Statistical Mechanics arising from Random Matrix Theory

> Tom Spencer Institute for Advanced Study Princeton, NJ

> > May 29, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Many problems in mathematical physics are best understood using by using a "dual" representation. A classic example of this is the circle method widely used in number theory. For example if P(N) is the number of partitions of the integer N then

$$P(N) = \frac{1}{2\pi i} \oint \frac{1}{\prod_m (1 - z^m)} z^{-N-1} dz \approx \frac{1}{4\sqrt{3}N} e^{\pi \sqrt{2N/3}}$$

The spectral properties of Random matrices can also be obtained by studying dual statistical mechanics systems. The spins are given by 4×4 matrices and the action is invariant under the supersymmetries U(1,1|2). This is a noncompact hyperbolic symmetry combined with a compact U(2) group. The advantage of this representation is that universality and

phenomenology can be formally deduced by studying the saddle manifold and fluctuations about it. Non perturbative.

Outline of Talk

A) Sub-quadratic actions: Example: $\sum_{j} \sqrt{1 + (\nabla \phi_j)^2}$

D. Brydges and T.S.: JMP 53 (2012)

Free Field bounds on $\langle (\phi_0 - \phi_x)^{2m} \rangle$, $\langle e^{\alpha(\phi_0 - \phi_x)} \rangle$

Remarks:

Action non-covex but it is a superposition of free fields
Analyze non-uniformly elliptic Green's functions
M. Zirnbauer and T.S. : CMP 252 (2004)
Hyperbolic sigma model. See also Les Houches.

B) Strong CLT in Two Dimensions

J. Conlon and T.S. : CMP 325 (2014)

$$g(lpha) = \ln \langle e^{lpha(\phi_0 - \phi_x)}
angle, \quad |x| \gg 1$$

In 2 dimensions for suitable convex actions of $\nabla \phi$:

Theorem: $g''(\alpha) \approx C \ln |x|$, but $|g'''(\alpha)| \leq Const$

In 1D: $g''(\alpha) \approx C|x|$, but $|g'''(\alpha)| \approx C'|x|$, C' > 0

Motivation: Dimers heights , fluctuation of CUE eigenvalues

C) Conjecture: Mean Field Theory Universal for $D \ge 3$ O(n) invariant interacting spins: eg. X-Y model $s_j \in \mathbb{R}^n, \ j \in \Lambda_L \cap Z^d$, periodic box of side L, $h \in R^n$ Conjecture:

$$\langle e^{\sum_{j\in \Lambda}h\cdot s_j/|\Lambda|}
angle(eta)$$
 as $L o\infty$

$$=\int_{S^{n-1}}e^{h\cdot S_0M(\beta)}d\mu(S_0)\,\times[1+O(\frac{1}{\beta L^{d-2}})]$$

M(eta)= Magnetization, $d\mu(S_0)$ is uniform measure on S^{n-1} .

The leading term is like a Law of Large Numbers and the correction is CLT.

Theorem (J. Fröhlich and T.S.) Holds for **O(2) symmetric** systems

Main ideas: Pure states are parmetrized by S^1 , IR bounds.

Explanation of Conjectured Universality of Wigner-Dyson statistics: Apply SUSY statistical mechanics, (Kravstov and Mirlin (1994))

 $U(1,1|2)/U(1|1) \times U(1|1), \quad M(\beta) \approx \rho(E), DOS$

Related Example with SU(2) symmetry:

Universality of Characteristic Polynomial Gaussian **Band** Matrices T. Shcherbina, **CMP 328** (2014):

Let H be an $N \times N$ Gaussian matrix such that

$$\langle H_{ij}\bar{H}_{i'j'}\rangle = rac{e^{-|i-j|/W}}{W}\,\delta_{i,i'}\,\delta_{j,j'} \quad 1 \le i,j \le N$$

Define

$$F_N(E, u) = rac{\langle \det(H - E + u/N) \det(H - E - u/N)
angle}{\langle \det(H - E)^2
angle}$$

If the width $W \gg \sqrt{N} \gg 1$ then

$$F_{N}(E, u) \Rightarrow \int_{S^{2}} e^{iu\rho(E)S_{0}^{(3)}} d\mu = \frac{\sin(2u\rho(E))}{2u\rho(E)}$$
$$\beta \approx W^{2}, \ \rho(E) = \sqrt{1 - (E/2)^{2}}, \ L = N$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Proof of A)

Consider the action given by the quadratic form:

$$A(\phi, t) = \sum_{j \sim k} \left(1 + \frac{1}{2} \beta (\phi_j - \phi_k)^2 \right) e^{t_{jk}} + \frac{1}{2} \sum_{j \in \Lambda} \epsilon \phi_j^2, \qquad t_{jk} \in \mathbb{R}$$

 $e^{t_{jk}}$ are local conductances across edge jk. The t_{jk} are independent:

$$e^{-A(\phi,t)}\prod_{j\sim k}\left(e^{-e^{-t_{jk}}-rac{1}{2}t_{jk}}dt_{jk}
ight)$$

Integration over the t_{jk} gives:

$$\prod_{j\sim k}e^{-\sqrt{(1+(\phi_j-\phi_k)^2}}$$

Let

$$\langle \phi, D(t)\phi
angle = \sum_{j \sim k} eta(\phi_j - \phi_k)^2 e^{t_{jk}} + \epsilon \sum_{j \in \Lambda} \phi_j^2$$

We can now compute integrals in ϕ in terms of $G(t) = D(t)^{-1}$, the Green's function of D. Note $G(0) = (-\beta \Delta + \epsilon)^{-1}$.

After integration over t:

$$Z^{-1} \int \left[G(t)(0,0) - G(t)(0,x) \right] Det[D(t)]^{-1/2} \prod_{j \sim k} \left(e^{-e^{-t_{jk}} - \frac{1}{2}t_{jk}} dt_{jk} \right)$$

 $=\langle [\phi(0) - \phi(x)]^2 \rangle$ Subquadratic expectation

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Elements of Proof of A)

A) By Matrix Tree Theorem

 $\log Det[D(t)]$ is jointly convex in t_{jk}

So we can apply Brascamp-Lieb.

$$\begin{array}{l} \mathsf{B}) \ \langle v; \ \mathsf{G}(t)v \rangle \leq \sum_{j \sim k} \ [(\mathsf{G}(0)v)_j - (\mathsf{G}(0)v)_k]^2 \ e^{-t_{jk}} \\ \\ v = \delta_0 - \delta_x \end{array}$$

C) Ward identity: $t_{jk} \rightarrow t_{jk} + c$ get bounds on $\langle t \rangle$

Ideas for proof of Strong CLT

Action = $V(\nabla \phi)$ and suppose: $\lambda \leq V'' \leq \Lambda$, $\Lambda/\lambda < 2$

$$g'''(lpha) = \langle \left[X - \langle X
angle
ight]^3
angle_{V, lpha} \quad \textit{where } X = (\phi_0 - \phi_x)$$

Integrate by parts using Helffer - Sjöstrand, twice.

Then use bounds on *singular integral operators* on Weighted spaces.

$$\nabla G_0(j-k) \approx |j-k|^{-1}$$

belongs to $\ell_2(W)$ if W decays.

Singular integral operator: $\nabla \Delta^{-1} \nabla$, dipole kernel.

Helffer-Sjöstrand Formula for $\sum_{j} V(\nabla \phi_j)$

Let F be smooth function of ϕ_j and let $dF(j) = \partial F/\phi_j$

$$\langle (F_1 - \langle F_1 \rangle) F_2 \rangle = \langle dF_1 \cdot [d^*d + \nabla^* V''(\nabla \phi) \nabla]^{-1} dF_2 \rangle$$

Note $\nabla^* V''(\nabla \phi) \nabla$ is the Hessian,

 d^*d denotes the operator corresponding to the Dirichlet form.

$$d_j = \partial/\partial \phi_j \quad d_j^* = -d_j + \partial V/\partial \phi_j.$$

SUSY Hyperbolic Sigma Model

Hyperbolic sigma model in Horosperical coordinates: $t_j, s_j \in \mathbb{R}$

$$A(s,t) = \beta \sum_{j \sim j'} \{ \cosh(t_j - t_j) + \frac{1}{2} (s_j - s_{j'})^2 e^{t_j + t_{j'}} \}$$

After integrating out the s variables we get the partition function:

$$e^{-\beta\sum_{j\sim j'}\cosh(t_j-t_j)} imes Det^{-1/2}[D(t)] imes \prod_j e^{+t_j}dt_j.$$

Note A is invariant under $t_j \rightarrow t_j + c$. Convex Gradient Model

To obtain the effective SUSY Hyperbolic model: flip signs in red.

The partition function $Z(\beta,\epsilon) = 1$ and $\langle e^{\alpha t_0} \rangle = \langle e^{(1-\alpha) t_0} \rangle$

Convexity fails and there is a transition in 3D. (DSZ '10).

Model due to M. Zirnbauer ('91). Multifractal exponents at β_c

Sabot and Tarres (2012) proved that the SUSY Hyperbolic sigma model is mixing measure for Vertex Reinforced Jump Process. β represents the speed of the jumps.

Transition is from recurrence (localization) to transience (diffusion) .