# Scaling Limits for a Weakly Pinned Gaussian Random Field at a Critical Parameter 

Erwin Bolthausen, University of Zürich

Warwick, May 27, 2014

## Joint with Taizo Chyionobu (Kwansei-Gakuin) \& Tadahisa Funaki (Tokyo).

Standard Gaussian lattice free field, in dimension $d: D \subset \subset \mathbb{Z}^{d}$. Outer boundary $\partial D$. Hamiltonian:

$$
H_{N}(\phi) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{\langle i, j\rangle \in D \cup \partial D}\left(\phi_{i}-\phi_{j}\right)^{2}
$$

with boundary condition $\mathbf{a} \in \mathbb{R}^{\partial D}$ given by $\phi_{i}=a_{i}, i \in \partial D$. Gibbs measure on $\mathbb{R}^{D}$

$$
\mu_{D}^{\mathbf{a}}(d \phi) \stackrel{\text { def }}{=} \frac{1}{Z_{D}^{\mathbf{a}}} \exp \left[-H_{N}(\phi)\right] \prod_{i} d \phi_{i}
$$

Local pinning at the origin, so-called $\delta$-pinning with pinning parameter $\varepsilon>0$ :

$$
\mu_{D}^{\mathbf{a}, \varepsilon}(d \phi) \stackrel{\text { def }}{=} \frac{1}{\zeta_{D}^{\mathbf{a}, \varepsilon}} \exp \left[-H_{N}(\phi)\right] \prod_{i}\left(d \phi_{i}+\varepsilon \delta_{0}\left(d \phi_{i}\right)\right)
$$

where $\zeta$ is always used for pinning partition functions

$$
\zeta_{D}^{\mathbf{a}, \varepsilon} \stackrel{\text { def }}{=} \int_{\mathbb{R}^{D}} \exp \left[-H_{N}(\phi)\right] \prod_{i}\left(d \phi_{i}+\varepsilon \delta_{0}\left(d \phi_{i}\right)\right)
$$

For 0-boundary conditions, this strongly localizes the field: If $D_{N} \uparrow \mathbb{Z}^{d}$, then

$$
\lim _{N \rightarrow \infty} \mu_{D_{N}}^{\mathbf{0 , \varepsilon}}
$$

exists, and has exponentially decaying correlations, and a postive density of zeros. $d \geq 3$ by Brydges, Fröhlich, and Spencer 1982. $d=2$ : B-Brydges 2000, DeuschelVelenik, loffe-Velenik 2000, B-Velenik 2001.

Positivity of the surface tension:

$$
\xi^{\varepsilon} \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} \frac{1}{D_{N}} \log \frac{\zeta_{D_{N}}^{0, \varepsilon}}{Z_{D_{N}}^{0}}>0, \forall \varepsilon>0
$$

What about non-zero (constant) boundary conditions? Interesting only, if the boundary condition increases with $N$ : Put $a N, a>0$.

Plausible: If $a$ is large: The local attraction is not strong enough to disturb the field $\Longrightarrow$ detached. If $a$ is small: $\exists$ region in the center where the field is attached to the wall.

Variational formula (heuristics):
Assume $D_{N}=N D, D \subset \subset \mathbb{R}^{d}$ nice. Let $A \subset D$ be a nice subset.

The part of the partition function coming from surfaces attached to the wall on $N A$ and detached on $N(D \backslash A)$ :

$$
Z_{N(D \backslash A)}^{\prime} \zeta_{N A}^{0, \varepsilon}
$$

$Z_{N(D \backslash A)}^{\prime}$ : partition function of the (unpinned) free field with boundary conditions $N a$ on $\partial D_{N}$ and 0 on $N(\partial A)$.

$$
Z_{N(D \backslash A)}^{\prime} \approx \exp \left[N^{d}\left(\eta|D \backslash A|-q_{D, A}\right)\right]
$$

where

$$
\begin{gathered}
q_{D, A} \stackrel{\text { def }}{=} \inf \left\{\frac{1}{2} \int_{D \backslash A}|\nabla f|^{2} d x:\left.f\right|_{\partial D}=a,\left.f\right|_{\partial A}=0\right\} \\
\eta \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} \frac{1}{\left|D_{N}\right|} \log Z_{D_{N}}^{0} \\
\zeta_{N A}^{0, \varepsilon} \approx \exp \left[N^{d}|A|\left(\xi^{\varepsilon}+\eta\right)\right]
\end{gathered}
$$

so

$$
Z_{N(D \backslash A)}^{\prime} \zeta_{N A}^{0, \varepsilon} \approx \mathrm{e}^{N^{d}|D| \eta} \exp \left[N^{d}\left(|A| \xi^{\varepsilon}-q_{D, A}\right)\right]
$$

Finally, one has to "sum" over the possible $A$ 's:

$$
\zeta_{D_{N}}^{a N, \varepsilon} \approx \sum_{A} Z_{N(D \backslash A)}^{\prime} \zeta_{N A}^{0, \varepsilon} \approx \mathrm{e}^{N^{d}|D| \eta} \exp \left[N^{d} \sup _{A: A \subset D}\left(|A| \xi^{\varepsilon}-q_{D, A}\right)\right]
$$

## Problematic steps:

- Splitting of the partition functions
- Replacing the summation by the supremum.

If the steps are justified, then: If sup is attained at $A=\emptyset$ : no attachment, otherwise partial attachment on $N A$ for the optimal $A$.

One dimensional case: $D=[0,1], A=[x, 1-x], x \leq 1 / 2 . q_{D, A}=a^{2} x^{-2}$, and we have to maximize

$$
-\frac{a^{2}}{x}+\xi_{\varepsilon}(1-2 x), x \leq 1 / 2
$$

For $a<\sqrt{\xi_{\varepsilon} / 8}$, the optimal choice is $x=a / \sqrt{2 \xi_{\varepsilon}}$, and for $a>\sqrt{\xi_{\varepsilon} / 8}$, the optimal choice is to take $A=\emptyset$. The critical value is $a_{\text {crit }} \stackrel{\text { def }}{=} \sqrt{\xi_{\varepsilon} / 8}$. First order transition: The optimal profile jumps from partly attached to completely detached. At $a_{\text {crit }}$ : two optimal profiles $\bar{h}(t) \stackrel{\text { def }}{=} a, \forall t$, or $\hat{h}$


For $d=1$ : B.-Funaki-Otobe 2008. Define $h^{N}:[0,1] \rightarrow \mathbb{R}$ by

$$
h^{N}\left(\frac{k}{N}\right) \stackrel{\text { def }}{=} \frac{1}{N} \phi_{k}
$$

and interpolated between, then at $a_{\text {crit }}$ : For some $\alpha>0$

$$
\lim _{N \rightarrow \infty} \mu_{N}^{N a_{\text {crit }}, \varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{\infty} \leq N^{-\alpha}\right)=1
$$

i.e. the surface prefers the attached solution.

Remark: With free boundary condition at one end of the interval, $\bar{h}$ and $\hat{h}$ get positive weight.

Conjecture: For $d \geq 2$, the surface stays attached, too.

Precise description of our results: $D_{N}$ a cylinder over a torus: Let $\mathbb{T}_{N} \stackrel{\text { def }}{=} \mathbb{Z} / N \mathbb{Z}$, and

$$
D_{N} \stackrel{\text { def }}{=}\{0,1, \ldots, N\} \times \mathbb{T}_{N}^{d-1}, \partial D_{N} \stackrel{\text { def }}{=}\{0, N\} \times \mathbb{T}_{N}^{d-1}, D_{N}^{0} \stackrel{\text { def }}{=} D_{N} \backslash \partial D_{N}
$$

$\phi=\left\{\phi_{i}\right\}_{i \in D_{N}^{0}}$ with boundary condition $a N$ on $\partial D_{N}$, Hamiltonian as above, and local pinning with strength $\varepsilon>0$. The law is $\mu_{N}^{a N, \varepsilon}$.

The macroscopic profile $h^{N}: D \stackrel{\text { def }}{=}[0,1] \times \mathbb{T}^{d-1} \rightarrow \mathbb{R}$, where $\mathbb{T} \stackrel{\text { def }}{=} \mathbb{R} / \mathbb{Z}$ is defined by

$$
h^{N}\left(\frac{i}{N}\right) \stackrel{\text { def }}{=} \frac{\phi_{i}}{N}, i \in D_{N}
$$

with some interpolation.

Torus symmetry $\Longrightarrow$ variational problem is one-dimensional on $D$. The variation formula for the macroscopic profile reduces to 1-dim: Two possible maximizers:

$$
\bar{h}(\mathbf{t}) \equiv a, \hat{h}(\mathbf{t})=\hat{h}_{1}\left(t_{1}\right), \mathbf{t}=\left(t_{1}, \ldots, t_{d}\right)
$$

where

$$
\hat{h}_{1}(t)=\left\{\begin{array}{cc}
a\left(1-\frac{t}{x}\right) & \text { for } t \leq x \\
0 & \text { for } x \leq t \leq 1-x \\
(t-1+x) \frac{a}{x} & \text { for } 1-x \leq t \leq 1
\end{array}\right.
$$

where

$$
x=x(a, \varepsilon) \stackrel{\text { def }}{=} \frac{a}{\sqrt{2 \xi_{\varepsilon}}}
$$

but $\xi_{\varepsilon}$ is the $d$-dimensional surface tension. Critical value for $a: a_{\text {crit }}(\varepsilon)=\sqrt{\xi_{\varepsilon} / 8}$, where from rough LDP, $\bar{h}$ and $\hat{h}$ are equally favorable.

Theorem Assume $d \geq 3$, and $\varepsilon$ large enough. Then there exists $\alpha>0$ such that

$$
\lim _{N \rightarrow \infty} \mu_{N}^{N a_{\text {crit }}, \varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{1} \leq N^{-\alpha}\right)=1
$$

## Three crucial steps:

(I) LDP: There exists $\alpha>0$ such that

$$
\lim _{N \rightarrow \infty} \mu_{N}^{N a, \varepsilon}\left(\operatorname{dist}_{L^{1}}\left(h^{N},\{\hat{h}, \bar{h}\}\right) \geq N^{-\alpha}\right)=0
$$

(II) Lower bound at $\hat{h}$ : For $\alpha^{\prime \prime}<1$ there $\exists c>0$ s.th. for large enough $N$

$$
\frac{\zeta_{N}^{a N, \varepsilon}}{Z_{N}} \mu_{N}^{N a, \varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{1} \geq N^{-\alpha^{\prime \prime}}\right) \geq \exp \left[c N^{d-1}\right]
$$

(Remark here that $Z_{N}=Z_{N}^{a N}$ ).
(III) Upper bound at $\bar{h}$ : If $\alpha^{\prime}>d$ one has for large enough $N$ :

$$
\frac{\zeta_{N}^{a N, \varepsilon}}{Z_{N}} \mu_{N}^{N a, \varepsilon}\left(\left\|h^{N}-\bar{h}\right\|_{1} \leq(\log N)^{-\alpha^{\prime}}\right) \leq 2
$$

The LDP (I) uses heavily a technique introduce in B-loffe (CMP, 1997) on a Winterbottom construction. Expansion of the pinned measure:

$$
\begin{aligned}
\mu_{N}^{N a, \varepsilon}(d \phi) & =\frac{1}{\zeta_{N}^{a N, \varepsilon}} \exp \left[-H_{N}(\phi)\right] \prod_{i \in D_{N}^{0}}\left(d \phi_{i}+\varepsilon \delta_{0}\left(d \phi_{i}\right)\right) \\
& =\sum_{A \subset D_{N}^{0}} \frac{Z_{A}^{a N, 0}}{\zeta_{N}^{a N, \varepsilon}} \varepsilon^{\left|A^{c}\right|} \mu_{A}^{N a, 0}(d \phi):
\end{aligned}
$$

$\mu_{A}^{N a, 0}$ : the free field on $A$ with boundary conditions 0 on $D_{N}^{0} \backslash A$ and $a N$ on $\partial D_{N}$.

Difficulty: The summation over $A$ 's is too big. On the other hand: the summation over all $A$ 's produces the surface tension $\xi_{\varepsilon}$.

Way out: Reduce the combinatorial complexity in the detached region, but not in the attached one.

Key idea: Introduce a mesoscopic scale $N^{\beta}, 0<\beta<1$, and devide $D_{N}^{0}$ into subboxes $B$ of sidelength $N^{\beta}$. Mesoscopically smoothed surface: average over the mesoscopic subboxes $\Longrightarrow$ Mesoscopic profile $h^{N, \text { meso, } \beta}$

$$
\mu_{N}^{N a, \varepsilon}\left(\left\|h^{N}-h^{N, \text { meso }, \beta}\right\|_{1} \geq N^{-\alpha}\right) \leq \exp \left[-N^{d+\delta}\right], \text { some } \delta>0
$$

This idea stems from the Donsker-Varadhan treatment of the LDP for the Wiener sausage.
"Mesoscopically wetted" region

$$
W_{\text {meso }} \stackrel{\text { def }}{=}\left\{\mathbf{t} \in D: h^{N, \text { meso }, \beta}(\mathbf{t}) \geq N^{-\gamma}\right\}
$$

Fixing a mesoscopic region, the sum over microsopic $A$ 's is essentially only over subsets of $\left(W_{\text {meso }}\right)^{c}$. This requires to splits $A$ in the original summation over $A \cap W_{\text {meso }}$ and $A \cap\left(D_{N}^{0} \backslash W_{\text {meso }}\right)$, the latter producing the surface tension on $D_{N}^{0} \backslash W_{\text {meso }}$, and $A \cap W_{\text {meso }}$ has to be small.

The number of possible mesoscopic regions is subexponential $\Longrightarrow$ summation can be replaced by maximum $\Longrightarrow$ the mesoscopic profile is with high probability the optimal one.

The argument needs an analytic rigidity property.

The proof of the lower bound (II) unfortunately heavily uses that $\varepsilon$ is large. As one cannot hope to get anything better than $\exp \left[c N^{d-1}\right]$, the coarse graining technique from (I) cannot be used. Let $K \in \mathbb{N}$, and split $D_{N}^{0}$ into five parts: Two layers of width $K$ in the first coordinate near the optimal position $x_{\text {crit }} N$, call them $\gamma_{L}, \gamma_{R}$, then two regions $F_{L}, F_{R}$ left of $\gamma_{L}$ and right of $\gamma_{R}$, and finally the rest $B$ in the middle. Then define

$$
\Gamma \stackrel{\text { def }}{=}\left\{\phi: \phi_{i} \neq 0, i \in F_{L} \cup F_{R}, \phi_{i}=0, i \in \gamma_{L} \cup \gamma_{R}\right\}
$$

and estimate

$$
\begin{aligned}
\frac{\zeta_{N}^{\alpha N, \varepsilon}}{Z_{N}} \mu_{N}^{a N, \varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{1} \leq \delta\right) \geq & \frac{Z_{F_{L}}^{a N, 0} \zeta_{B}^{0, \varepsilon} Z_{F_{R}}^{0, a N}}{Z_{N}} \varepsilon^{2\left|\gamma_{L}\right|} \mu_{F_{L}}^{a N, 0}\left(\left\|h^{N}-\hat{h}\right\|_{1} \leq \delta\right) \\
& \times \mu_{B}^{a N, \varepsilon}\left(\left\|h^{N}-\hat{h}\right\|_{1} \leq \delta\right) \mu_{F_{R}}^{0, a N}\left(\left\|h^{N}-\hat{h}\right\|_{1} \leq \delta\right) .
\end{aligned}
$$

The $\mu$-probabilities are all $\approx 1$, even with $\delta=N^{-\alpha^{\prime}}$, and then a somewhat messy
computation gives that for $\varepsilon$ large enough

$$
\frac{Z_{F_{L}}^{a N, 0} \zeta_{B}^{0, \varepsilon} Z_{F_{R}}^{0, a N}}{Z_{N}} \varepsilon^{2\left|\gamma_{L}\right|} \gtrsim \exp \left[c N^{d-1} \log \varepsilon\right]
$$

In the upper bound (III), we use $d \geq 3$. If one would replace $\|\cdot\|_{1}$ by $\|\cdot\|_{\infty}$, then the statement is trivial (with bound 1). This is not possible because of (I) does not work with $\|\cdot\|_{\infty}$. However, restricted to $\left\|h^{N}-\bar{h}\right\|_{1} \leq(\log N)^{-\alpha^{\prime}}, \alpha^{\prime}>d$, in the expansion over $A \stackrel{\text { def }}{=}$ zero set, one can restrict to $|A| \leq(N / \log N)^{d}$, and it then suffices to prove

$$
\sum_{A \subset D_{N}^{0},|A| \leq(N / \log N)^{d}} \varepsilon^{\left|A^{c}\right| \frac{Z_{A}^{a N, 0}}{Z_{N}} \leq 2 . .2 .}
$$

where $Z_{A}^{a N, 0}$ refers to the $(\varepsilon=0)$ partition function with $a N$ boundary on $\partial D_{N}$ and

0 boundary on $A^{c} \stackrel{\text { def }}{=} D_{N}^{0} \backslash A$. For that, one uses an estimate

$$
\frac{Z_{A}^{a N, 0}}{Z_{N}} \leq \mathrm{e}^{\mathrm{const} \times\left|A^{c}\right|} \exp \left[-N^{2} a \operatorname{cap}_{D_{N}}\left(A^{c}\right)\right]
$$

where $\operatorname{cap}_{D_{N}}$ refers to the capacity with respect to the transient random walk on $D_{N}^{0}$ with killing at $\partial D_{N}$. From that, one gets the estimate if $N$ is large enough.

