of independent 1-dim
Brownian Motions.

Komlos (1967): If (ζn)n∈N is a sequence of real-valued random
variables with lim infn→∞ E(|ζn|) <∞, then there exists a
subsequence {θn}n∈N of the sequence {ζn}n∈N and an integrable
random variable θ such that for any arbitrary subsequence
{θ̃n}n∈N of the sequence {θn}, we have almost surely that

lim
n→∞

θ̃1 + θ̃2 + . . .+ θ̃n

n
= θ.
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Gloria-Otto (2012)/ Ledoux (2001): Fix n ∈ N and let
a = (ai)

n
i=1 be independent random variables with

uniformly-bounded finite second moments on (Ω,F ,P). Let
X,Y be Borel measurable functions of a ∈ Rn (i.e. measurable
w.r.t. the smallest σ-algebra on RN for which all coordinate
functions Rn 3 a→ ai ∈ R are Borel measurable). Then
|cov (X,Y)| ≤

max1≤i≤n var (ai)
∑n

i=1

(∫
supai

∣∣∣ ∂X
∂ai

∣∣∣2 dP
)1/2(∫

supai

∣∣∣ ∂Y
∂ai

∣∣∣2 dP
)1/2

,

where supai

∣∣∣ ∂Z
∂ai

∣∣∣ denotes the supremum of

∂Z
∂ai

(a1, . . . , ai−1, ai, ai+1, . . . , an)

of Z with respect to the variable ai, for Z = X,Y .
The independence assumption can be relaxed by using, for
example, Marton (2013) and Caputo, Menz, Tetali (2014)
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Sketch of proof

We will first prove:
Fix u ∈ Rd. Let for all α ∈ {1, 2, . . . , d}

Eα := {η | lim
|Λ|→∞

1
|Λ|
∑
x∈Λ

η(bx,α) = uα},

along the sequence with bx,α := (x + eα, x) ∈ χ.
Then there exists a unique shift-covariant random gradient Gibbs
measure ξ → µ[ξ] which satisfies for P-almost every ξ

µ[ξ](Eα) = 1, α ∈ {1, 2, . . . , d}.

Moreover, µ[ξ] satisfies the integrability condition

E
∫
µ[ξ](dη)(η(b))2 <∞ for all bonds b ∈ χ.
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Sketch of proof

Existence: We consider first case u = 0.

Step 1: Define

µ̄0
Λ[ξ] :=

1
|Λ|
∑
x∈Λ

µρ0
Λ+x[ξ],

where Λ + x := {z + x : z ∈ Λ}. Then there exists a
deterministic subsequence (mi)i∈N such that for P-almost every ξ

µ̂0
k [ξ] :=

1
k

k∑
i=1

µ̄0
Λmi

[ξ]

converges as k→∞ weakly to µ[ξ], which is a shift-covariant
random gradient Gibbs measure.
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Sketch of proof

Step 2: It suffices to show

lim inf
n→∞

lim inf
k→∞

1
k

k∑
i=1

1
|Λmi |

∑
w∈Λmi

Eµρ0
Λmi +w[ξ]

(
1
|Λn|

∑
x∈Λn

η(bx,α)

)2

= 0.

Step 3: We need to estimate the following 3 terms

E

(
var µρ0

mi +w[ξ]

(
1
|Λn|

∑
x∈Λn

η(bx,α)

))

+V

(
µρ0

mi +w[ξ]

(
1
|Λn|

∑
x∈Λn

η(bx,α)

))

+

(
Eµρ0

mi +w[ξ]

(
1
|Λn|

∑
x∈Λn

η(bx,α)

))2

.
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General u ∈ Rd case.
Define

νψshift,Λ[ξ](dφ) :=
1

Zψshift,Λ[ξ]
e
− 1

2

∑
x∈Λ,y∈Λ∪∂Λ
|x−y|=1

V(φ(x)−φ(y)−〈u,x−y〉)

e
∑

x∈Λ ξ(x)φ(x) dφΛδψ(dφZd\Λ).

Proceed now as in Steps 1-3.
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Sketch of proof

Uniqueness:

Suppose that there exist two shift-covariant measures
ξ → µ[ξ], ξ → µ̄[ξ], µ[ξ], µ̄[ξ] ∈ P(χ), stationary for the
dynamics which satisfy for P-almost every ξ

µ[ξ](Eα) = 1, µ̄[ξ](Eα) = 1, α ∈ {1, 2, . . . , d},

and which satisfy the integrability condition

E
∫
µ[ξ](dη)(η(b))2 <∞,E

∫
µ̄[ξ](dη)(η(b))2 <∞, for all b.

For each fixed ξ ∈ Ω, we construct two independent χr-valued
random variables η = {η(b)}b∈(Zd)∗ and η̄ = {η̄(b)}b∈(Zd)∗ on a
common probability space (Υ,L,Q[ξ]) in such a manner that η
and η̄ are distributed by µ[ξ] and µ̄[ξ] under Q[ξ], respectively.
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Sketch of proof

We will first show

For all u ∈ Rd, we have

limT→∞

∫
1
T

∫ T

0

∑
b

e−2r|xb|EQ[ξ]

[
(ηt(b)− η̄t(b))2

]
dtP( dξ) = 0.

There exists a deterministic sequence (mr)r∈N in N such that for
P-almost every ξ

limk→∞
1
k

( k∑
i=1

1
mi

∫ mi

0

∑
b

e−2r|xb|EQ[ξ]

[
(ηt(b)− η̄t(b))2

]
dt
)

= 0.
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This implies for P-almost all ξ

lim
k→∞

∫
|η − η̄|2r P̂k[ξ](dηdη̄) = 0,

where P̂k[ξ] is a shift-covariant probability measure on χ× χ
defined by

P̂k[ξ](dηdη̄) :=
1
k

( k∑
i=1

1
mi

∫ mi

0
Q[ξ]({ηt(b), η̄t(b)}b ∈ dηdη̄) dt

)
.

The first marginal of P̂k[ξ] is µ[ξ] and the second one is µ̄[ξ].

This implies that the Wasserstein distance between µ and µ̄ is
zero and hence µ[ξ] = µ̄[ξ] for P-almost all ξ.
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Sketch of proof

Ergodicity of the averaged measure:

Let Finv(χ) the σ-algebra of shift-invariant events on χ. Let

µav =

(∫
P(dξ)µ[ξ]

)
( dη).

We need to show that for all A ∈ Finv(χ), we have µav(A) = 0 or
µav(A) = 1. We will show that this holds by contradiction.

Suppose that there exists A ∈ Finv(χ) such that 0 < µav(A) < 1.
Then, for P-almost all ξ we have 0 < µ[ξ](A) < 1. We define
now for all ξ the distinct measures on χ

µA[ξ](B) :=
µ[ξ](B ∩ A)

µ[ξ](A)
and µAc [ξ](B) :=

µ[ξ](B ∩ Ac)

µ[ξ](Ac)
, ∀B ∈ T ,

where we denoted by T := σ({ηb : b ∈ χ}) the smallest
σ-algebra on χ generated by all the edges in χ.
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THANK YOU!
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