MCMC sampling colourings and independent sets of G(n, d/n) near the uniqueness threshold.

Charis Efthymiou efthymiou@math.uni-frankfurt.de

Goethe University, Frankfurt

(appeared in SODA'14)

Phase Transitions in Discrete Structures and Computational Problems Warwick, May 2014

Gibbs Distributions and the Sampling Problem

Gibbs Distributions and the Sampling Problem

Gibbs Distribution

Given a graph G = (V, E) and some integer k > 0 and $\lambda > 0$ we let

Colouring Model: For each proper k-colouring σ we have

$$\mu(\sigma)=1/Z_{G,k}$$

Hard-Core Model: For each independent set σ

$$\mu(\sigma) = \lambda^{|\sigma|}/Z_{G,\lambda}.$$

Gibbs Distributions and the Sampling Problem

Gibbs Distribution

Given a graph G = (V, E) and some integer k > 0 and $\lambda > 0$ we let

Colouring Model: For each proper k-colouring σ we have

$$\mu(\sigma)=1/Z_{G,k}$$

Hard-Core Model: For each independent set σ

$$\mu(\sigma) = \lambda^{|\sigma|}/Z_{G,\lambda}.$$

Sampling Problem

Input: A graph G = (V, E) and a target distribution $\mu(\cdot)$, e.g. Colouring or Hard-Core Model.

Output: A configuration distributed as in $\mu(\cdot)$.

Hardness of Sampling

The Sampling Problem is "computationally hard"

Hardness of Sampling

The Sampling Problem is "computationally hard"

We don't expect to have an efficient algorithm

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

3 / 25

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

The Average Case Scenario

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G(n, d/n)

3 / 25

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G(n, d/n)

• A graph on n vertices and each edge appears independently with probability d/n, where d is fixed

3 / 25

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G(n, d/n)

- A graph on n vertices and each edge appears independently with probability d/n, where d is fixed
- The focus is on "typical instances" of G(n, d/n)

3 / 25

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G(n, d/n)

- A graph on n vertices and each edge appears independently with probability d/n, where d is fixed
- The focus is on "typical instances" of G(n, d/n)
- \mathcal{E}_n occurs with high probability (w.h.p.) if $\lim_{n\to\infty} Pr[\mathcal{E}_n] = 1$

3 / 25

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014

Hardness of Sampling

The Sampling Problem is "computationally hard"

- We don't expect to have an efficient algorithm
- The main focus is on approximate algorithms

The Average Case Scenario

We consider the problem with underlying graph G(n, d/n)

- A graph on n vertices and each edge appears independently with probability d/n, where d is fixed
- The focus is on "typical instances" of G(n, d/n)
- \mathcal{E}_n occurs with high probability (w.h.p.) if $\lim_{n\to\infty} Pr[\mathcal{E}_n] = 1$

Remark

... for "typical instances" of G(n, d/n) we do not expect to have exact algorithms, too.

A rough idea....

• Consider an appropriately defined Markov Chain X_0, X_1, \ldots over the configurations of G, e.g. k-colouring.

A rough idea....

- Consider an appropriately defined Markov Chain X_0, X_1, \ldots over the configurations of G, e.g. k-colouring.
 - It is ergodic, i.e. it converges to a unique stationary distribution

A rough idea....

- Consider an appropriately defined Markov Chain X_0, X_1, \ldots over the configurations of G, e.g. k-colouring.
 - It is ergodic, i.e. it converges to a unique stationary distribution
 - The stationary distribution should be the Gibbs distribution, $\mu(\cdot)$

A rough idea....

- Consider an appropriately defined Markov Chain X_0, X_1, \ldots over the configurations of G, e.g. k-colouring.
 - It is ergodic, i.e. it converges to a unique stationary distribution
 - The stationary distribution should be the Gibbs distribution, $\mu(\cdot)$
- The algorithm simulates the chain and outputs X_T , for sufficiently large T.

The Markov Chain

The Markov Chain

"Glauber Block Dynamics"

- We are given a partition of the vertex set $\mathcal{B} = \{B_1, \dots, B_N\}$.
- $X_0 = \sigma$ for arbitrary σ .
- Given X_t , we get X_{t+1} as follows:
 - ullet Choose block B uniformly at random among all the blocks in ${\cal B}$
 - Set $X_{t+1}(u) = X_t(u)$, for every vertex $u \notin B$
 - Set $X_{t+1}(B)$ according to distribution μ conditional on $X_{t+1}(V \backslash B)$.

Ergodicity

The chain converges to $\mu(\cdot)$ given that the followings hold:

Ergodicity

The chain converges to $\mu(\cdot)$ given that the followings hold:

Aperiodic

Ergodicity

The chain converges to $\mu(\cdot)$ given that the followings hold:

- Aperiodic
- The state space of the chain is "connected"

Ergodicity

The chain converges to $\mu(\cdot)$ given that the followings hold:

- Aperiodic
- The state space of the chain is "connected"

Remark

For the chains we consider here ergodicity is well known to hold [DFFV'05].

Mixing Time

The number of transitions needed for the chain to reach within *total* variation distance 1/e from $\mu(\cdot)$. Regardless of the initial state.

Mixing Time

The number of transitions needed for the chain to reach within *total* variation distance 1/e from $\mu(\cdot)$. Regardless of the initial state.

Total Variation Distance

For two distributions ν, μ over Ω , we define their total variation distance as follows:

$$||\nu - \mu||_{TV} = \max_{A \subseteq \Omega} |\nu(A) - \mu(A)|.$$

C.Ef. (Goethe Uni.)

Mixing Time

The number of transitions needed for the chain to reach within *total* variation distance 1/e from $\mu(\cdot)$. Regardless of the initial state.

Rapid Mixing

The mixing time τ_{mix} is polynomial in n, the number of the vertices of G.

• If T(err) is the minimum number of transitions to get within error err from μ , then

$$T(\mathit{err}) \leq \ln \left(rac{1}{\mathit{err}}
ight) au_{\mathit{mix}}.$$

C.Ef. (Goethe Uni.)

Rapid Mixing and Maximum Degree Δ

Rapid Mixing and Maximum Degree Δ

Maximum Degree Bounds for colourings

Vigoda (1999) $k > \frac{11}{6}\Delta$ for general G

Hayes, Vera, Vigoda (2007) $k = \Omega(\Delta/\log \Delta)$ for planar G

Goldberg, Martin, Paterson (2004) $k \geq (1.763 + \epsilon)\Delta$ for G triangle free and amenable

Dyer, Frieze, Hayes, Vigoda (2004) $k \ge (1.48 + \epsilon)\Delta$ for G of girth $g \ge 7$ Frieze, Vera (2006) $k \ge (1.763 + \epsilon)\Delta$ for G locally sparse.

Rapid Mixing and Maximum Degree Δ

Maximum Degree Bounds for colourings

Vigoda (1999) $k > \frac{11}{6}\Delta$ for general G

Hayes, Vera, Vigoda (2007) $k = \Omega(\Delta/\log \Delta)$ for planar G

Goldberg, Martin, Paterson (2004) $k \geq (1.763 + \epsilon)\Delta$ for G triangle free and amenable

Dyer, Frieze, Hayes, Vigoda (2004) $k \ge (1.48 + \epsilon)\Delta$ for G of girth $g \ge 7$ Frieze, Vera (2006) $k \ge (1.763 + \epsilon)\Delta$ for G locally sparse.

Hard-Core

The situation is very similar for the parameter λ in the Hard-Core Model .

The interesting case of G(n, d/n)

The interesting case of G(n, d/n)

Degrees in G(n, d/n)

The interesting case of G(n, d/n)

Degrees in G(n, d/n)

• The maximum degree in G(n, d/n) is $\Theta(\frac{\ln n}{\ln \ln n})$ w.h.p.

The interesting case of G(n, d/n)

Degrees in G(n, d/n)

- The maximum degree in G(n, d/n) is $\Theta(\frac{\ln n}{\ln \ln n})$ w.h.p.
- ullet The "vast majority" of the vertices are of degree in $(1\pm\epsilon)d$ w.h.p.

The interesting case of G(n, d/n)

Degrees in G(n, d/n)

- The maximum degree in G(n, d/n) is $\Theta(\frac{\ln n}{\ln \ln n})$ w.h.p.
- ullet The "vast majority" of the vertices are of degree in $(1\pm\epsilon)d$ w.h.p.

Remark

It seems "natural" to have the bounds on k, λ for rapid mixing depending on the *expected degree d* rather than maximum degree Δ .

C.Ef. (Goethe Uni.)

Conjecture Bounds for rapid mixing

Conjecture Bounds for rapid mixing

• For *colouring* we need k > d

Conjecture Bounds for rapid mixing

- For *colouring* we need k > d
- For hard core we need $\lambda < \frac{(d-1)^{d-1}}{(d-2)^d} \approx \frac{e}{d}$.

Conjecture Bounds for rapid mixing

- For *colouring* we need k > d
- For hard core we need $\lambda < \frac{(d-1)^{d-1}}{(d-2)^d} \approx \frac{e}{d}$.

Otherwise

... there are exceptional initial states, from which the mixing is slow or there is no mixing at all

Previous Bounds for Rapid Mixing

• Dyer, Flaxman, Frieze, Vigoda (2005): $k \ge \Theta\left(\frac{\ln \ln n}{\ln \ln \ln n}\right)$

- Dyer, Flaxman, Frieze, Vigoda (2005): $k \ge \Theta\left(\frac{\ln \ln n}{\ln \ln \ln n}\right)$
 - k is exponentially smaller than the max-degree but still depends on n

- Dyer, Flaxman, Frieze, Vigoda (2005): $k \ge \Theta\left(\frac{\ln \ln n}{\ln \ln \ln n}\right)$
 - \bullet k is exponentially smaller than the max-degree but still depends on n
- Mossel, Sly (2008): $k \ge f(d)$ and $\lambda \le h(d)$.

- Dyer, Flaxman, Frieze, Vigoda (2005): $k \ge \Theta\left(\frac{\ln \ln n}{\ln \ln \ln n}\right)$
 - \bullet k is exponentially smaller than the max-degree but still depends on n
- Mossel, Sly (2008): $k \ge f(d)$ and $\lambda \le h(d)$.
 - ... $f(d) = d^c$ and $h(d) = d^{-c'}$, for some c, c' > 4.

Main Result

Main Result

Result for Rapid Mixing

W.h.p. over the instances of G(n,d/n) the graph admits a partition of the vertex set into a set of "simple structured" blocks \mathcal{B} s.t. the following holds: Let \mathcal{M}_c and \mathcal{M}_{hc} denote the Glauber block dynamics for the colouring model and the hard core model, respectively, with set of blocks \mathcal{B} .

- For $k \geq \frac{11}{2}d$ the mixing time of \mathcal{M}_c is $O(n \ln n)$
- For $\lambda \leq \frac{1-\epsilon}{2d}$ the mixing time of \mathcal{M}_{hc} is $O(n \ln n)$.

Result for Rapid Mixing

W.h.p. over the instances of G(n,d/n) the graph admits a partition of the vertex set into a set of "simple structured" blocks \mathcal{B} s.t. the following holds: Let \mathcal{M}_c and \mathcal{M}_{hc} denote the Glauber block dynamics for the colouring model and the hard core model, respectively, with set of blocks \mathcal{B} .

- For $k \geq \frac{11}{2}d$ the mixing time of \mathcal{M}_c is $O(n \ln n)$
- For $\lambda \leq \frac{1-\epsilon}{2d}$ the mixing time of \mathcal{M}_{hc} is $O(n \ln n)$.

For efficient sampling we need to have efficient...

- ullet construction of ${\cal B}$
- implementation of the updates
- algorithms that provide initial configurations for both chains.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 12 / 25

Technical Challenge

• Standard analysis for rapid mixing cannot be employed here due to the high degree vertices $(deg > (1 + \epsilon)d)$

Technical Challenge

- Standard analysis for rapid mixing cannot be employed here due to the high degree vertices $(deg > (1 + \epsilon)d)$
 - Even though they are relatively few, high degree vertices appear everywhere in the graph!

Technical Challenge

- Standard analysis for rapid mixing cannot be employed here due to the high degree vertices $(deg > (1 + \epsilon)d)$
 - Even though they are relatively few, high degree vertices appear everywhere in the graph!
- Dyer et al. (2005) "Hide the high degree vertices well inside the blocks"

Technical Challenge

- Standard analysis for rapid mixing cannot be employed here due to the high degree vertices $(deg > (1 + \epsilon)d)$
 - Even though they are relatively few, high degree vertices appear everywhere in the graph!
- Dyer et al. (2005) "Hide the high degree vertices well inside the blocks"

The crux is ...

It is all about creating an appropriate set of blocks.

Technical Challenge

- Standard analysis for rapid mixing cannot be employed here due to the high degree vertices $(deg > (1 + \epsilon)d)$
 - Even though they are relatively few, high degree vertices appear everywhere in the graph!
- Dyer et al. (2005) "Hide the high degree vertices well inside the blocks"

The crux is ...

It is all about creating an appropriate set of blocks.

... it is highly non-trivial!

Weights for Vertices and Paths

• We assign weight to each vertex u of degree deg_u as follows:

$$W(u) = \left\{ egin{array}{ll} (1+\gamma)^{-1} & deg_u \leq (1+\epsilon)d \ d^c \cdot deg_u & ext{otherwise} \end{array}
ight.$$

• Every path L is assigned $\prod_{u \in L} W(u)$

Weights for Vertices and Paths

• We assign weight to each vertex u of degree deg_u as follows:

$$W(u) = \left\{ egin{array}{ll} (1+\gamma)^{-1} & deg_u \leq (1+\epsilon)d \\ d^c \cdot deg_u & ext{otherwise} \end{array}
ight.$$

• Every path L is assigned $\prod_{u \in L} W(u)$

"Break Points"

Let $\mathbb{P}(v)$ denote the set of paths of length at most $\frac{\ln n}{d^{2/5}}$ that emanate from v. We call "break point" every vertex v s.t.

$$\max_{L\in\mathbb{P}(v)}\left\{\prod_{u\in L}W(u)\right\}\leq 1.$$

C.Ef. (Goethe Uni.)

Creating Blocks

• Find the break-points

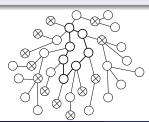
- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$

- Find the break-points
- C contains all cycles of length at most $4 \frac{\ln n}{\ln^5 d}$
- \bullet Given the break points and ${\cal C}$ do

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- \bullet Given the break points and ${\cal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C



- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C
 - Pick a vertex v (non-break point) that does not belong to a block. The block is the maximal connected subgraph that contains v and no break point

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C
 - Pick a vertex v (non-break point) that does not belong to a block. The block is the maximal connected subgraph that contains v and no break point

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C
 - Pick a vertex v (non-break point) that does not belong to a block. The block is the maximal connected subgraph that contains v and no break point

Blocks Construction II

Creating Blocks

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C
 - Pick a vertex v (non-break point) that does not belong to a block. The block is the maximal connected subgraph that contains v and no break point

Blocks Construction II

Creating Blocks

- Find the break-points
- C contains all cycles of length at most $4\frac{\ln n}{\ln^5 d}$
- ullet Given the break points and ${\mathcal C}$ do
 - For each $C \in \mathcal{C}$ construct a block B which is the maximal connected subgraph that contains C but no break points outside C
 - Pick a vertex v (non-break point) that does not belong to a block. The block is the maximal connected subgraph that contains v and no break point
 - If vertex v is a break point then v is a block itself

Theorem

Theorem

W.h.p. over the graph instances G(n, d/n) the following is true:

ullet The set ${\cal B}$ contains blocks which are trees with at most one extra edge

Theorem

W.h.p. over the graph instances G(n, d/n) the following is true:

ullet The set ${\cal B}$ contains blocks which are trees with at most one extra edge

ullet The creation of ${\cal B}$ can be implemented in polynomial time

Theorem

- ullet The set ${\cal B}$ contains blocks which are trees with at most one extra edge
 - The blocks are not extended
- ullet The creation of ${\cal B}$ can be implemented in polynomial time

Theorem

- ullet The set ${\cal B}$ contains blocks which are trees with at most one extra edge
 - The blocks are not extended
 - ullet No cycles in ${\mathcal C}$ end up in the same block
- ullet The creation of ${\cal B}$ can be implemented in polynomial time

Theorem

- ullet The set ${\cal B}$ contains blocks which are trees with at most one extra edge
 - The blocks are not extended
 - ullet No cycles in ${\mathcal C}$ end up in the same block
- ullet The creation of ${\cal B}$ can be implemented in polynomial time
 - We can check in polynomial time whether some vertex is break-point.

Technique for Rapid Mixing

Technique for Rapid Mixing

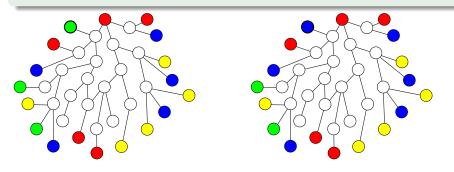
Path Coupling, [Bubley, Dyer 1997]

- ullet Consider two copies of the chain at configuration X_0 and Y_0 such that $H(X_0,Y_0)=1$
- Couple the transitions of the two chains
- For rapid mixing it suffices to have that

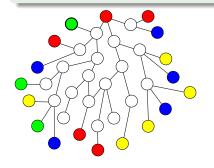
$$E[H(X_1, Y_1)|X_0, Y_0] = 1 - \Theta(1/n).$$

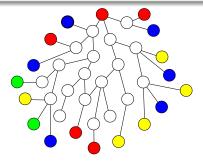
• $\forall B \in \mathcal{B}$ consider arbitrary $\sigma(\partial B)$ and $\tau(\partial B)$ s.t. $H(\sigma(\partial B), \tau(\partial B)) = 1$

• $\forall B \in \mathcal{B}$ consider arbitrary $\sigma(\partial B)$ and $\tau(\partial B)$ s.t. $H(\sigma(\partial B), \tau(\partial B)) = 1$

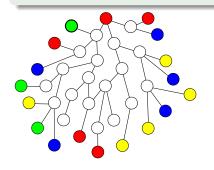


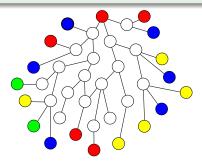
- $\forall B \in \mathcal{B}$ consider arbitrary $\sigma(\partial B)$ and $\tau(\partial B)$ s.t. $H(\sigma(\partial B), \tau(\partial B)) = 1$
- Take $X(B) \sim \mu(\cdot | \sigma(\partial B))$ and $Y(B) \sim \mu(\cdot | \tau(\partial B))$



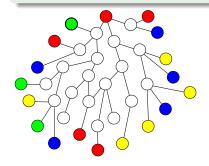


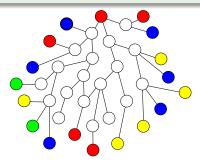
- $\forall B \in \mathcal{B}$ consider arbitrary $\sigma(\partial B)$ and $\tau(\partial B)$ s.t. $H(\sigma(\partial B), \tau(\partial B)) = 1$
- Take $X(B) \sim \mu(\cdot | \sigma(\partial B))$ and $Y(B) \sim \mu(\cdot | \tau(\partial B))$
- Couple X(B) and Y(B) so as minimize E[H(X(B), Y(B))]

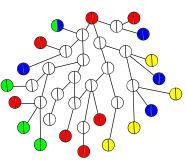




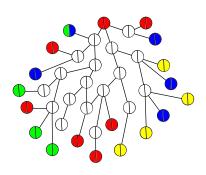
- $\forall B \in \mathcal{B}$ consider arbitrary $\sigma(\partial B)$ and $\tau(\partial B)$ s.t. $H(\sigma(\partial B), \tau(\partial B)) = 1$
- Take $X(B) \sim \mu(\cdot | \sigma(\partial B))$ and $Y(B) \sim \mu(\cdot | \tau(\partial B))$
- Couple X(B) and Y(B) so as minimize E[H(X(B), Y(B))]
- We should have sufficiently small E[H(X(B), Y(B))]



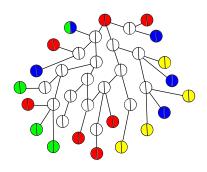




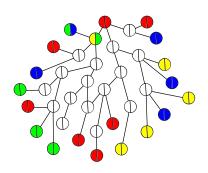
 couple X(B) and Y(B) one vertex at a time



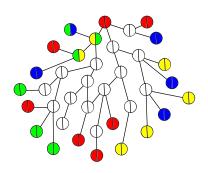
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement



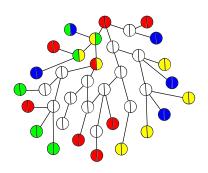
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement



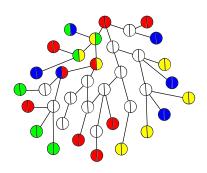
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement



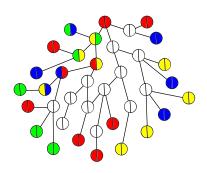
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement



- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement

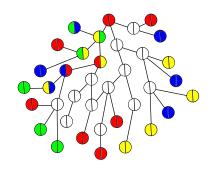


- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement



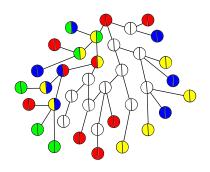
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\nu} \le \left\{ \begin{array}{l} \frac{2}{k - deg_{\nu}} & deg_{\nu} \le k - 2 \\ 1 & \text{otherwise} \end{array} \right.$$



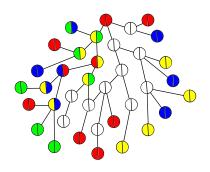
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\nu} \le \begin{cases} \frac{2}{k - deg_{\nu}} & deg_{\nu} \le k - 2\\ 1 & \text{otherwise} \end{cases}$$



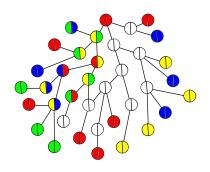
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{v} \leq \begin{cases}
\frac{2}{k - deg_{v}} & deg_{v} \leq k - 2 \\
1 & \text{otherwise}
\end{cases}$$



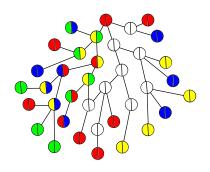
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\nu} \le \begin{cases} \frac{2}{k - deg_{\nu}} & deg_{\nu} \le k - 2\\ 1 & \text{otherwise} \end{cases}$$



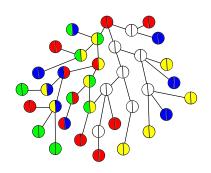
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{v} \leq \begin{cases}
\frac{2}{k - deg_{v}} & deg_{v} \leq k - 2 \\
1 & \text{otherwise}
\end{cases}$$



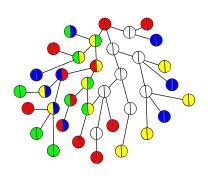
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{v} \leq \begin{cases}
\frac{2}{k - deg_{v}} & deg_{v} \leq k - 2 \\
1 & \text{otherwise}
\end{cases}$$



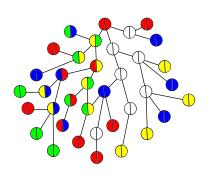
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\mathbf{v}} \le \left\{ \begin{array}{l} \frac{2}{k - deg_{\mathbf{v}}} & deg_{\mathbf{v}} \le k - 2\\ 1 & \text{otherwise} \end{array} \right.$$



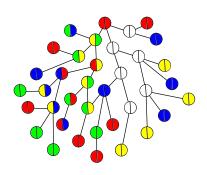
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\mathbf{v}} \le \left\{ \begin{array}{l} \frac{2}{k - deg_{\mathbf{v}}} & deg_{\mathbf{v}} \le k - 2\\ 1 & \text{otherwise} \end{array} \right.$$



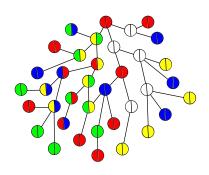
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\mathbf{v}} \le \left\{ \begin{array}{l} \frac{2}{k - deg_{\mathbf{v}}} & deg_{\mathbf{v}} \le k - 2\\ 1 & \text{otherwise} \end{array} \right.$$



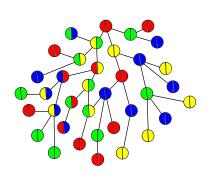
- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\mathbf{v}} \le \left\{ \begin{array}{l} \frac{2}{k - deg_{\mathbf{v}}} & deg_{\mathbf{v}} \le k - 2\\ 1 & \text{otherwise} \end{array} \right.$$



- couple X(B) and Y(B) one vertex at a time
- every time pick a vertex next to disagreement
- each vertex is disagreeing with probability at most

$$\varrho_{\mathbf{v}} \le \left\{ \begin{array}{l} \frac{2}{k - deg_{\mathbf{v}}} & deg_{\mathbf{v}} \le k - 2\\ 1 & \text{otherwise} \end{array} \right.$$



Disagreement Percolation [van de Berg, Maes, '94]

Disagreement Percolation [van de Berg, Maes, '94]

• Product measure $\mathcal{P}: \{\text{``agree''}, \text{``disagree''}\}^B \to [0, 1] \text{ s.t. } \forall v \in B$

$$\mathcal{P}(v := \text{``disagree''}) = \left\{ \begin{array}{ll} \frac{2}{k - deg_v} & deg_v \le k - 2 \\ 1 & \text{otherwise} \end{array} \right.$$

Disagreement Percolation [van de Berg, Maes, '94]

• Product measure $\mathcal{P}: \{\text{``agree''}, \text{``disagree''}\}^B \to [0,1] \text{ s.t. } \forall v \in B$

$$\mathcal{P}(v := \text{``disagree''}) = \left\{ \begin{array}{ll} \frac{2}{k - deg_v} & deg_v \le k - 2\\ 1 & \text{otherwise} \end{array} \right.$$

Path of disagreement is a path with all of its vertices disagreeing

Disagreement Percolation [van de Berg, Maes, '94]

• Product measure $\mathcal{P}: \{\text{``agree''}, \text{``disagree''}\}^B \to [0,1] \text{ s.t. } \forall v \in B$

$$\mathcal{P}(v := \text{``disagree''}) = \left\{ egin{array}{ll} rac{2}{k - deg_v} & deg_v \leq k - 2 \\ 1 & \text{otherwise} \end{array} \right.$$

- Path of disagreement is a path with all of its vertices disagreeing
- It holds that

$$\max_{\sigma(\partial B), \tau(\partial B)} E[H(X(B), Y(B))] \leq \sum_{I \in \mathbb{L}} \mathcal{P}(I \text{ is a path of disagreement})$$

◆ロト 4回ト 4 恵ト 4 恵ト ・ 恵 ・ かくで

Expected number of Paths of disagreements

21 / 25

Expected number of Paths of disagreements

• We care only for *self-avoiding paths* in each block *B*.

Expected number of Paths of disagreements

- We care only for *self-avoiding paths* in each block *B*.
- Let T be a tree of self-avoiding paths.

Expected number of Paths of disagreements

- We care only for *self-avoiding paths* in each block *B*.
- Let T be a tree of self-avoiding paths.
 - The root *r* is the *vertex next to the disagreement* of the boundary

Expected number of Paths of disagreements

- We care only for *self-avoiding paths* in each block *B*.
- Let T be a tree of self-avoiding paths.
 - ullet The root r is the $vertex\ next\ to\ the\ disagreement$ of the boundary
 - $\forall w \in B$, if w and r are connected with a path of length i inside B, then w belongs to level i of T

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 21 / 25

Expected number of Paths of disagreements

- We care only for *self-avoiding paths* in each block *B*.
- Let T be a tree of self-avoiding paths.
 - The root *r* is the *vertex next to the disagreement* of the boundary
 - $\forall w \in B$, if w and r are connected with a path of length i inside B, then w belongs to level i of T
- L_i^T is the expected number of paths of disagreement in T from the root to level i, (probabilities are w.r.t. measure P)

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 21 / 25

Expected number of Paths of disagreements

- We care only for *self-avoiding paths* in each block *B*.
- Let T be a tree of self-avoiding paths.
 - The root *r* is the *vertex next to the disagreement* of the boundary
 - $\forall w \in B$, if w and r are connected with a path of length i inside B, then w belongs to level i of T
- L_i^T is the expected number of paths of disagreement in T from the root to level i, (probabilities are w.r.t. measure P)
- We will need that

$$L_i^T \leq c(1-\delta)^i$$
 $i \geq 0$.

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 21 / 25

Expected number of Paths of disagreements

- We care only for *self-avoiding paths* in each block *B*.
- Let T be a tree of self-avoiding paths.
 - The root *r* is the *vertex next to the disagreement* of the boundary
 - $\forall w \in B$, if w and r are connected with a path of length i inside B, then w belongs to level i of T
- L_i^T is the expected number of paths of disagreement in T from the root to level i, (probabilities are w.r.t. measure P)
- We will need that

$$L_i^T \leq c(1-\delta)^i$$
 $i \geq 0$.

• If the root is of degree s, the condition reduces to the subtrees of r

$$L_{i-1}^{T'} \leq c(1-\delta)^i/(s \cdot \varrho_{root})$$

21 / 25

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014

Expected number of Paths of disagreements

• Unfold down to level i of T. For every w at level i of T we have

$$L_0^w \leq \frac{c(1-\delta)'}{\prod_x deg_x \cdot \varrho_x}$$

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 22 / 25

Expected number of Paths of disagreements

• Unfold down to level i of T. For every w at level i of T we have

$$L_0^w \leq \frac{c(1-\delta)^i}{\prod_x deg_x \cdot \varrho_x}$$

• ... then, we know that the expected number of disagreements is ϱ_w . That is,

$$\varrho_{w} \leq \frac{c(1-\delta)^{i}}{\prod_{x} deg_{x} \cdot \varrho_{x}}$$

C.Ef. (Goethe Uni.) MCMC Sampling Warwick May 2014 22 / 25

Expected number of Paths of disagreements

• Unfold down to level i of T. For every w at level i of T we have

$$L_0^w \leq \frac{c(1-\delta)^i}{\prod_x deg_x \cdot \varrho_x}$$

• ... then, we know that the expected number of disagreements is ϱ_{w} . That is,

$$\varrho_{w} \leq \frac{c(1-\delta)^{i}}{\prod_{x} deg_{x} \cdot \varrho_{x}}$$

• Using appropriate parameters for the weighting schema as well as appropriate k (or λ) the above condition is satisfied.

For the sampling algorithm we also need to have efficient...

ullet Construction of ${\cal B}$

- Construction of B
- The implementation of the updates

For the sampling algorithm we also need to have efficient...

- Construction of B
- The implementation of the updates

Algorithms which provide initial configurations for both chains

For the sampling algorithm we also need to have efficient...

- Construction of B
 - This takes polynomial time.
- The implementation of the updates

Algorithms which provide initial configurations for both chains

- Construction of B
 - This takes polynomial time.
- The implementation of the updates
 - W.h.p. over G(n, d/n) every $B \in \mathcal{B}$ is a tree with at most one extra edge
- Algorithms which provide initial configurations for both chains

- Construction of B
 - This takes polynomial time.
- The implementation of the updates
 - W.h.p. over G(n, d/n) every $B \in \mathcal{B}$ is a tree with at most one extra edge
 - ... for such blocks we can use standard algorithms
- Algorithms which provide initial configurations for both chains

- Construction of B
 - This takes polynomial time.
- The implementation of the updates
 - W.h.p. over G(n, d/n) every $B \in \mathcal{B}$ is a tree with at most one extra edge
 - ... for such blocks we can use standard algorithms
- Algorithms which provide initial configurations for both chains
 - Simple greedy algorithm is sufficient for colouring

- Construction of B
 - This takes polynomial time.
- The implementation of the updates
 - W.h.p. over G(n, d/n) every $B \in \mathcal{B}$ is a tree with at most one extra edge
 - ... for such blocks we can use standard algorithms
- Algorithms which provide initial configurations for both chains
 - Simple greedy algorithm is sufficient for colouring
 - We can start from the empty independent set

• Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - \bullet For the "hard-cores" we need to have $\lambda \leq \frac{1-\epsilon}{2d}$

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - \bullet For the "hard-cores" we need to have $\lambda \leq \frac{1-\epsilon}{2d}$

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - ullet For the "hard-cores" we need to have $\lambda \leq rac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{e}$

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - ullet For the "hard-cores" we need to have $\lambda \leq rac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{e}$
- We introduced a new technique of creating blocks

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - ullet For the "hard-cores" we need to have $\lambda \leq rac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{6}$
- We introduced a new technique of creating blocks
 - Weighting Schema

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - \bullet For the "hard-cores" we need to have $\lambda \leq \frac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{e}$
- We introduced a new technique of creating blocks
 - Weighting Schema
- Is it possible to prove rapid mixing with site updates?

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - \bullet For the "hard-cores" we need to have $\lambda \leq \frac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{6}$
- We introduced a new technique of creating blocks
 - Weighting Schema
- Is it possible to prove rapid mixing with site updates?
 - Comparison techniques

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - \bullet For the "hard-cores" we need to have $\lambda \leq \frac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{6}$
- We introduced a new technique of creating blocks
 - Weighting Schema
- Is it possible to prove rapid mixing with site updates?
 - Comparison techniques
- How can we improve the bounds?

- Considered Glauber Block Dynamics for sampling "k-colouring" and "hard-cores" with underlying graph G(n, d/n)
 - The structure of the blocks is simple
 - For the colourings we need to have $k \ge \frac{11}{2}d$ for rapid mixing
 - the lower bound on k is off by a factor $\frac{11}{2}$
 - \bullet For the "hard-cores" we need to have $\lambda \leq \frac{1-\epsilon}{2d}$
 - λ if off by a factor of $\frac{2}{e}$
- We introduced a new technique of creating blocks
 - Weighting Schema
- Is it possible to prove rapid mixing with site updates?
 - Comparison techniques
- How can we improve the bounds?
 - We will need to speak about "spatial mixing"

The End

THANK YOU!