Simple random walk on the two-dimensional uniform spanning tree and its scaling limits

Warwick EPSRC Symposium on Statistical Mechanics: Gradient random fields, 27 May, 2014

Takashi Kumagai (Kyoto University)
joint with
Martin Barlow (University of British Columbia)
David Croydon (University of Warwick)

UNIFORM SPANNING TREE IN TWO DIMENSIONS

Let $\Lambda_n := [-n, n]^2 \cap \mathbb{Z}^2$.

A subgraph of the lattice is a **spanning tree** of Λ_n if it connects all vertices, no cycles.

Let $\mathcal{U}^{(n)}$ be a spanning tree of Λ_n selected uniformly at random from all possibilities.

The UST on \mathbb{Z}^2 , \mathcal{U} , is then the local limit of $\mathcal{U}^{(n)}$. NB. Wired/free boundary conditions unimportant.

Almost-surely, \mathcal{U} is a spanning tree of \mathbb{Z}^2 .

[Aldous, Benjamini, Broder, Häggström, Kirchoff, Lyons, Pemantle, Peres, Schramm...]

WILSON'S ALGORITHM ON \mathbb{Z}^2

Let $x_0 = 0, x_1, x_2, \ldots$ be an enumeration of \mathbb{Z}^2 .

Let $\mathcal{U}(0)$ be the graph tree consisting of the single vertex x_0 .

Given $\mathcal{U}(k-1)$ for some $k \geq 1$, define $\mathcal{U}(k)$ to be the union of $\mathcal{U}(k-1)$ and the loop-erased random walk (LERW) path run from x_k to $\mathcal{U}(k-1)$.

The UST \mathcal{U} is then the local limit of $\mathcal{U}(k)$.

LERW SCALING IN \mathbb{Z}^d

Consider LERW as a process $(L_n)_{n\geq 0}$ (assume original random walk is transient).

In \mathbb{Z}^d , $d \geq 5$, L rescales diffusively to BM [Lawler 1980].

In \mathbb{Z}^4 , with logarithmic corrections rescales to BM [Lawler].

Picture: Ariel Yadin

In \mathbb{Z}^3 , $\{L_n: n \in [0,\tau]\}$ has a scaling limit [Kozma 2007].

In \mathbb{Z}^2 , $\{L_n: n \in [0,\tau]\}$ has SLE(2) scaling limit, UST peano curve has SLE(8) scaling limit [Lawler/Schramm/Werner 2004]. Growth exponent is 5/4 [Kenyon, Masson, Lawler].

Let $M_n = |LERW(0, B_E(0, n))|$ be the length of a LERW run from 0 to $B_E(0, n)^c$.

Theorem.(d=2)

[Kenyon 2000]
$$\lim_{n\to\infty} \frac{\log E^0 M_n}{\log n} = 5/4$$

[Lawler 2013]
$$c_1 n^{5/4} \le E^0 M_n \le c_2 n^{5/4}$$

Now consider random walk on the UST.

RW on random graphs: General theory.

Let $\mathcal{G}(\omega)$ be a random graph on (Ω, \mathbb{P}) . Assume $\exists 0 \in \mathcal{G}(\omega)$.

Let $D \ge 1$. For $\lambda \ge 1$, we sat that B(0,R) in $\mathcal{G}(\omega)$ is λ -good if

$$\lambda^{-1}R^D \le |B(0,R)| \le \lambda R^D,$$

 $\lambda^{-1}R \le R_{\text{eff}}(0,B(0,R)^c) \le R+1.$

 λ -good is a nice control of the volume and resistance for B(0,R).

Theorem. [Barlow/Jarai/K/Slade 2008, K/Misumi 2008]

Suppose $\exists p > 0$ such that

$$\mathbb{P}(\{\omega: B(0,R) \text{ is } \lambda\text{-good.}\}) \geq 1 - \lambda^{-p} \qquad \forall R \geq R_0, \forall \lambda \geq \lambda_0.$$

Then $\exists \alpha_1, \alpha_2 > 0$ and $N(\omega), R(\omega) \in \mathbb{N}$ s.t. the following holds for \mathbb{P} -a.e. ω :

$$(\log n)^{-\alpha_1} n^{-\frac{D}{D+1}} \le p_{2n}^{\omega}(0,0) \le (\log n)^{\alpha_1} n^{-\frac{D}{D+1}}, \qquad \forall n \ge N(\omega),$$

$$(\log R)^{-\alpha_2} R^{D+1} \le E_{\omega}^0 \tau_{B(0,R)} \le (\log R)^{\alpha_2} R^{D+1}, \qquad \forall R \ge R(\omega).$$

In particular,

$$d_{s}(G) := \lim_{n \to \infty} \frac{\log p_{2n}^{\omega}(0,0)}{\log n} = \frac{2D}{D+1}$$

Examples.

D = 2 and $d_s = 4/3$

- Critical percolation on regular trees conditioned to survive forever. (Barlow/K '06)
- Infinite incipient cluster (IIC) for spread out oriented percolation for $d \ge 6$ (Barlow/Jarai/K/Slade '08)
- Invasion percolation on a regular tree. (Angel/Goodman/den Hollander/Slade '08)
- ullet IIC for percolation on \mathbb{Z}^d , $d\geq 19$ (Kozma/Nachmias '09)

More general

• α -stable Galton-Watson trees conditioned to survive forever (Croydon/K '08) $d_s=2\alpha/(2\alpha-1)$

(Advertisement)

Takashi Kumagai

Random Walks on Disordered Media and their Scaling Limits.

Lecture Notes in Mathematics, Vol. 2101, École d'Été de Probabilités de Saint-Flour XL-2010. Springer, New York (2014).

VOLUME AND RESISTANCE ESTIMATES [BARLOW/MASSON 2010,2011]

With high probability,

$$B_E(x, \lambda^{-1}R) \subseteq B_{\mathcal{U}}(x, R^{5/4}) \subseteq B_E(x, \lambda R),$$
 as $R \to \infty$ then $\lambda \to \infty$.

It follows that with high probability,

$$\mu_{\mathcal{U}}(B_{\mathcal{U}}(x,R)) \simeq R^{8/5}.$$

Also with high probability,

Resistance
$$(x, B_{\mathcal{U}}(x, R)^c) \simeq R$$
.

 \Rightarrow Exit time for intrinsic ball radius R is $R^{13/5}$, HK bounds $p_{2n}^{\mathcal{U}}(0,0) \asymp n^{-8/13}$. $(D=8/5,d_s=16/13)$

(Q) How about scaling limit for UST?

Barlow/Masson obtained further detailed properties.

Theorem. [Barlow/Masson 2010]

$$\mathbb{P}(M_n > \lambda E M_n) \leq 2e^{-c_1 \lambda},$$

$$\mathbb{P}(M_n < \lambda^{-1} E M_n) \leq 2e^{-c_2 \lambda^{c_3}}$$

Theorem.[Barlow/Masson 2011]

$$\mathbb{P}(B_{\mathcal{U}}(0, R^{5/4}/\lambda) \not\subset B_{E}(0, R)) \leq c_4 e^{-\lambda^{2/3}},$$

$$\mathbb{P}(B_{E}(0, R) \not\subset B_{\mathcal{U}}(0, \lambda R^{5/4})) \leq c_{\epsilon} \lambda^{-4/15 - \epsilon}.$$

While for most points $x \in \mathbb{Z}^2$, the balls $B_E(0,R)$ and $B_U(0,R^{5/4})$ will be comparable, there are neighboring points in \mathbb{Z}^2 which are far in \mathcal{U} .

Lemma. [Benjamini et. al. 2001]

The box $[-n, n]^2$ contains with probability 1 neighbouring points $x, y \in \mathbb{Z}^2$ with $d_{\mathcal{U}}(x, y) \geq n$.

Proof. Consider the path (in \mathbb{Z}^2) of length 8n around the box $[-n,n]^2$: If each neiboring pair were connected by a path in \mathcal{U} of length less than n, then this path would not contain 0. So we would obtain a loop around 0 — which is impossible since \mathcal{U} is a tree.

UST SCALING [SCHRAMM 2000]

Consider \mathcal{U} as an ensemble of paths:

$$\mathfrak{U} = \left\{ (a, b, \pi_{ab}) : a, b \in \mathbb{Z}^2 \right\},\,$$

where π_{ab} is the unique arc connecting a and b in \mathcal{U} . cf. [Aizenman/Burchard/Newman/Wilson 1999].

Scaling limit T a.s. satisfies:

- each pair $a,b \in \dot{\mathbb{R}}^2$ connected by a path;
- if $a \neq b$, then this path is simple;
- if a = b, then this path is a point or a simple loop;
- the trunk, $\bigcup_{\mathfrak{T}} \pi_{ab} \setminus \{a, b\}$, is a dense topological tree with degree at most 3.

ISSUE: This topology does not carry information about intrinsic distance, volume, or resistance.

GENERALISED GROMOV-HAUSDORFF TOPOLOGY (cf. [GROMOV, LE GALL/DUQUESNE])

Define \mathbb{T} to be the collection of measured, rooted, spatial trees, i.e.

$$(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}}),$$

where:

- $(\mathcal{T}, d_{\mathcal{T}})$ is a locally compact real tree;
- μ_T is a Borel measure on (\mathcal{T}, d_T) ;
- ϕ_T is a cont. map from (\mathcal{T}, d_T) into \mathbb{R}^2 ;
- ρ_T is a distinguished vertex in T.

On \mathbb{T}_c (compact trees only), define a distance Δ_c by

$$\inf_{\substack{Z,\psi,\psi',\mathcal{C}:\\ (\rho_{\mathcal{T}},\rho'_{\mathcal{T}})\in\mathcal{C}}} \Bigg\{ d_P^Z(\mu_T\circ\psi^{-1},\mu'_T\circ\psi'^{-1}) + \sup_{(x,x')\in\mathcal{C}} \Big(d_Z(\psi(x),\psi'(x')) + \Big|\phi_T(x) - \phi'_T(x')\Big| \Big) \Bigg\}.$$

Can be extended to locally compact case.

TIGHTNESS OF UST

Theorem. If \mathbf{P}_{δ} is the law of the measured, rooted spatial tree

$$\left(\mathcal{U}, \delta^{5/4} d_{\mathcal{U}}, \delta^{2} \mu_{\mathcal{U}}(\cdot), \delta \phi_{\mathcal{U}}, 0\right)$$

under P, then the collection $(P_{\delta})_{\delta \in (0,1)}$ is tight in $\mathcal{M}_1(\mathbb{T})$.

Proof involves:

- strengthening estimates of [Barlow/Masson],
- comparison of Euclidean and intrinsic distance along paths.

UST LIMIT PROPERTIES

If $\tilde{\mathbf{P}}$ is a subsequential limit of $(\mathbf{P}_{\delta})_{\delta \in (0,1)}$, then for $\tilde{\mathbf{P}}$ -a.e. $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$ it holds that:

- (i) $\mu_{\mathcal{T}}$ is non-atomic, supported on the leaves of \mathcal{T} ,
- i.e. $\mu_{\mathcal{T}}(\mathcal{T}^o) = 0$, where $\mathcal{T}^o := \mathcal{T} \setminus \{x \in \mathcal{T} : \deg_{\mathcal{T}}(x) = 1\}$;
- (ii) for any R > 0,

$$\liminf_{r \to 0} \frac{\inf_{x \in B_T(\rho_T, R)} \mu_T(B_T(x, r))}{r^{8/5} (\log r^{-1})^{-c}} > 0,$$

- (iii) $\phi_{\mathcal{T}}$ is a homeo. between \mathcal{T}^o and $\phi_{\mathcal{T}}(\mathcal{T}^o)$ (dense in \mathbb{R}^2);
- (iv) $\max_{x \in \mathcal{T}} \deg_{\mathcal{T}}(x) = 3$;
- (v) $\mu_{\mathcal{T}} = \mathcal{L} \circ \phi_{\mathcal{T}}$.

To prove this, we need the following 'uniform control':

$$\lim_{\eta \to 0} \liminf_{\delta \to 0} \mathbf{P} \begin{pmatrix} \sup_{x,y \in B_{\mathcal{U}}(0,c_1\delta^{-5/4}r): \\ d_{\mathcal{U}}(x,y) \le c_2\delta^{-5/4}\eta} d_{\mathcal{U}}^S(x,y) > \delta^{-1}\varepsilon \end{pmatrix} = 0,$$

$$\lim_{\varepsilon \to 0} \limsup_{\delta \to 0} \mathbf{P} \begin{pmatrix} \inf_{x,y \in B_{\mathcal{U}}(0,\delta^{-5/4}r): \\ d_{\mathcal{U}}(x,y) \ge \delta^{-5/4}\eta} d_{\mathcal{U}}^{S}(x,y) < \delta^{-1}\varepsilon \end{pmatrix} = 0,$$

where $d_{\mathcal{U}}^S = \operatorname{diam}(\gamma(x,y))$ (Euclidean diameter of the LERW between x and y; Schramm's distance).

⇒ This involves uniform control and requires more detailed estimates than those of Barlow/Masson.

As a by-product of the detailed estimates, we can sharpen some HK estimates.

Proposition. For each q>0, there exist $c_q,C_q>0$ such that the following holds

$$c_q n^{5q/13} \le \mathbb{E} (d_{\mathcal{U}}(0, X_n)^q) \le C_q n^{5q/13} \quad \forall n \ge 1.$$

NB. Marlow/Masson's estimates include $(\log n)^{\pm c}$.

Given such generalized G-H convergence of trees, we can prove convergence of the process on the trees (generalization of the theory due to Crodon (2008)).

On the (limiting) real treee (T, d_T, μ^T) s.t. μ^T has full support, one can define a 'Brownian motion' $X^T = (X_t^T)_{t>0}$.

- For
$$x,y,z\in\mathcal{T}$$
 ,

$$P_z^T (\tau_x < \tau_y) = \frac{d_T(b(x, y, z), y)}{d_T(x, y)}.$$

- Mean occupation density when started at x and killed at y,

$$2d_{\mathcal{T}}(b(x,y,z),y)\mu^{\mathcal{T}}(dz).$$

Requirement:

$$\liminf_{r\to 0} \frac{\inf_{x\in \mathcal{T}} \mu_{\mathcal{T}}(B_{\mathcal{T}}(x,r))}{r^{\kappa}} > 0. \quad \exists \kappa > 0.$$

LIMITING PROCESS FOR SRW ON UST

Suppose $(P_{\delta_i})_{i\geq 1}$, the laws of

$$\left(\mathcal{U}, \delta_i^{5/4} d_{\mathcal{U}}, \delta_i^2 \mu_{\mathcal{U}}, \delta_i \phi_{\mathcal{U}}, 0\right),$$

form a convergent sequence with limit $\tilde{\mathbf{P}}$.

Let
$$(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}}) \sim \tilde{\mathbf{P}}$$
.

It is then the case that \mathbb{P}_{δ_i} , the annealed laws of

$$\left(\delta_i X_{\delta_i^{-13/4}t}^{\mathcal{U}}\right)_{t>0},$$

converge to $\tilde{\mathbb{P}}$, the annealed law of

$$\left(\phi_{\mathcal{T}}(X_t^{\mathcal{T}})\right)_{t>0},$$

as probability measures on $C(\mathbb{R}_+, \mathbb{R}^2)$.

HEAT KERNEL ESTIMATES FOR SRW LIMIT

Let R>0. For $\tilde{\mathbf{P}}$ -a.e. realisation of $(\mathcal{T},d_{\mathcal{T}},\mu_{\mathcal{T}},\phi_{\mathcal{T}},\rho_{\mathcal{T}})$, there exist random constants $c_1,c_2,c_3,c_4,t_0\in(0,\infty)$ and deterministic constants $\theta_1,\theta_2,\theta_3,\theta_4\in(0,\infty)$ such that the heat kernel associated with the process $X^{\mathcal{T}}$ satisfies:

$$p_t^{\mathcal{T}}(x,y) \le c_1 t^{-8/13} \ell(t^{-1})^{\theta_1} \exp\left\{-c_2 \left(\frac{d_{\mathcal{T}}(x,y)^{13/5}}{t}\right)^{5/8} \ell(d_{\mathcal{T}}(x,y)/t)^{-\theta_2}\right\},\,$$

$$p_t^{\mathcal{T}}(x,y) \ge c_3 t^{-8/13} \ell(t^{-1})^{-\theta_3} \exp\left\{-c_4 \left(\frac{d_{\mathcal{T}}(x,y)^{13/5}}{t}\right)^{5/8} \ell(d_{\mathcal{T}}(x,y)/t)^{\theta_4}\right\},\,$$

for all $x, y \in B_T(\rho_T, R)$, $t \in (0, t_0)$, where $\ell(x) := 1 \vee \log x$.