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Standard Gaussian lattice free �eld, in dimension d: D �� Zd. Outer boundary
@D. Hamiltonian:
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=
1
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X
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�i � �j

�2
;

with boundary condition a 2 R@D given by �i = ai; i 2 @D: Gibbs measure on RD

�aD (d�)
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=

1
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exp [�HN (�)]

Y
i

d�i:

Local pinning at the origin, so-called �-pinning with pinning parameter " > 0:
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where � is always used for pinning partition functions
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exp [�HN (�)]
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i

(d�i + "�0 (d�i)) :

For 0-boundary conditions, this strongly localizes the �eld: If DN " Zd, then

lim
N!1

�
0;"
DN

exists, and has exponentially decaying correlations, and a postive density of zeros.
d � 3 by Brydges, Fröhlich, and Spencer 1982. d = 2: B-Brydges 2000, Deuschel-
Velenik, Io¤e-Velenik 2000, B-Velenik 2001.

Positivity of the surface tension:

�"
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> 0; 8" > 0:



What about non-zero (constant) boundary conditions? Interesting only, if the boundary
condition increases with N : Put aN; a > 0:

Plausible: If a is large: The local attraction is not strong enough to disturb the �eld
=) detached. If a is small: 9 region in the center where the �eld is attached to the
wall.

Variational formula (heuristics):

Assume DN = ND; D �� Rd nice. Let A � D be a nice subset.

The part of the partition function coming from surfaces attached to the wall on NA
and detached on N (DnA):

Z0N(DnA)�
0;"
NA



Z0N(DnA): partition function of the (unpinned) free �eld with boundary conditions
Na on @DN and 0 on N (@A) :

Z0N(DnA) � exp
h
Nd

�
� jDnAj � qD;A

�i
;

where

qD;A
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= inf
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jrf j2 dx : f j@D = a; f j@A = 0
)
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so
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Finally, one has to �sum�over the possible A�s:
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Problematic steps:

� Splitting of the partition functions

� Replacing the summation by the supremum.

If the steps are justi�ed, then: If sup is attained at A = ; : no attachment, otherwise
partial attachment on NA for the optimal A.



One dimensional case: D = [0; 1], A = [x; 1� x] ; x � 1=2: qD;A = a2x�2; and
we have to maximize

�a
2

x
+ �" (1� 2x) ; x � 1=2:

For a <
q
�"=8; the optimal choice is x = a=

p
2�"; and for a >

q
�"=8, the optimal

choice is to take A = ;: The critical value is acrit
def
=

q
�"=8: First order transition:

The optimal pro�le jumps from partly attached to completely detached. At acrit: two

optimal pro�les �h (t) def= a; 8t; or ĥ



For d = 1: B.-Funaki-Otobe 2008. De�ne hN : [0; 1]! R by

hN
�
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N

�
def
=

1

N
�k;

and interpolated between, then at acrit: For some � > 0

lim
N!1

�
Nacrit;"
N

�hN � ĥ1 � N��
�
= 1;

i.e. the surface prefers the attached solution.

Remark: With free boundary condition at one end of the interval, �h and ĥ get positive
weight.

Conjecture: For d � 2; the surface stays attached, too.



Precise description of our results: DN a cylinder over a torus: Let TN
def
= Z=NZ,

and

DN
def
= f0; 1; : : : ; Ng � Td�1N ; @DN

def
= f0; Ng � Td�1N ; D0N

def
= DNn@DN :

� = f�igi2D0N
with boundary condition aN on @DN ; Hamiltonian as above, and

local pinning with strength " > 0. The law is �aN;"N :

The macroscopic pro�le hN : D
def
= [0; 1]�Td�1 ! R, where T def

= R=Z is de�ned
by
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N
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with some interpolation.



Torus symmetry=)variational problem is one-dimensional on D. The variation for-
mula for the macroscopic pro�le reduces to 1-dim: Two possible maximizers:

�h (t) � a; ĥ (t) = ĥ1 (t1) ; t = (t1; : : : ; td) ;

where

ĥ1 (t) =

8>><>>:
a
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x

�
for t � x

0 for x � t � 1� x
(t� 1 + x) ax for 1� x � t � 1

;

where

x = x (a; ")
def
=

ap
2�"

;

but �" is the d-dimensional surface tension. Critical value for a : acrit (") =
q
�"=8;

where from rough LDP, �h and ĥ are equally favorable.



Theorem Assume d � 3; and " large enough. Then there exists � > 0 such that
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Three crucial steps:

(I) LDP: There exists � > 0 such that

lim
N!1
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(II) Lower bound at ĥ: For �00 < 1 there 9c > 0 s.th. for large enough N
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(Remark here that ZN = ZaNN ).



(III) Upper bound at �h: If �0 > d one has for large enough N :
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The LDP (I) uses heavily a technique introduce in B-Io¤e (CMP, 1997) on a Winter-
bottom construction. Expansion of the pinned measure:
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Na;0
A : the free �eld on A with boundary conditions 0 on D0NnA and aN on @DN .



Di¢ culty: The summation over A�s is too big. On the other hand: the summation
over all A�s produces the surface tension �".

Way out: Reduce the combinatorial complexity in the detached region, but not in the
attached one.

Key idea: Introduce a mesoscopic scale N�; 0 < � < 1; and devide D0N into
subboxes B of sidelength N�. Mesoscopically smoothed surface: average over the
mesoscopic subboxes =)Mesoscopic pro�le hN;meso;�

�
Na;"
N

�hN � hN;meso;�
1
� N��

�
� exp

h
�Nd+�

i
; some � > 0;

This idea stems from the Donsker-Varadhan treatment of the LDP for the Wiener
sausage.

�Mesoscopically wetted� region

Wmeso
def
=
n
t 2 D : hN;meso;� (t) � N�

o
:



Fixing a mesoscopic region, the sum over microsopic A�s is essentially only over subsets
of (Wmeso)

c : This requires to splits A in the original summation over A \Wmeso

and A\
�
D0NnWmeso

�
, the latter producing the surface tension on D0NnWmeso, and

A \Wmeso has to be small.

The number of possible mesoscopic regions is subexponential =) summation can be
replaced by maximum =) the mesoscopic pro�le is with high probability the optimal
one.

The argument needs an analytic rigidity property.



The proof of the lower bound (II) unfortunately heavily uses that " is large. As one
cannot hope to get anything better than exp

h
cNd�1

i
, the coarse graining technique

from (I) cannot be used. Let K 2 N, and split D0N into �ve parts: Two layers of
width K in the �rst coordinate near the optimal position xcritN , call them L; R;

then two regions FL; FR left of L and right of R; and �nally the rest B in the
middle. Then de�ne

�
def
= f� : �i 6= 0; i 2 FL [ FR; �i = 0; i 2 L [ Rg ;

and estimate
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The �-probabilities are all � 1, even with � = N��
0
, and then a somewhat messy



computation gives that for " large enough
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In the upper bound (III), we use d � 3. If one would replace k�k1 by k�k1, then
the statement is trivial (with bound 1). This is not possible because of (I) does not
work with k�k1 : However, restricted to

hN � �h
1
� (logN)��

0
; �0 > d; in the

expansion over A def
= zero set, one can restrict to jAj � (N= logN)d ; and it then

su¢ ces to prove
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A�D0N ; jAj�(N= logN)
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� 2:

where ZaN;0A refers to the (" = 0) partition function with aN boundary on @DN and



0 boundary on Ac def= D0NnA. For that, one uses an estimate

Z
aN;0
A

ZN
� econst�jA

cj exp
h
�N2a capDN (A

c)
i
;

where capDN refers to the capacity with respect to the transient random walk on D
0
N

with killing at @DN . From that, one gets the estimate if N is large enough.


