Scaling Limits for a Weakly Pinned Gaussian Random Field at a Critical Parameter

Erwin Bolthausen, University of Zürich

Warwick, May 27, 2014

Joint with Taizo Chyionobu (Kwansei-Gakuin) & Tadahisa Funaki (Tokyo).

Standard Gaussian lattice free field, in dimension d: $D \subset \mathbb{Z}^d$. Outer boundary ∂D . Hamiltonian:

$$H_N(\phi) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{\langle i,j \rangle \in D \cup \partial D} \left(\phi_i - \phi_j \right)^2,$$

with boundary condition $\mathbf{a} \in \mathbb{R}^{\partial D}$ given by $\phi_i = a_i, \ i \in \partial D$. Gibbs measure on \mathbb{R}^D

$$\mu_D^{\mathbf{a}}\left(d\phi\right) \stackrel{\text{def}}{=} \frac{1}{Z_D^{\mathbf{a}}} \exp\left[-H_N\left(\phi\right)\right] \prod_i d\phi_i.$$

Local pinning at the origin, so-called δ -pinning with pinning parameter $\varepsilon > 0$:

$$\mu_{D}^{\mathbf{a},\varepsilon}\left(d\phi\right) \stackrel{\mathsf{def}}{=} \frac{1}{\zeta_{D}^{\mathbf{a},\varepsilon}} \exp\left[-H_{N}\left(\phi\right)\right] \prod_{i} \left(d\phi_{i} + \varepsilon \delta_{0}\left(d\phi_{i}\right)\right),$$

where ζ is always used for pinning partition functions

$$\zeta_{D}^{\mathbf{a},\varepsilon} \stackrel{\text{def}}{=} \int_{\mathbb{R}^{D}} \exp\left[-H_{N}\left(\phi\right)\right] \prod_{i} \left(d\phi_{i} + \varepsilon \delta_{0}\left(d\phi_{i}\right)\right).$$

For 0-boundary conditions, this strongly localizes the field: If $D_N \uparrow \mathbb{Z}^d$, then

$\lim_{N\to\infty}\mu_{D_N}^{{\bf 0},\varepsilon}$

exists, and has exponentially decaying correlations, and a postive density of zeros. $d \ge 3$ by Brydges, Fröhlich, and Spencer 1982. d = 2: B-Brydges 2000, Deuschel-Velenik, loffe-Velenik 2000, B-Velenik 2001.

Positivity of the surface tension:

$$\xi^{\varepsilon} \stackrel{\text{def}}{=} \lim_{N \to \infty} \frac{1}{D_N} \log \frac{\zeta_{D_N}^{\mathbf{0},\varepsilon}}{Z_{D_N}^{\mathbf{0}}} > \mathbf{0}, \ \forall \varepsilon > \mathbf{0}.$$

What about non-zero (constant) boundary conditions? Interesting only, if the boundary condition increases with N: Put aN, a > 0.

Plausible: If a is large: The local attraction is not strong enough to disturb the field \implies detached. If a is small: \exists region in the center where the field is attached to the wall.

Variational formula (heuristics):

Assume $D_N = ND$, $D \subset \mathbb{R}^d$ nice. Let $A \subset D$ be a nice subset.

The part of the partition function coming from surfaces attached to the wall on NA and detached on $N(D \setminus A)$:

$$Z'_{N(D\setminus A)}\zeta^{\mathbf{0},arepsilon}_{NA}$$

 $Z'_{N(D\setminus A)}$: partition function of the (unpinned) free field with boundary conditions Na on ∂D_N and 0 on $N(\partial A)$.

$$Z'_{N(D\setminus A)} \approx \exp\left[N^d\left(\eta \left|D\setminus A\right| - q_{D,A}\right)\right],$$

where

$$\begin{split} q_{D,A} \stackrel{\text{def}}{=} \inf \left\{ &\frac{1}{2} \int_{D \setminus A} |\nabla f|^2 \, dx : f|_{\partial D} = a, \ f|_{\partial A} = \mathbf{0} \right\}, \\ &\eta \stackrel{\text{def}}{=} \lim_{N \to \infty} \frac{1}{|D_N|} \log Z_{D_N}^{\mathbf{0}}. \\ &\zeta_{NA}^{\mathbf{0},\varepsilon} \approx \exp \left[N^d \left| A \right| \left(\xi^{\varepsilon} + \eta \right) \right], \end{split}$$

SO

$$Z'_{N(D\setminus A)} \zeta_{NA}^{\mathbf{0},\varepsilon} \approx \mathrm{e}^{N^d |D|\eta} \exp\left[N^d \left(|A|\,\xi^\varepsilon - q_{D,A}\right)\right].$$

Finally, one has to "sum" over the possible A's:

$$\zeta_{D_N}^{aN,\varepsilon} \approx \sum_A Z'_{N(D\setminus A)} \zeta_{NA}^{\mathbf{0},\varepsilon} \approx \mathrm{e}^{N^d |D|\eta} \exp\left[N^d \sup_{A:A \subset D} \left(|A| \,\xi^{\varepsilon} - q_{D,A}\right)\right].$$

Problematic steps:

- Splitting of the partition functions
- Replacing the summation by the supremum.

If the steps are justified, then: If sup is attained at $A = \emptyset$: no attachment, otherwise partial attachment on NA for the optimal A.

One dimensional case: D = [0, 1], A = [x, 1 - x], $x \le 1/2$. $q_{D,A} = a^2 x^{-2}$, and we have to maximize

$$-\frac{a^2}{x} + \xi_{\varepsilon} \left(1 - 2x\right), \ x \le 1/2.$$

For $a < \sqrt{\xi_{\varepsilon}/8}$, the optimal choice is $x = a/\sqrt{2\xi_{\varepsilon}}$, and for $a > \sqrt{\xi_{\varepsilon}/8}$, the optimal choice is to take $A = \emptyset$. The critical value is $a_{\text{crit}} \stackrel{\text{def}}{=} \sqrt{\xi_{\varepsilon}/8}$. First order transition: The optimal profile jumps from partly attached to completely detached. At a_{crit} : two optimal profiles $\bar{h}(t) \stackrel{\text{def}}{=} a$, $\forall t$, or \hat{h}

For d = 1: B.-Funaki-Otobe 2008. Define $h^N : [0, 1] \rightarrow \mathbb{R}$ by

$$h^N\left(\frac{k}{N}\right) \stackrel{\mathsf{def}}{=} \frac{1}{N} \phi_k,$$

and interpolated between, then at $a_{\rm crit}:$ For some $\alpha>0$

$$\lim_{N \to \infty} \mu_N^{Na_{\mathsf{crit}},\varepsilon} \left(\left\| h^N - \hat{h} \right\|_{\infty} \le N^{-\alpha} \right) = \mathbf{1},$$

i.e. the surface prefers the attached solution.

Remark: With free boundary condition at one end of the interval, \bar{h} and \hat{h} get positive weight.

Conjecture: For $d \ge 2$, the surface stays attached, too.

Precise description of our results: D_N a cylinder over a torus: Let $\mathbb{T}_N \stackrel{\text{def}}{=} \mathbb{Z}/N\mathbb{Z}$, and

$$D_N \stackrel{\text{def}}{=} \{0, 1, \dots, N\} \times \mathbb{T}_N^{d-1}, \ \partial D_N \stackrel{\text{def}}{=} \{0, N\} \times \mathbb{T}_N^{d-1}, \ D_N^0 \stackrel{\text{def}}{=} D_N \setminus \partial D_N.$$

 $\phi = \{\phi_i\}_{i \in D_N^0}$ with boundary condition aN on ∂D_N , Hamiltonian as above, and local pinning with strength $\varepsilon > 0$. The law is $\mu_N^{aN,\varepsilon}$.

The macroscopic profile $h^N : D \stackrel{\text{def}}{=} [0,1] \times \mathbb{T}^{d-1} \to \mathbb{R}$, where $\mathbb{T} \stackrel{\text{def}}{=} \mathbb{R}/\mathbb{Z}$ is defined by

$$h^N\left(\frac{i}{N}\right) \stackrel{\mathrm{def}}{=} \frac{\phi_i}{N}, \ i \in D_N,$$

with some interpolation.

Torus symmetry \implies variational problem is one-dimensional on D. The variation formula for the macroscopic profile reduces to 1-dim: Two possible maximizers:

$$\overline{h}(\mathbf{t}) \equiv a, \ \hat{h}(\mathbf{t}) = \hat{h}_1(t_1), \ \mathbf{t} = (t_1, \dots, t_d),$$

where

$$\hat{h}_1(t) = \begin{cases} a\left(1 - \frac{t}{x}\right) & \text{for } t \le x \\ 0 & \text{for } x \le t \le 1 - x \\ (t - 1 + x)\frac{a}{x} & \text{for } 1 - x \le t \le 1 \end{cases},$$

where

$$x = x (a, \varepsilon) \stackrel{\text{def}}{=} \frac{a}{\sqrt{2\xi_{\varepsilon}}},$$

but ξ_{ε} is the *d*-dimensional surface tension. Critical value for $a : a_{crit}(\varepsilon) = \sqrt{\xi_{\varepsilon}/8}$, where from rough LDP, \bar{h} and \hat{h} are equally favorable.

Theorem Assume $d \geq 3$, and ε large enough. Then there exists $\alpha > 0$ such that

$$\lim_{N \to \infty} \mu_N^{Na_{\mathsf{crit}},\varepsilon} \left(\left\| h^N - \hat{h} \right\|_1 \le N^{-\alpha} \right) = 1.$$

Three crucial steps:

(I) LDP: There exists $\alpha > 0$ such that

$$\lim_{N \to \infty} \mu_N^{Na,\varepsilon} \left({\rm dist}_{L^1} \left(h^N, \left\{ \hat{h}, \bar{h} \right\} \right) \geq N^{-\alpha} \right) = \mathbf{0}$$

(II) Lower bound at \hat{h} : For $\alpha'' < 1$ there $\exists c > 0$ s.th. for large enough N

$$\frac{\zeta_N^{aN,\varepsilon}}{Z_N} \mu_N^{Na,\varepsilon} \left(\left\| h^N - \hat{h} \right\|_1 \ge N^{-\alpha''} \right) \ge \exp\left[c N^{d-1} \right].$$

(Remark here that $Z_N = Z_N^{aN}$).

(III) Upper bound at \overline{h} : If $\alpha' > d$ one has for large enough N:

$$\frac{\zeta_N^{aN,\varepsilon}}{Z_N} \mu_N^{Na,\varepsilon} \left(\left\| h^N - \bar{h} \right\|_1 \le (\log N)^{-\alpha'} \right) \le 2.$$

The **LDP** (I) uses heavily a technique introduce in B-loffe (CMP, 1997) on a Winterbottom construction. Expansion of the pinned measure:

$$\begin{split} \mu_{N}^{Na,\varepsilon}\left(d\phi\right) &= \frac{1}{\zeta_{N}^{aN,\varepsilon}} \exp\left[-H_{N}\left(\phi\right)\right] \prod_{i \in D_{N}^{0}} \left(d\phi_{i} + \varepsilon \delta_{0}\left(d\phi_{i}\right)\right) \\ &= \sum_{A \subset D_{N}^{0}} \frac{Z_{A}^{aN,0}}{\zeta_{N}^{aN,\varepsilon}} \varepsilon^{|A^{c}|} \mu_{A}^{Na,0}\left(d\phi\right): \end{split}$$

 $\mu_A^{Na,0}$: the free field on A with boundary conditions 0 on $D_N^0 \setminus A$ and aN on ∂D_N .

Difficulty: The summation over A's is too big. On the other hand: the summation over all A's produces the surface tension ξ_{ε} .

Way out: Reduce the combinatorial complexity in the detached region, but not in the attached one.

Key idea: Introduce a mesoscopic scale N^{β} , $0 < \beta < 1$, and devide D_N^0 into subboxes B of sidelength N^{β} . Mesoscopically smoothed surface: average over the mesoscopic subboxes \Longrightarrow Mesoscopic profile $h^{N,\text{meso},\beta}$

$$\mu_N^{Na,\varepsilon}\left(\left\|h^N-h^{N,\mathsf{meso},\beta}\right\|_1\geq N^{-\alpha}\right)\leq \exp\left[-N^{d+\delta}\right], \text{ some } \delta>0,$$

This idea stems from the **Donsker-Varadhan** treatment of the LDP for the Wiener sausage.

"Mesoscopically wetted" region

$$W_{\mathsf{meso}} \stackrel{\mathsf{def}}{=} \left\{ \mathbf{t} \in D : h^{N,\mathsf{meso},\beta}\left(\mathbf{t}\right) \geq N^{-\gamma}
ight\}.$$

Fixing a mesoscopic region, the sum over microsopic A's is essentially only over subsets of $(W_{\text{meso}})^c$. This requires to splits A in the original summation over $A \cap W_{\text{meso}}$ and $A \cap (D_N^0 \setminus W_{\text{meso}})$, the latter producing the surface tension on $D_N^0 \setminus W_{\text{meso}}$, and $A \cap W_{\text{meso}}$ has to be small.

The number of possible mesoscopic regions is subexponential \implies summation can be replaced by maximum \implies the mesoscopic profile is with high probability the optimal one.

The argument needs an analytic rigidity property.

The proof of the **lower bound (II)** unfortunately heavily uses that ε is large. As one cannot hope to get anything better than $\exp\left[cN^{d-1}\right]$, the coarse graining technique from (I) cannot be used. Let $K \in \mathbb{N}$, and split D_N^0 into five parts: Two layers of width K in the first coordinate near the optimal position $x_{\text{crit}}N$, call them γ_L, γ_R , then two regions F_L, F_R left of γ_L and right of γ_R , and finally the rest B in the middle. Then define

$$\boldsymbol{\Gamma} \stackrel{\mathsf{def}}{=} \left\{ \phi: \phi_i \neq \mathbf{0}, \ i \in F_L \cup F_R, \ \phi_i = \mathbf{0}, \ i \in \gamma_L \cup \gamma_R \right\},$$

and estimate

$$\frac{\zeta_{N}^{\alpha N,\varepsilon}}{Z_{N}}\mu_{N}^{aN,\varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{1}\leq\delta\right) \geq \frac{Z_{F_{L}}^{aN,0}\zeta_{B}^{0,\varepsilon}Z_{F_{R}}^{0,aN}}{Z_{N}}\varepsilon^{2|\gamma_{L}|}\mu_{F_{L}}^{aN,0}\left(\left\|h^{N}-\hat{h}\right\|_{1}\leq\delta\right) \times \mu_{B}^{aN,\varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{1}\leq\delta\right)\mu_{F_{R}}^{0,aN}\left(\left\|h^{N}-\hat{h}\right\|_{1}\leq\delta\right).$$

The μ -probabilities are all \approx 1, even with $\delta = N^{-\alpha'}$, and then a somewhat messy

computation gives that for ε large enough

$$\frac{Z_{F_L}^{aN,\mathbf{0}}\zeta_B^{\mathbf{0},\varepsilon}Z_{F_R}^{\mathbf{0},aN}}{Z_N}\varepsilon^{2|\gamma_L|} \gtrapprox \exp\left[cN^{d-1}\log\varepsilon\right].$$

In the **upper bound** (III), we use $d \ge 3$. If one would replace $\|\cdot\|_1$ by $\|\cdot\|_{\infty}$, then the statement is trivial (with bound 1). This is not possible because of (I) does not work with $\|\cdot\|_{\infty}$. However, restricted to $\|h^N - \bar{h}\|_1 \le (\log N)^{-\alpha'}$, $\alpha' > d$, in the expansion over $A \stackrel{\text{def}}{=}$ zero set, one can restrict to $|A| \le (N/\log N)^d$, and it then suffices to prove

$$\sum_{A \subset D_N^{\mathbf{0}}, |A| \leq (N/\log N)^d} \varepsilon^{|A^c|} \frac{Z_A^{aN,\mathbf{0}}}{Z_N} \leq 2.$$

where $Z_A^{aN,0}$ refers to the ($\varepsilon = 0$) partition function with aN boundary on ∂D_N and

0 boundary on $A^c \stackrel{\text{def}}{=} D^0_N \backslash A$. For that, one uses an estimate

$$\frac{Z_A^{aN,\mathbf{0}}}{Z_N} \le e^{\operatorname{const} \times |A^c|} \exp\left[-N^2 a \operatorname{cap}_{D_N}(A^c)\right],$$

where cap_{D_N} refers to the capacity with respect to the transient random walk on D_N^0 with killing at ∂D_N . From that, one gets the estimate if N is large enough.