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UNIFORM SPANNING TREE IN TWO DIMENSIONS
Let Ay i= [—n,n]?NZ2.

A subgraph of the lattice is a spanning tree of A,
if it connects all vertices, no cycles.

Let (™) be a spanning tree of A,, selected uniformly
at random from all possibilities.

The UST on Z2, U, is then the local limit of ¢/(").
NB. Wired/free boundary conditions unimportant.

Almost-surely, U is a spanning tree of Z2.

[Aldous, Benjamini, Broder, Haggstrom, Kirchoff, Lyons,
Pemantle, Peres, Schramm. .. ]



WILSON’S ALGORITHM ON Z?

Let 29 = 0,21, 2o,... be an enumeration of Z2.
Let ¢/(0) be the graph tree consisting of the single vertex xg.
Given U(k — 1) for some k > 1, define U(k) to be the union of
U(k — 1) and the loop-erased random walk (LERW) path run
from x, to U(k —1).
The UST U is then the local limit of U(k).
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LERW SCALING IN 74

Consider LERW as a process (Ln),>0 (assume original random
walk is transient).

In Z%, d > 5, L rescales diffusively to BM [Lawler 1980].

In Z*, with logarithmic corrections rescales to BM [Lawler].

it In Z3, {Ln : n € [0,7]} has a scaling limit
S [Kozma 2007].
.
{ In Z2, {L, : n € [0,7]} has SLE(2) scaling
. limit, UST peano curve has SLE(8) scal-
"'i ing limit [Lawler/Schramm/Werner 2004].

9 Growth exponent is 5/4 [Kenyon, Masson,
Picture: Ariel Yadin Lawler].



Let M, = |LERW (0, Bz(0,n))| be the length of a LERW run
from 0 to Bg(0,n)¢.

Theorem.(d=2)
[Kenyon 2000] liMy_ee 109 E°Mn _ 5 /4

logn

[Lawler 2013] c¢1n®/* < EOM,, < con®/4

Now consider random walk on the UST.



RW on random dgraphs: General theory.
Let G(w) be a random graph on (£2,P). Assume 30 € G(w).

Let D> 1. For A > 1, we sat that B(0,R) in G(w) is A-good if

AIRP < |B(0,R)| < ARP,
A"'R < Rer(0,B(0,R)) < R+ 1.

A-good is a nice control of the volume and resistance for B(0, R).
Theorem. [Barlow/Jarai/K/Slade 2008, K/Misumi 2008]

Suppose dp > 0 such that

P({w: B(O,R) is A-good.}) >1—-\"7 VR > Rg, V) > Ap.



Then Jaj,ar > 0 and N(w), R(w) € N s.t. the following holds
for P-a.e. w:

D D
(logn)™%n D+1 < p3 (0,0) < (logn)®in DFIL, vn > N(w),
(log R)™“2RPT1 < E07p 4 py < (log R)*2RP T, VR > R(w).

In particular,

l0g p¥ 2D
0.(C) = lim °9P5a(0:0) _
n—0o0 logn D+ 1



Examples.

D=2 and ds =4/3

e Critical percolation on regular trees conditioned to survive for-
ever. (Barlow/K '06)

e Infinite incipient cluster (IIC) for spread out oriented percola-
tion for d > 6 (Barlow/Jarai/K/Slade '08)

e Invasion percolation on a regular tree. (Angel/Goodman/den
Hollander/Slade '08)

e IIC for percolation on Z%, d > 19 (Kozma/Nachmias '09)

More general
e o-Stable Galton-Watson trees conditioned to survive forever
(Croydon/K '08) ds = 2a/(2a — 1)




Random Walks
on Disordered
Media and their
Scaling Limits

& ..

(Advertisement)

Takashi Kumagai
Random Walks on Disordered Media and their Scaling Limits.

Lecture Notes in Mathematics, Vol. 2101, Ecole d'Eté de Probabilités de
Saint-Flour XL—2010. Springer, New York (2014).



VOLUME AND RESISTANCE ESTIMATES
[BARLOW/MASSON 2010,2011]

With high probability,

Bg(z,A\"'R) C By(z, R%/*) C Bp(z,AR),
as R — oo then A\ — .

It follows that with high probability,
py (By(zx, R)) < R8/5.

Also with high probability,
Resistance(z, By/(xz, R)°) < R.

— Exit time for intrinsic ball radius R is R3/5,
HK bounds p4 (0,0) = n8/13. (D =8/5,ds = 16/13)

(Q) How about scaling limit for UST?



Barlow/Masson obtained further detailed properties.

Theorem.[Barlow/Masson 2010]

P(My, > NEMy,) De 1A

P(M, < \"*EM,)

Y

IA A

De 0273

Theorem.[Barlow/Masson 2011]
e_>\2/3

CE)\_4/15_€-

P(By (0, R%*/)\) ¢ Bp(0, R))
P(Bg(0, R) ¢ By (0, AR5/4))

IA A



While for most points z € Z2, the balls Bg(0, R) and By (0, R®>/%)
will be comparable, there are neighboring points in Z2 which are
far in U.

Lemma. [Benjamini et. al. 2001]

The box [—n,n]? contains with probability 1 neighbouring points
z,y € 72 with dy(x,y) > n.

Proof. Consider the path (in Z2) of length 8n around the box
[—n,n]?: If each neiboring pair were connected by a path in U
of length less than n, then this path would not contain 0. So
we would obtain a loop around O — which is impossible since U
is a tree.



UST SCALING [SCHRAMM 2000]

Consider U as an ensemble of paths:

= {(a,b,wab) ca,be ZQ},

where m,, is the unique arc connecting a and b in U.
cf. [Aizenman/Burchard/Newman/Wilson 1999].

i | J & | Scaling limit T a.s. satisfies:
y N * each pair a,b € R2 connected by a path;
N

e if a = b, then this path is simple;
e if a = b, then this path is a point or a

“ M, simple loop;
% W 77 e the trunk, Uzmg\{a, b}, is a dense topo-

£ logical tree with degree at most 3.

N : ; 8 [
Picture: Oded Schramm

ISSUE : This topology does not carry information about in-
trinsic distance, volume, or resistance.



GENERALISED GROMOV-HAUSDORFF TOPOLOGY
(cf. [GROMOV, LE GALL/DUQUESNE])

Define T to be the collection of measured, rooted, spatial trees,

I.e.

(T,d7, pur, o1, PT),

where:

e (7,dy) is a locally compact real tree;

e u7 iS a Borel measure on (7,d7);

e o7 is a cont. map from (7,dy) into R?;
e p7 iS a distinguished vertex in 7.

On T, (compact trees only), define a distance A, by

Zﬂﬂﬂlbl,C: (ZB,ZE/)GC
(p1,07)€EC

inf  df(urod o)+ sup (dz<w<x>,w’<x’>>+¢7<a:)qs’;f(x’))}.

Can be extended to locally compact case.



TIGHTNESS OF UST

Theorem. If Ps is the law of the measured, rooted spatial tree

(U, 8% *dy, 6%y (-) , 6, 0)
under P, then the collection (Pg)se (g 1) is tight in M (T).

Proof involves:
e strengthening estimates of [Barlow/Masson],
e comparison of Euclidean and intrinsic distance along paths.



UST LIMIT PROPERTIES

If P is a subsequential limit of (Ps)s¢(0,1), then for P-a.e.
(7,dr, ur, o1, p7) it holds that:

(i) w7 is non-atomic, supported on the leaves of 7,

i.e. ur(7°) =0, where 7% :=T7T\{z € T : degy(x) = 1},
(ii) for any R > 0,

liminf infajeBT(pT,R) KT (BT(.’,U, T))
r—0 r8/5(logr—1)—¢
(iii) ¢ is a homeo. between 7° and ¢7(7°) (dense in R?):
(iv) max;erdegr(z) = 3;
(V) pr = Lo o7

> 0,



To prove this, we need the following 'uniform control’:

( )

lim liminf P sup d(z,y) > 6 1e| =0,
n—0 0—0 z,y€By(0,c16%/4r):
\ () <255/ /
lim limsup P inf d(z,y) <5 te| =0,
e—=0 §-0 z,y€B(0,65/4r): “
dyy(,y)>65/% )

where df, = diam(~y(x,y)) (Euclidean diameter of the LERW
between x and y; Schramm’s distance).

= This involves uniform control and requires more detailed es-
timates than those of Barlow/Masson.



As a by-product of the detailed estimates, we can sharpen some
HK estimates.

Proposition. For each ¢ > 0O, there exist cq,Cq > 0 such that
the following holds

an5q/13 < E (dyy(0, Xp)?) < an5Q/13 Vn > 1.

NB. Marlow/Masson's estimates include (logn)*e.



Given such generalized G-H convergence of trees, we can prove
convergence of the process on the trees (generalization of the
theory due to Crodon (2008)).

On the (limiting) real treee (7,dr,u?) s.t. u? has full support,
one can define a ‘Brownian motion’ X7 = (X7 );>0.

- For x,y,z € T,

dr(b(z,y,2),y)
dr(z,y) .
- Mean occupation density when started at x and Kkilled at y,

2dr(b(z,y, 2),y)u’ (dz).

PZT(T:U<7'y):

b

Requirement

inf B

r—0 rk

x> 0.




LIMITING PROCESS FOR SRW ON UST

Suppose (Ps.);>1, the laws of

5/4
(Z/[,(SZ/ dz/[75i2:u1/[75i¢2/170> ;

form a convergent sequence with limit P.

Let (7,dr,pr,é7,07) ~ P.

It is then the case that Py, the annealed laws of

0;X " 13/4 ) :
( 0; t) >0

converge to P, the annealed law of
(67 (X))
as probability measures on C(Ry,R?).

t>0’



HEAT KERNEL ESTIMATES FOR SRW LIMIT

Let R > 0. For P-a.e. realisation of (7,dt,ur,d7,p7), there
exist random constants cy,co,c3,¢c4,tg € (0,00) and determin-
istic constants 61,605,03,0, € (0,00) such that the heat kernel
associated with the process X7 satisfies:

dy(z,y)13/5
!

5/8

dy(z,y)13/5
'

5/8
pf (z,y) > cat /1307 1) B exp{ —c4 ( > 0(dr(x,y)/t)%

for all z,y € By (p1,R), t € (0,tg), where £(x) := 1V logz.
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