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UNIFORM SPANNING TREE IN TWO DIMENSIONS

Let ⇥n := [�n, n]2  Z2.

A subgraph of the lattice is a spanning tree of ⇥n

if it connects all vertices, no cycles.

Let U(n) be a spanning tree of ⇥n selected uniformly
at random from all possibilities.

The UST on Z2, U, is then the local limit of U(n).
NB. Wired/free boundary conditions unimportant.

Almost-surely, U is a spanning tree of Z2.

[Aldous, Benjamini, Broder, Häggström, Kircho⌅, Lyons,
Pemantle, Peres, Schramm. . . ]



WILSON’S ALGORITHM ON Z2

Let x0 = 0, x1, x2, . . . be an enumeration of Z2.

Let U(0) be the graph tree consisting of the single vertex x0.

Given U(k � 1) for some k ⌥ 1, define U(k) to be the union of
U(k � 1) and the loop-erased random walk (LERW) path run
from xk to U(k � 1).

The UST U is then the local limit of U(k).

x0 x0 x0 x0

x1 x1 x1
x2



LERW SCALING IN Zd

Consider LERW as a process (Ln)n⌥0 (assume original random
walk is transient).

In Zd, d ⌥ 5, L rescales di⌅usively to BM [Lawler 1980].

In Z4, with logarithmic corrections rescales to BM [Lawler].
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In Z3, {Ln : n � [0, ⌦ ]} has a scaling limit
[Kozma 2007].

In Z2, {Ln : n � [0, ⌦ ]} has SLE(2) scaling
limit, UST peano curve has SLE(8) scal-
ing limit [Lawler/Schramm/Werner 2004].
Growth exponent is 5/4 [Kenyon, Masson,
Lawler].



Let Mn = |LERW (0, BE(0, n))| be the length of a LERW run
from 0 to BE(0, n)c.

Theorem.(d=2)

[Kenyon 2000] limn⌦� logE0Mn
logn = 5/4

[Lawler 2013] c1n5/4 ⌃ E0Mn ⌃ c2n5/4

Now consider random walk on the UST.



RW on random graphs: General theory.

Let G(�) be a random graph on (⇤, P). Assume ⌘0 � G(�).

Let D ⌥ 1. For ⌥ ⌥ 1, we sat that B(0, R) in G(�) is ⌥-good if

⌥�1RD ⌃ |B(0, R)| ⌃ ⌥RD,

⌥�1R ⌃ Re⌅(0, B(0, R)c) ⌃ R + 1.

⌥-good is a nice control of the volume and resistance for B(0, R).

Theorem. [Barlow/Jarai/K/Slade 2008, K/Misumi 2008]

Suppose ⌘p > 0 such that

P({� : B(0, R) is ⌥-good.}) ⌥ 1� ⌥�p ⇣R ⌥ R0, ⇣⌥ ⌥ ⌥0.



Then ⌘�1, �2 > 0 and N(�), R(�) � N s.t. the following holds
for P-a.e. �:

(logn)��1n�
D

D+1 ⌃ p�
2n(0,0) ⌃ (logn)�1n�

D
D+1, ⇣n ⌥ N(�),

(logR)��2RD+1 ⌃ E0
�⌦B(0,R) ⌃ (logR)�2RD+1, ⇣R ⌥ R(�).

In particular,

ds(G) := lim
n⌦�

log p�
2n(0,0)

logn
=

2D

D + 1



Examples.

D = 2 and ds = 4/3
• Critical percolation on regular trees conditioned to survive for-
ever. (Barlow/K ’06)
• Infinite incipient cluster (IIC) for spread out oriented percola-
tion for d ⌥ 6 (Barlow/Jarai/K/Slade ’08)
• Invasion percolation on a regular tree. (Angel/Goodman/den
Hollander/Slade ’08)
• IIC for percolation on Zd, d ⌥ 19 (Kozma/Nachmias ’09)

More general
• �-stable Galton-Watson trees conditioned to survive forever
(Croydon/K ’08) ds = 2�/(2�� 1)
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VOLUME AND RESISTANCE ESTIMATES
[BARLOW/MASSON 2010,2011]

With high probability,

BE(x, ⌥�1R) ⇧ BU(x, R5/4) ⇧ BE(x, ⌥R),

as R⌦� then ⌥⌦�.

It follows that with high probability,

µU (BU(x, R)) ⌅ R8/5.

Also with high probability,

Resistance(x, BU(x, R)c) ⌅ R.

↵ Exit time for intrinsic ball radius R is R13/5,
HK bounds pU2n(0,0) ⌅ n�8/13. (D = 8/5, ds = 16/13)

(Q) How about scaling limit for UST?



Barlow/Masson obtained further detailed properties.

Theorem.[Barlow/Masson 2010]

P(Mn > �EMn) ⌃ 2e�c1�,

P(Mn < ��1EMn) ⌃ 2e�c2�c3

Theorem.[Barlow/Masson 2011]

P(BU(0, R5/4/�) ✏ BE(0, R)) ⌃ c4e��2/3
,

P(BE(0, R) ✏ BU(0, �R5/4)) ⌃ c⌅�
�4/15�⌅.



While for most points x � Z2, the balls BE(0, R) and BU(0, R5/4)
will be comparable, there are neighboring points in Z2 which are
far in U.

Lemma. [Benjamini et. al. 2001]

The box [�n, n]2 contains with probability 1 neighbouring points
x, y � Z2 with dU(x, y) ⌥ n.

Proof. Consider the path (in Z2) of length 8n around the box
[�n, n]2: If each neiboring pair were connected by a path in U
of length less than n, then this path would not contain 0. So
we would obtain a loop around 0 ― which is impossible since U
is a tree.



UST SCALING [SCHRAMM 2000]

Consider U as an ensemble of paths:

U =
✏
(a, b,�ab) : a, b � Z2

⇣
,

where �ab is the unique arc connecting a and b in U.
cf. [Aizenman/Burchard/Newman/Wilson 1999].
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Scaling limit T a.s. satisfies:
• each pair a, b � Ṙ2 connected by a path;
• if a ✏= b, then this path is simple;
• if a = b, then this path is a point or a

simple loop;
• the trunk, ◆T�ab\{a, b}, is a dense topo-

logical tree with degree at most 3.

ISSUE : This topology does not carry information about in-
trinsic distance, volume, or resistance.



GENERALISED GROMOV-HAUSDORFF TOPOLOGY
(cf. [GROMOV, LE GALL/DUQUESNE])

Define T to be the collection of measured, rooted, spatial trees,
i.e.

(T , dT , µT ,↵T ,  T ),

where:
• (T , dT ) is a locally compact real tree;
• µT is a Borel measure on (T , dT );
• ↵T is a cont. map from (T , dT ) into R2;
•  T is a distinguished vertex in T .

On Tc (compact trees only), define a distance �c by

inf
Z,�,��,C:

( T , �T )�C

�
�

⌦dZ
P (µT ⇤ ��1, µ�T ⇤ ���1)+ sup

(x,x�)�C

⇥
dZ(�(x),��(x�)) +

���↵T (x)� ↵�T (x�)
���
⇤
 
�

↵.

Can be extended to locally compact case.



TIGHTNESS OF UST

Theorem. If P⇤ is the law of the measured, rooted spatial tree
⇥
U , ⇤5/4dU , ⇤2µU (·) , ⇤↵U ,0

⇤

under P, then the collection (P⇤)⇤�(0,1) is tight in M1(T).

Proof involves:
• strengthening estimates of [Barlow/Masson],
• comparison of Euclidean and intrinsic distance along paths.



UST LIMIT PROPERTIES

If P̃ is a subsequential limit of (P⇥)⇥ (0,1), then for P̃-a.e.
(T , dT , µT ,�T , ⌃T ) it holds that:
(i) µT is non-atomic, supported on the leaves of T ,
i.e. µT (T o) = 0, where T o := T \{x  T : degT (x) = 1};
(ii) for any R > 0,

lim inf
r⌃0

infx BT (⌃T ,R) µT (BT (x, r))

r8/5(log r�1)�c
> 0,

(iii) �T is a homeo. between T o and �T (T o) (dense in R2);
(iv) maxx T degT (x) = 3;
(v) µT = L ⇥ �T .



To prove this, we need the following ’uniform control’:

lim
⇤⌃0

lim inf
⇥⌃0

P

⌥

✓✓✓✓⇣
sup

x,y BU(0,c1⇥
�5/4r):

dU(x,y)⇤c2⇥
�5/4⇤

dS
U(x, y) > ⇥�1 

�

◆◆◆◆⌘
= 0,

lim
 ⌃0

lim sup
⇥⌃0

P

⌥

✓✓✓✓⇣
inf

x,y BU(0,⇥�5/4r):
dU(x,y)⌅⇥�5/4⇤

dS
U(x, y) < ⇥�1 

�

◆◆◆◆⌘
= 0,

where dS
U = diam(�(x, y)) (Euclidean diameter of the LERW

between x and y; Schramm’s distance).

⌥ This involves uniform control and requires more detailed es-
timates than those of Barlow/Masson.



As a by-product of the detailed estimates, we can sharpen some
HK estimates.

Proposition. For each q > 0, there exist cq, Cq > 0 such that
the following holds

cqn
5q/13 ⇤ E (dU(0, Xn)q) ⇤ Cqn

5q/13 ⌦n ⌅ 1.

NB. Marlow/Masson’s estimates include (logn)±c.



Given such generalized G-H convergence of trees, we can prove
convergence of the process on the trees (generalization of the
theory due to Crodon (2008)).

On the (limiting) real treee (T , dT , µT ) s.t. µT has full support,
one can define a ‘Brownian motion’ XT = (XT

t )t⌅0.

- For x, y, z  T ,

x
b

z

y

P T
z (⌥x < ⌥y) =

dT (b(x, y, z), y)

dT (x, y)
.

- Mean occupation density when started at x and killed at y,

2dT (b(x, y, z), y)µT (dz).

Requirement :

lim inf
r⌃0

infx T µT (BT (x, r))

r⇧
> 0. ↵⇧ > 0.



LIMITING PROCESS FOR SRW ON UST

Suppose (P⇥i
)i⌅1, the laws of

⇤
U , ⇥

5/4
i dU , ⇥2i µU , ⇥i�U ,0

⌅
,

form a convergent sequence with limit P̃.

Let (T , dT , µT ,�T , ⌃T ) ⇧ P̃.

It is then the case that P⇥i
, the annealed laws of

⇧

⇥iX
U
⇥
�13/4
i t

⌃

t⌅0
,

converge to P̃, the annealed law of
�
�T (XT

t )
⇥

t⌅0
,

as probability measures on C(R+, R2).



HEAT KERNEL ESTIMATES FOR SRW LIMIT

Let R > 0. For P̃-a.e. realisation of (T , dT , µT ,�T , ⌃T ), there
exist random constants c1, c2, c3, c4, t0  (0,�) and determin-
istic constants ⌅1, ⌅2, ⌅3, ⌅4  (0,�) such that the heat kernel
associated with the process XT satisfies:

pTt (x, y) ⇤ c1t�8/13⌦(t�1)⌅1 exp

 
✏�

✏↵
�c2

⇧
dT (x, y)13/5

t

⌃5/8

⌦(dT (x, y)/t)�⌅2

⌦
✏�

✏�
,

pTt (x, y) ⌅ c3t�8/13⌦(t�1)�⌅3 exp

 
✏�

✏↵
�c4

⇧
dT (x, y)13/5

t

⌃5/8

⌦(dT (x, y)/t)⌅4

⌦
✏�

✏�
,

for all x, y  BT (⌃T , R), t  (0, t0), where ⌦(x) := 1 � logx.
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