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Introduction

Many problems in mathematical physics are best understood using
by using a “dual” representation. A classic example of this is the
circle method widely used in number theory. For example if P(N)
is the number of partitions of the integer N then

P(N) =
1

2πi

∮
1∏

m(1− zm)
z−N−1dz ≈ 1

4
√

3N
eπ
√

2N/3

The spectral properties of Random matrices can also be obtained
by studying dual statistical mechanics systems. The spins are given
by 4× 4 matrices and the action is invariant under the
supersymmetries U(1, 1|2). This is a noncompact hyperbolic
symmetry combined with a compact U(2) group.
The advantage of this representation is that universality and
phenomenology can be formally deduced by studying the saddle
manifold and fluctuations about it. Non perturbative.



Outline of Talk

A) Sub-quadratic actions: Example:
∑

j

√
1 + (∇φj)2

D. Brydges and T.S.: JMP 53 (2012)

Free Field bounds on 〈(φ0 − φx)2m〉 , 〈eα(φ0−φx )〉

Remarks:

Action non-covex but it is a superposition of free fields

Analyze non-uniformly elliptic Green’s functions

M. Zirnbauer and T.S. : CMP 252 (2004)

Hyperbolic sigma model. See also Les Houches.



B) Strong CLT in Two Dimensions

J. Conlon and T.S. : CMP 325 (2014)

g(α) = ln〈eα(φ0−φx)〉, |x | � 1

In 2 dimensions for suitable convex actions of ∇φ :

Theorem: g ′′(α) ≈ C ln |x |, but |g ′′′(α)| ≤ Const

In 1D: g ′′(α) ≈ C |x |, but |g ′′′(α)| ≈ C ′|x |, C ′ > 0

Motivation: Dimers heights , fluctuation of CUE eigenvalues



C) Conjecture: Mean Field Theory Univeral for D ≥ 3

O(n) invariant interacting spins: eg. X-Y model

sj ∈ Rn, j ∈ ΛL ∩ Z d , periodic box of side L, h ∈ Rn

Conjecture:

〈e
∑

j∈Λ h·sj/|Λ|〉(β) as L⇒∞

=

∫
Sn−1

eh·S0M(β)dµ(S0) × [1 + O(
1

βLd−2
)]

M(β) = Magnetization, dµ(S0) is uniform measure on Sn−1 .



The leading term is like a Law of Large Numbers and the
correction is CLT.

Theorem (J. Fröhlich and T.S.) Holds for O(2) symmetric
systems

Main ideas: Pure states are parmetrized by S1 , IR bounds.

Explanation of Conjectured Universality of Wigner-Dyson statistics:
Apply SUSY statistical mechanics, (Kravstov and Mirlin (1994))

U(1, 1|2)/U(1|1)× U(1|1), M(β) ≈ ρ(E ), DOS

Related Example with SU(2) symmetry:

Universality of Characteristic Polynomial Gaussian Band Matrices
T. Shcherbina, CMP 328 (2014):



Let H be an N × N Gaussian matrix such that

〈HijH̄i ′j ′〉 =
e−|i−j |/W

W
δi ,i ′ δj ,j ′ 1 ≤ i , j ≤ N

Define

FN(E , u) =
〈det(H − E + u/N) det(H − E − u/N)〉

〈det(H − E )2〉

If the width W �
√
N � 1 then

FN(E , u)⇒
∫
S2

e iuρ(E)S
(3)
0 dµ =

sin(2uρ(E ))

2uρ(E )

β ≈W 2, ρ(E ) =
√

1− (E/2)2, L = N



Proof of A)

Consider the action given by the quadratic form:

A(φ, t) =
∑
j∼k

(
1 +

1

2
β(φj − φk)2

)
etjk +

1

2

∑
j∈Λ

εφ2
j , tjk ∈ R

etjk are local conductances across edge jk. The tjk are independent:

e−A(φ,t)
∏
j∼k

(
e−e

−tjk− 1
2
tjkdtjk

)
Integration over the tjk gives:∏

j∼k

e−
√

(1+(φj−φk )2
.



Let
〈φ,D(t)φ〉 =

∑
j∼k

β(φj − φk)2etjk + ε
∑
j∈Λ

φ2
j

We can now compute integrals in φ in terms of G (t) = D(t)−1,
the Green’s function of D. Note G (0) = (−β∆ + ε)−1.

After integration over t:

Z−1

∫
[G (t)(0, 0)− G (t)(0, x)] Det[D(t)]−1/2

∏
j∼k

(
e−e

−tjk− 1
2
tjkdtjk

)
= 〈[φ(0)− φ(x)]2〉 Subquadratic expectation



Elements of Proof of A)

A) By Matrix Tree Theorem

logDet[D(t)] is jointly convex in tjk

So we can apply Brascamp-Lieb.

B) 〈v ; G (t)v〉 ≤
∑

j∼k [(G (0)v)j − (G (0)v)k ]2 e−tjk

v = δ0 − δx

C) Ward identity: tjk → tjk + c get bounds on 〈t〉



Ideas for proof of Strong CLT

Action = V (∇φ) and suppose: λ ≤ V ′′ ≤ Λ, Λ/λ < 2

g ′′′(α) = 〈 [X − 〈X 〉]3 〉V ,α where X = (φ0 − φx)

Integrate by parts using Helffer - Sjöstrand, twice.

Then use bounds on singular integral operators on Weighted
spaces.

∇G0(j − k) ≈ |j − k |−1

belongs to `2(W ) if W decays.

Singular integral operator : ∇∆−1∇ , dipole kernel.



Helffer-Sjöstrand Formula for
∑

j V (∇φj)

Let F be smooth function of φj and let dF (j) = ∂F/φj

〈(F1 − 〈F1〉)F2〉 = 〈dF1 · [d∗d +∇∗V ′′(∇φ)∇]−1dF2〉

Note ∇∗V ′′(∇φ)∇ is the Hessian,

d∗d denotes the operator corresponding to the Dirichlet form.

dj = ∂/∂φj d∗j = −dj + ∂V /∂φj .



SUSY Hyperbolic Sigma Model

Hyperbolic sigma model in Horosperical coordinates: tj , sj ∈ R

A(s, t) = β
∑
j∼j ′
{cosh(tj − tj) +

1

2
(sj − sj ′)

2etj+tj′}

After integrating out the s variables we get the partition function:

e−β
∑

j∼j′ cosh(tj−tj ) × Det−1/2[D(t)]×
∏
j

e+tjdtj .

Note A is invariant under tj → tj + c . Convex Gradient Model



To obtain the effective SUSY Hyperbolic model: flip signs in red.

The partition function Z (β, ε) = 1 and 〈eα t0〉 = 〈e(1−α) t0〉

Convexity fails and there is a transition in 3D. (DSZ ’10).

Model due to M. Zirnbauer (’91). Multifractal exponents at βc

Sabot and Tarres (2012) proved that the SUSY Hyperbolic sigma
model is mixing measure for Vertex Reinforced Jump Process.
β represents the speed of the jumps.

Transition is from recurrence (localization) to transience
(diffusion) .


