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Noisy Allen-Cahn equation

du
dt

(t , x) = ∆u(t , x)−
(
u(t , x)3 − u(t , x)

)
+ noise (AC)

u ∈ R order parameter

t ≥ 0 time, x ∈ Td space

Nonlinearity u3 − u = V ′(u)

−1 1

V
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Allen-Cahn II

du
dt

(t , x) = ∆u(t , x)−
(
u(t , x)3 − u(t , x)

)
+ noise

Poplular phenomenological model:

Two phases u ≈ 1 and u ≈ −1. Dynamics of phases.

Energy driven, no preservation of mass.

Rescaled version approximates mean curvature flow.
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What is the noise?

Noise
√
εξδ models termal fluctuation.

Correlation δ: ξδ Gaussian random field with

E
[
ξδ(t , x) ξδ(s, y)

]
≈

δ
−(d+2) if |x − y |+

√
|t − s| � δ

0 if |x − y |+
√
|t − s| � δ .

Approximates space-time white noise for δ → 0.

E
[
ξ(t , x) ξ(s, y)

]
= δ(t − s) δd (x − y).

We are interested in “Freidlin-Wentzell type" large

deviation behaviour as ε, δ → 0.
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Formal derivation of large deviation behaviour

For ξ space time white noise

P[
√
εξ ∈ du

]
∝ exp

(
− 1

2ε

∫ T

0

∫
Td

u(t , x)2 dt dx
) ∏

t ,x
du(t , x) .

“Girsanov" gives for uε solution of (AC).

P[uε ∈ du
]
∝ exp

(
− 1
ε
I (u)

) ∏
t ,x

du(t , x) ,

where

I (u) =
1
2

∫ T

0

∫
Td

(
∂tu −∆u + u3 − u

)2 dx dt .

Large deviations

lim
ε→0

ε logP[uε ∈ du
]

= −I (u) .
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Large deviations for SPDEs

OK for d = 1. u(ε) solution of ∂tu = ∂2
x u − u3 + u +

√
εξ .

Theorem (Faris, Jona-Lasinio ’82)

u(ε) satisfy a large deviation principle in C([0,T ]× Td ).

Rate function

I (u) =
1
2

∫ T

0

∫
Td

(
∂tu −∆u + u3 − u

)2 dx dt .
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Well-posedness problem

d ≥ 2 is tricky: u(ε)
δ solution of

∂tu = ∆u − u3 + u +
√
εξδ .

Theorem (Hairer, Ryser, W. ’12)

For d = 2 if δ, ε→ 0

u(ε)
δ →


0 if

∣∣ log(δ)
∣∣−1 � ε� 1

u∗det if
∣∣ log(δ)

∣∣−1
= λ2ε

udet if 0� ε�
∣∣ log(δ)

∣∣−1

.

udet solution to deterministic Allen-Cahn equation.

u∗det solution to ∂tu = ∆u − u3 + u − Cλu.
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Main result I

u(ε)
δ solution of ∂tu = ∆u + u − u3 +

√
εξδ .

Theorem (Hairer, W. ’14)

Space dimension d = 2 or d = 3.

Suppose ε, δ → 0 andlimε→0 ε log(δ)−1 = λ2 ∈ [0,∞) if d = 2,

limε→0 εδ
−1 = λ2 ∈ [0,∞) if d = 3.

Then u(ε)
δ satisfy a large deviation principle in C([0,T ], Cη).

Rate function

I (u) =
1
2

∫ T

0

∫
Td

(
∂tu −∆u + u3 − u + Cλu

)2 dx dt .
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Renormalised solutions

∂tu = ∆u +
(
C + 3εC(1)

δ − 9ε2C(2)
δ

)
u − u3 +

√
εξδ , (ÂC)

For d = 2, C(2)
δ = 0 and C(1)

δ = 1
4π | log δ|.

For d = 3, C(1)
δ ∝ δ−1 and C(2)

δ ∝ | log δ|.

Theorem

d = 2 or d = 3. For every ε > 0 the û(ε)
δ converge to a limit û(ε)

as δ → 0. Formally

∂t û(ε) = ∆û(ε) −
(
û(ε))(3) + û × ε∞+

√
εξ .

or dynamic φ4
2 model.

d = 2 da Prato/Debussche ’03, d = 3 Hairer ’13.
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Main result II

û(ε)
δ solution of (ÂC).

Theorem (Hairer, W. ’14)

Space dimension d = 2 or d = 3.

Suppose ε, δ → 0. (δ = 0 is allowed).

Then û(ε)
δ satisfy a large deviation principle in

C([0,T ], Cη) ∪ {∞}. Rate function

I (u) =
1
2

∫ T

0

∫
Td

(
∂tu −∆u + u3 − Cu

)2 dx dt .

Renormalisation vanished on the level of large deviations.

Formally ε∞→ 0!
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Theorem (Hairer, W. ’14)

Space dimension d = 2 or d = 3.

Suppose ε, δ → 0. (δ = 0 is allowed).

Then û(ε)
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Discussion

In d ≥ 4 equation critical. Renormalisation not expected to

be possible.

Even for the scheme without renormalisation our method

makes use of the renormalised solutions. In particular, no

result for d ≥ 4.

Our method works for all equations that can be treated with

regularity structures, e.g. KPZ (for d = 1) or stochastic

Navier-Stokes (d = 2).

Polynomial structure of non-linearity is important. For

d = 2 arbitrary polynomial is possible.

Low regularity space η < 0 in d = 2 and η < −1
2 in d = 3.
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Discussion II: Related works

Large deviation results in a similar spirit: [Jona-Lasinio,

Mitter ’90], [Aida 2009, 2012].

Study variational problem for rate function I . [E, Ren,

Vanden-Eijnden 2004], [Kohn, Otto,

Reznikoff,Vanden-Eijnden 2007].

Rate function for Navier-Stokes. [Bouchet, Laurie,

Zaboronski 2014].

Study limit limδ→0 limε→0 (i.e. ε� δ): [Cerrai, Freidlin

2011].
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Why is the one-dimensional case easy?

∂tu = ∆u − u3 + ξ .

Solution of the linearised equation Π := K ∗ ξ.
K = heat kernel, ∗ = space-time convolution.

Fact 1: For d = 1 the solution operator S that maps Model Π

to the solution u is continuous.

Fact 2: Π is a Gaussian process. Gaussian large deviations

are well understood (see e.g. Ledoux ’96).

Hence LDP follows from a contraction principle.

p.13
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A primer on regularity structures

Subcriticality: On small scales the non-linear term is lower

order.

Example: scaling x 7→ λx , t 7→ λ2t and u 7→ λ
d−2

2 u, leaves

Stochastic heat equation invariant. Under this scaling (AC)

becomes

∂t ũ = ∆ũ − λ4−d ũ3 + ξ̃ .

Formal expansion: Need to construct “by hand" a model; i.e.

all Πτ for τ in a finite listW = {Ξ, , , , , , }.

p.14



A primer on regularity structures

Subcriticality: On small scales the non-linear term is lower

order.

Example: scaling x 7→ λx , t 7→ λ2t and u 7→ λ
d−2

2 u, leaves

Stochastic heat equation invariant. Under this scaling (AC)

becomes
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How to build that list

∂tu = ∆u − u3 + ξ . (u4
3)

Integral equation (Duhamel’s principle)

u = K ∗ (u3 + ξ).

K = heat kernel, ∗ = space-time convolution.

Start Picard iteration:

.

= ,

= .

p.15
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Regularity structures in a nutshell

If ξ is a smooth function, there is a canonical model Π, that

can be constructed recursively.

Theorem (Hairer ’13)

There is a metric onM := {models} and a solution operator

S : M→ C([0,T ], Cη) that depends continuously on the data

contained inM.

If Π is the canonical model constructed rom a smooth function

ξ, then S(Π) maps to the classical solution.

Similar in spirit to Rough path theory.
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Renormalised models

In dimension d = 2,

Π̂δ
z =

(
Π̂δ

z
)2 − C(1)

δ , Π̂δ
z =

(
Π̂δ

z
)3 − 3C(1)

δ Π̂δ
z .

For d = 3 as well

Π̂δ
z =

(
Π̂δ

z
)(

Π̂δ
z
)
− C(2)

δ , Π̂δ
z =

(
Π̂δ

z
)(

Π̂δ
z
)
− 3C(2)

δ ,

Π̂δ
z =

(
Π̂δ

z
)(

Π̂δ
z
)
.

Theorem (Hairer ’13)

This renormalisation of the model, corresponds to the

renormalisation of the equation discussed above in (ÂC).

These renormalised models converge in probability with

respect to the metric ofM.
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Large deviation for Banach-valued Wiener chaos I

Abstract Setup: F =
⊕

τ∈W Ψτ

W some finite set.

For τ Eτ some separable Banach space

For each τ

Ψτ =
Kτ∑

k=1

Ψτ,k ,

in inhomogeneous Eτ valued Wiener chaos.

Homogeneous part: For h ∈ H Cameron-Martin space(
Ψτ
)

hom(h) =

∫
Ψτ,Kτ (ξ + h)µ(dξ) .

Only contribution from highest order chaos!

Natural rescaling:

F(ε) =
⊕
τ∈W

εKτ Ψτ .
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Large deviation for Banach-valued Wiener chaos II

Theorem (Hairer, W.)

F, F(ε), Fhom as above.

Then Fε satisfy a large deviation principle on E = ⊕τ∈WEτ .

Rate function

I (s) = inf
{

1
2
|h|2H : h ∈ H with Fhom(h) = s

}
.

Uniform under approximations.

No "compatibility condition" with Cameron Martin vectors.

Key ingredient: Generalised contraction principle à la

Deuschel Stroock.

Similar results well known (e.g. Borell, Ledoux).
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Application of abstract LDP

E.g. Πξδ =
∑

k∈{5,3,1}Πξδ
k .

Homogeneous part coincides with canonical model

constructed from Cameron-Martin vector h.

Renormalisation only affects Πξδ
3 and Πξδ

1 . Invisible on

the level of large deviations.

⇒ Large deviation principle for the renormalised model.

⇒ Main result follows from a contraction principle.
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Conclusion

Describe completely the large deviation behaviour for

stochastic Allen-Cahn equation as correlation length δ and

noise intensity ε go to zero.

Main ingredient: LDP for renormalised equation.

Infinite renormalisation constant disappears on the level of

large deviations.

Understanding of renormalised solutions important, even

for schemes without approximation.

Theory of regularity structures allows to reduce to an

abstract LDP for random variables in a fixed Wiener chaos.

This Wiener LDP derived by generalised contraction

principle.
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