Statistical Mechanics arising from Random Matrix Theory

Tom Spencer
Institute for Advanced Study
Princeton, NJ

May 29, 2014

Introduction

Many problems in mathematical physics are best understood using by using a "dual" representation. A classic example of this is the circle method widely used in number theory. For example if $P(N)$ is the number of partitions of the integer N then

$$
P(N)=\frac{1}{2 \pi i} \oint \frac{1}{\prod_{m}\left(1-z^{m}\right)} z^{-N-1} d z \approx \frac{1}{4 \sqrt{3} N} e^{\pi \sqrt{2 N / 3}}
$$

The spectral properties of Random matrices can also be obtained by studying dual statistical mechanics systems. The spins are given by 4×4 matrices and the action is invariant under the supersymmetries $U(1,1 \mid 2)$. This is a noncompact hyperbolic symmetry combined with a compact $U(2)$ group.
The advantage of this representation is that universality and phenomenology can be formally deduced by studying the saddle manifold and fluctuations about it. Non perturbative.

Outline of Talk

A) Sub-quadratic actions: Example: $\quad \sum_{j} \sqrt{1+\left(\nabla \phi_{j}\right)^{2}}$
D. Brydges and T.S.: JMP 53 (2012)

Free Field bounds on $\left\langle\left(\phi_{0}-\phi_{x}\right)^{2 m}\right\rangle,\left\langle e^{\alpha\left(\phi_{0}-\phi_{x}\right)}\right\rangle$
Remarks:
Action non-covex but it is a superposition of free fields
Analyze non-uniformly elliptic Green's functions
M. Zirnbauer and T.S. : CMP 252 (2004)

Hyperbolic sigma model. See also Les Houches.

B) Strong CLT in Two Dimensions

J. Conlon and T.S. : CMP 325 (2014)

$$
g(\alpha)=\ln \left\langle e^{\alpha\left(\phi_{0}-\phi_{x}\right)}\right\rangle, \quad|x| \gg 1
$$

In 2 dimensions for suitable convex actions of $\nabla \phi$:
Theorem: $g^{\prime \prime}(\alpha) \approx C \ln |x|$, but $\left|g^{\prime \prime \prime}(\alpha)\right| \leq$ Const

In 1D: $\quad g^{\prime \prime}(\alpha) \approx C|x|$, but $\left|g^{\prime \prime \prime}(\alpha)\right| \approx C^{\prime}|x|, \quad C^{\prime}>0$

Motivation: Dimers heights, fluctuation of CUE eigenvalues
C) Conjecture: Mean Field Theory Univeral for $D \geq 3$
$\mathbf{O (n)}$ invariant interacting spins: eg. $\mathrm{X}-\mathrm{Y}$ model
$s_{j} \in \mathbb{R}^{n}, j \in \Lambda_{L} \cap Z^{d}$, periodic box of side $L, \quad h \in R^{n}$
Conjecture:

$$
\begin{gathered}
\left\langle e^{\sum_{j \in \Lambda} h \cdot s_{j} /|\Lambda|}\right\rangle(\beta) \text { as } L \Rightarrow \infty \\
=\int_{S^{n-1}} e^{h \cdot S_{0} M(\beta)} d \mu\left(S_{0}\right) \times\left[1+O\left(\frac{1}{\beta L^{d-2}}\right)\right]
\end{gathered}
$$

$M(\beta)=$ Magnetization, $\quad d \mu\left(S_{0}\right)$ is uniform measure on S^{n-1}.

The leading term is like a Law of Large Numbers and the correction is CLT.

Theorem (J. Fröhlich and T.S.) Holds for $\mathbf{O}(2)$ symmetric systems

Main ideas: Pure states are parmetrized by S^{1}, IR bounds.
Explanation of Conjectured Universality of Wigner-Dyson statistics: Apply SUSY statistical mechanics, (Kravstov and Mirlin (1994))

$$
U(1,1 \mid 2) / U(1 \mid 1) \times U(1 \mid 1), \quad M(\beta) \approx \rho(E), D O S
$$

Related Example with $\mathbf{S U (2)}$ symmetry:
Universality of Characteristic Polynomial Gaussian Band Matrices T. Shcherbina, CMP 328 (2014):

Let H be an $N \times N$ Gaussian matrix such that

$$
\left\langle H_{i j} \bar{H}_{i^{\prime} j^{\prime}}\right\rangle=\frac{e^{-|i-j| / W}}{W} \delta_{i, i^{\prime}} \delta_{j, j^{\prime}} \quad 1 \leq i, j \leq N
$$

Define

$$
F_{N}(E, u)=\frac{\langle\operatorname{det}(H-E+u / N) \operatorname{det}(H-E-u / N)\rangle}{\left\langle\operatorname{det}(H-E)^{2}\right\rangle}
$$

If the width $W \gg \sqrt{N} \gg 1$ then

$$
\begin{gathered}
F_{N}(E, u) \Rightarrow \int_{S^{2}} e^{i u \rho(E) S_{0}^{(3)}} d \mu=\frac{\sin (2 u \rho(E))}{2 u \rho(E)} \\
\beta \approx W^{2}, \quad \rho(E)=\sqrt{1-(E / 2)^{2}}, \quad L=N
\end{gathered}
$$

Proof of A)

Consider the action given by the quadratic form:

$$
A(\phi, t)=\sum_{j \sim k}\left(1+\frac{1}{2} \beta\left(\phi_{j}-\phi_{k}\right)^{2}\right) e^{t_{j k}}+\frac{1}{2} \sum_{j \in \Lambda} \epsilon \phi_{j}^{2}, \quad t_{j k} \in \mathbb{R}
$$

$e^{t_{j k}}$ are local conductances across edge $j k$. The $t_{j k}$ are independent:

$$
e^{-A(\phi, t)} \prod_{j \sim k}\left(e^{\left.\left.-e^{-t_{j k}-\frac{1}{2} t_{j k}} d t_{j k}\right), ~\right) ~}\right.
$$

Integration over the $t_{j k}$ gives:

$$
\prod_{j \sim k} e^{-\sqrt{\left(1+\left(\phi_{j}-\phi_{k}\right)^{2}\right.}}
$$

Let

$$
\langle\phi, D(t) \phi\rangle=\sum_{j \sim k} \beta\left(\phi_{j}-\phi_{k}\right)^{2} e^{t_{j k}}+\epsilon \sum_{j \in \Lambda} \phi_{j}^{2}
$$

We can now compute integrals in ϕ in terms of $G(t)=D(t)^{-1}$, the Green's function of D. Note $G(0)=(-\beta \Delta+\epsilon)^{-1}$.

After integration over t :

$$
\begin{gathered}
Z^{-1} \int[G(t)(0,0)-G(t)(0, x)] \operatorname{Det}[D(t)]^{-1 / 2} \prod_{j \sim k}\left(e^{-e^{-t_{j k}}-\frac{1}{2} t_{j k}} d t_{j k}\right) \\
=\left\langle[\phi(0)-\phi(x)]^{2}\right\rangle \quad \text { Subquadratic expectation }
\end{gathered}
$$

Elements of Proof of A)

A) By Matrix Tree Theorem

$$
\log \operatorname{Det}[D(t)] \text { is jointly convex in } t_{j k}
$$

So we can apply Brascamp-Lieb.
B) $\langle v ; G(t) v\rangle \leq \sum_{j \sim k}\left[(G(0) v)_{j}-(G(0) v)_{k}\right]^{2} e^{-t_{j k}}$

$$
v=\delta_{0}-\delta_{x}
$$

C) Ward identity: $t_{j k} \rightarrow t_{j k}+c$ get bounds on $\langle t\rangle$

Ideas for proof of Strong CLT

Action $=V(\nabla \phi)$ and suppose: $\quad \lambda \leq V^{\prime \prime} \leq \Lambda, \quad \Lambda / \lambda<2$

$$
g^{\prime \prime \prime}(\alpha)=\left\langle[X-\langle X\rangle]^{3}\right\rangle_{V, \alpha} \quad \text { where } X=\left(\phi_{0}-\phi_{x}\right)
$$

Integrate by parts using Helffer - Sjöstrand, twice.
Then use bounds on singular integral operators on Weighted spaces.

$$
\nabla G_{0}(j-k) \approx|j-k|^{-1}
$$

belongs to $\ell_{2}(W)$ if W decays.
Singular integral operator: $\nabla \Delta^{-1} \nabla$, dipole kernel.

Helffer-Sjöstrand Formula for $\sum_{j} V\left(\nabla \phi_{j}\right)$

Let F be smooth function of ϕ_{j} and let $d F(j)=\partial F / \phi_{j}$

$$
\left\langle\left(F_{1}-\left\langle F_{1}\right\rangle\right) F_{2}\right\rangle=\left\langle d F_{1} \cdot\left[d^{*} d+\nabla^{*} V^{\prime \prime}(\nabla \phi) \nabla\right]^{-1} d F_{2}\right\rangle
$$

Note $\nabla^{*} V^{\prime \prime}(\nabla \phi) \nabla$ is the Hessian,
$d^{*} d$ denotes the operator corresponding to the Dirichlet form.

$$
d_{j}=\partial / \partial \phi_{j} \quad d_{j}^{*}=-d_{j}+\partial V / \partial \phi_{j}
$$

SUSY Hyperbolic Sigma Model

Hyperbolic sigma model in Horosperical coordinates: $t_{j}, s_{j} \in \mathbb{R}$

$$
A(s, t)=\beta \sum_{j \sim j^{\prime}}\left\{\cosh \left(t_{j}-t_{j}\right)+\frac{1}{2}\left(s_{j}-s_{j^{\prime}}\right)^{2} e^{t_{j}+t_{j^{\prime}}}\right\}
$$

After integrating out the s variables we get the partition function:

$$
e^{-\beta \sum_{j \sim j^{\prime}} \cosh \left(t_{j}-t_{j}\right)} \times \operatorname{Det}^{-1 / 2}[D(t)] \times \prod e^{+t_{j}} d t_{j}
$$

Note A is invariant under $t_{j} \rightarrow t_{j}+c$. Convex Gradient Model

To obtain the effective SUSY Hyperbolic model: flip signs in red.
The partition function $Z(\beta, \epsilon)=1$ and $\left\langle e^{\alpha t_{0}}\right\rangle=\left\langle e^{(1-\alpha) t_{0}}\right\rangle$
Convexity fails and there is a transition in 3D. (DSZ '10).
Model due to M. Zirnbauer ('91). Multifractal exponents at β_{c}
Sabot and Tarres (2012) proved that the SUSY Hyperbolic sigma model is mixing measure for Vertex Reinforced Jump Process.
β represents the speed of the jumps.
Transition is from recurrence (localization) to transience (diffusion).

