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Gibbs Distributions and the Sampling Problem

Gibbs Distribution

Given a graph G = (V ,E ) and some integer k > 0 and λ > 0 we let

Colouring Model: For each proper k-colouring σ we have

µ(σ) = 1/ZG ,k

Hard-Core Model: For each independent set σ

µ(σ) = λ|σ|/ZG ,λ.

Sampling Problem

Input: A graph G = (V ,E ) and a target distribution µ(·), e.g.
Colouring or Hard-Core Model.

Output: A configuration distributed as in µ(·).
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Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Sampling Problem on G (n, d/n)

Hardness of Sampling

The Sampling Problem is “computationally hard”

We don’t expect to have an efficient algorithm

The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G (n, d/n)

A graph on n vertices and each edge appears independently with
probability d/n, where d is fixed

The focus is on “typical instances” of G (n, d/n)

En occurs with high probability (w.h.p.) if limn→∞ Pr [En] = 1

Remark

... for “typical instances” of G (n, d/n) we do not expect to have exact
algorithms, too.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 3 / 25



Markov Chain Monte Carlo Sampling

A rough idea....

Consider an appropriately defined Markov Chain X0,X1, . . . over the
configurations of G , e.g. k-colouring.

It is ergodic, i.e. it converges to a unique stationary distribution
The stationary distribution should be the Gibbs distribution, µ(·)

The algorithm simulates the chain and outputs XT , for sufficiently
large T .
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The Markov Chain

“Glauber Block Dynamics”

We are given a partition of the vertex set B = {B1, . . . ,BN}.
X0 = σ for arbitrary σ.

Given Xt , we get Xt+1 as follows:

Choose block B uniformly at random among all the blocks in B
Set Xt+1(u) = Xt(u), for every vertex u /∈ B
Set Xt+1(B) according to distribution µ conditional on Xt+1(V \B).
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Convergence of Glauber Dynamics

Ergodicity

The chain converges to µ(·) given that the followings hold:

Aperiodic

The state space of the chain is “connected”

Remark

For the chains we consider here ergodicity is well known to hold [DFFV’05].
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Rate of Convergence

Mixing Time

The number of transitions needed for the chain to reach within total
variation distance 1/e from µ(·). Regardless of the initial state.
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Rate of Convergence

Mixing Time

The number of transitions needed for the chain to reach within total
variation distance 1/e from µ(·). Regardless of the initial state.

Total Variation Distance

For two distributions ν, µ over Ω, we define their total variation distance
as follows:

||ν − µ||TV = max
A⊆Ω
|ν(A)− µ(A)|.
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Rate of Convergence

Mixing Time

The number of transitions needed for the chain to reach within total
variation distance 1/e from µ(·). Regardless of the initial state.

Rapid Mixing

The mixing time τmix is polynomial in n, the number of the vertices of G .

If T (err) is the minimum number of transitions to get within error err
from µ, then

T (err) ≤ ln

(
1

err

)
τmix .
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Rapid Mixing and Maximum Degree ∆

Maximum Degree Bounds for colourings

Vigoda (1999) k > 11
6 ∆ for general G

Hayes,Vera,Vigoda (2007) k = Ω(∆/ log ∆) for planar G

Goldberg, Martin, Paterson (2004) k ≥ (1.763 + ε)∆ for G triangle free
and amenable

Dyer, Frieze, Hayes, Vigoda (2004) k ≥ (1.48 + ε)∆ for G of girth g ≥ 7

Frieze, Vera (2006) k ≥ (1.763 + ε)∆ for G locally sparse.

Hard-Core

The situation is very similar for the parameter λ in the Hard-Core Model .
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The interesting case of G (n, d/n)

Degrees in G (n, d/n)

The maximum degree in G (n, d/n) is Θ
(

ln n
ln ln n

)
w.h.p.

The “vast majority” of the vertices are of degree in (1± ε)d w.h.p.

Remark

It seems “natural” to have the bounds on k , λ for rapid mixing depending
on the expected degree d rather than maximum degree ∆.
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Statistical Physics Perspective

Conjecture Bounds for rapid mixing

For colouring we need k > d

For hard core we need λ < (d−1)d−1

(d−2)d
≈ e

d .

Otherwise

... there are exceptional initial states, from which the mixing is slow or
there is no mixing at all
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Past Work

Previous Bounds for Rapid Mixing

Dyer, Flaxman, Frieze, Vigoda (2005): k ≥ Θ
(

ln ln n
ln ln ln n

)
k is exponentially smaller than the max-degree but still depends on n

Mossel, Sly (2008): k ≥ f (d) and λ ≤ h(d).

... f (d) = dc and h(d) = d−c
′
, for some c , c ′ > 4.
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Main Result

Result for Rapid Mixing

W.h.p. over the instances of G (n, d/n) the graph admits a partition of the
vertex set into a set of “simple structured” blocks B s.t. the following
holds: Let Mc and Mhc denote the Glauber block dynamics for the
colouring model and the hard core model, respectively, with set of blocks
B.

For k ≥ 11
2 d the mixing time of Mc is O(n ln n)

For λ ≤ 1−ε
2d the mixing time of Mhc is O(n ln n).

For efficient sampling we need to have efficient...

construction of B
implementation of the updates

algorithms that provide initial configurations for both chains.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 12 / 25



Main Result

Result for Rapid Mixing

W.h.p. over the instances of G (n, d/n) the graph admits a partition of the
vertex set into a set of “simple structured” blocks B s.t. the following
holds: Let Mc and Mhc denote the Glauber block dynamics for the
colouring model and the hard core model, respectively, with set of blocks
B.

For k ≥ 11
2 d the mixing time of Mc is O(n ln n)

For λ ≤ 1−ε
2d the mixing time of Mhc is O(n ln n).

For efficient sampling we need to have efficient...

construction of B
implementation of the updates

algorithms that provide initial configurations for both chains.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 12 / 25



Main Result

Result for Rapid Mixing

W.h.p. over the instances of G (n, d/n) the graph admits a partition of the
vertex set into a set of “simple structured” blocks B s.t. the following
holds: Let Mc and Mhc denote the Glauber block dynamics for the
colouring model and the hard core model, respectively, with set of blocks
B.

For k ≥ 11
2 d the mixing time of Mc is O(n ln n)

For λ ≤ 1−ε
2d the mixing time of Mhc is O(n ln n).

For efficient sampling we need to have efficient...

construction of B
implementation of the updates

algorithms that provide initial configurations for both chains.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 12 / 25



Rapid Mixing and High Degrees

Technical Challenge

Standard analysis for rapid mixing cannot be employed here due to
the high degree vertices (deg > (1 + ε)d)

Even though they are relatively few, high degree vertices appear
everywhere in the graph!

Dyer et al. (2005) “Hide the high degree vertices well inside the
blocks”

The crux is ...

It is all about creating an appropriate set of blocks.

... it is highly non-trivial!
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Block Construction I

Weights for Vertices and Paths

We assign weight to each vertex u of degree degu as follows:

W (u) =

{
(1 + γ)−1 degu ≤ (1 + ε)d
dc · degu otherwise

Every path L is assigned
∏

u∈LW (u)

“Break Points”

Let P(v) denote the set of paths of length at most ln n
d2/5 that emanate from

v . We call “break point” every vertex v s.t.

max
L∈P(v)

{∏
u∈L

W (u)

}
≤ 1.
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Blocks Construction II

Creating Blocks

Find the break-points

C contains all cycles of length at most 4 ln n
ln5 d

Given the break points and C do

For each C ∈ C construct a block B which is the maximal connected
subgraph that contains C but no break points outside C
Pick a vertex v (non-break point) that does not belong to a block. The
block is the maximal connected subgraph that contains v and no break
point
If vertex v is a break point then v is a block itself
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About the blocks...

Theorem

W.h.p. over the graph instances G (n, d/n) the following is true:

The set B contains blocks which are trees with at most one extra
edge

The blocks are not extended
No cycles in C end up in the same block

The creation of B can be implemented in polynomial time

We can check in polynomial time whether some vertex is break-point.
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Technique for Rapid Mixing

Path Coupling, [Bubley, Dyer 1997]

Consider two copies of the chain at configuration X0 and Y0 such
that H(X0,Y0) = 1

Couple the transitions of the two chains

For rapid mixing it suffices to have that

E [H(X1,Y1)|X0,Y0] = 1−Θ(1/n).
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... more concretely

∀B ∈ B consider arbitrary σ(∂B) and τ(∂B) s.t.
H(σ(∂B), τ(∂B)) = 1

Take X (B) ∼ µ(·|σ(∂B)) and Y (B) ∼ µ(·|τ(∂B))

Couple X (B) and Y (B) so as minimize E [H(X (B),Y (B))]

We should have sufficiently small E [H(X (B),Y (B))]
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The coupling of X (B) and Y (B)

couple X (B) and Y (B) one
vertex at a time

every time pick a vertex next to
disagreement

each vertex is disagreeing with
probability at most

%v ≤
{ 2

k−degv degv ≤ k − 2

1 otherwise

disagreements graph is
connected
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Reduction to Independent Process, [DFFV’05]

Disagreement Percolation [van de Berg, Maes, ’94]

Product measure P : {“agree”,“ disagree”}B → [0, 1] s.t. ∀v ∈ B

P(v := “disagree ”) =
{

2
k−degv degv ≤ k − 2

1 otherwise

Path of disagreement is a path with all of its vertices disagreeing

It holds that

max
σ(∂B),τ(∂B)

E [H(X (B),Y (B))] ≤
∑
l∈L
P(l is a path of disagreement)
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max
σ(∂B),τ(∂B)

E [H(X (B),Y (B))] ≤
∑
l∈L
P(l is a path of disagreement)
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Bounding the Expected # Paths of Disagreements (I)

Expected number of Paths of disagreements

We care only for self-avoiding paths in each block B.

Let T be a tree of self-avoiding paths.

The root r is the vertex next to the disagreement of the boundary
∀w ∈ B, if w and r are connected with a path of length i inside B,
then w belongs to level i of T

LTi is the expected number of paths of disagreement in T from the
root to level i , (probabilities are w.r.t. measure P)

We will need that

LTi ≤ c(1− δ)i i ≥ 0.

If the root is of degree s, the condition reduces to the subtrees of r

LT
′

i−1 ≤ c(1− δ)i/(s · %root)
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Bounding the Expected # Paths of Disagreements (II)

Expected number of Paths of disagreements

Unfold down to level i of T . For every w at level i of T we have

Lw0 ≤
c(1− δ)i∏
x degx · %x

... then, we know that the expected number of disagreements is %w .
That is,

%w ≤
c(1− δ)i∏
x degx · %x

Using appropriate parameters for the weighting schema as well as
appropriate k (or λ) the above condition is satisfied.
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The sampling algorithm ...

For the sampling algorithm we also need to have efficient...

Construction of B

This takes polynomial time.

The implementation of the updates

W.h.p. over G (n, d/n) every B ∈ B is a tree with at most one extra
edge
... for such blocks we can use standard algorithms

Algorithms which provide initial configurations for both chains

Simple greedy algorithm is sufficient for colouring
We can start from the empty independent set
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Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple

For the colourings we need to have k ≥ 11
2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



Concluding Remarks

Considered Glauber Block Dynamics for sampling “k-colouring” and
“hard-cores” with underlying graph G (n, d/n)

The structure of the blocks is simple
For the colourings we need to have k ≥ 11

2 d for rapid mixing

the lower bound on k is off by a factor 11
2

For the “hard-cores” we need to have λ ≤ 1−ε
2d

λ if off by a factor of 2
e

We introduced a new technique of creating blocks

Weighting Schema

Is it possible to prove rapid mixing with site updates?

Comparison techniques

How can we improve the bounds?

We will need to speak about “spatial mixing”

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 24 / 25



The End

THANK YOU!
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