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0 Dynamics of a simple infection model
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Infection models

Modelization of epidemic propagation of :

@ illnesses
@ adoption of a new product (marketing)
@ failure of banks

Formalization : G = (V, E) a graph on N vertices
0i = {Jj|(i,)) € E} the neighbors of i

o = (" ... o) the state of the vertices at time ¢
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Example : threshold model

a,m € {0,1}  O=inactive=susceptible = 1=active=infected

deterministic, parallel, discrete time dynamics :

1 ifol™" =1
o0 =01 iteV=0and Yol >
i jeoi
0 otherwise

@ active vertices remain active for ever (monotonicity)

@ inactive vertices become active if their number of active neighbors
gets larger than some threshold (/; for site /)

remark : related to bootstrap (g-core) percolation
[Chalupta, Leath, Reich 79]
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Evolution from a random initial condition

First question (“direct problem”, relatively easy on random graphs) :

assuming o = ¢(®) drawn from a product measure
(the initial state of each vertex is chosen at random in an i.i.d. way)

@ what is the time evolution of o() ?
@ for monotonous dynamics, what is the final state (large time limit)?

@ is the final state completely active ?
< is the initial condition a “contagious set” ?

for instance SIR on random graphs via differential equations
[Janson, Luczak, Windridge 13]
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Evolution from a random initial condition

Example : threshold model with /; =/
on a (large) k + 1 random regular graph (locally a regular tree)
[Balogh, Pittel 07]

Bernouilli random initial condition with probability 6 of active sites

P: : probability that a vertex is active at time ¢

k1 -
Pe=t(1=0) Y (1) Byt Pt
n=I

where P; : probability that a vertex is active at time ¢, one of its
neighbor being kept inactive

k

Pe=t+(1=0) 3 () Byt Pt

n=I
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Evolution from a random initial condition
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Evolution from a random initial condition

I=k=2 I=2,k=3
1 . . . .
0
! 0,
08 08
0.6 0
P.
» P
0.4 o
0.2 0.2
0 — o . . .
0 02 04 0.6 08 ! 0 0.05 0.1 0.15 0.2
4 0

0:(/, k) : minimal value of ¢ for complete activation (w.h.p.)
from a random Bernouilli condition

for | = k, 6, = K21, continuous transition

for I < k, discontinuous transition
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Inference and optimization problems

Many other (more difficult) questions :
@ inference

given a snapshot o(!) of the epidemy at time t, infer what
happened previously (¢(!) with t' < 1)

in particular “zero patient” of an iliness propagation

[Shah, Zaman 11]

[Pinto, Thiran, Vetterli 12]

[Lokhov, Mézard, Ohta, Zdeborova 13]

[Altarelli, Braunstein, Dall’Asta, Lage-Castellanos, Zecchina 13]
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Inference and optimization problems

@ optimization
@ which vertices should be vaccinated to minimize the propagation of
an iliness ? [Altarelli, Braunstein, Dall'Asta, Wakeling, Zecchina 13]
@ which vertices should be infected initially to maximize the
propagation ? (viral marketing).
For instance for the threshold model :

@ among the initial conditions with L active sites, find the one that
maximizes the number of active sites in the final configuration
“Maximum L influence” [Kempe, Kleinberg, Tardos 03]

@ find the initial configuration with the minimal number of active sites
that activate the whole graph (the minimal contagious set)

“Minimum Target Set Selection” [Chen 09]

Problems in general difficult (NP-hard) from the worst-case complexity
(even to approximate)
Rigorous results on Z9, none (?) on random graphs apart from :

Bounds for good expanders
[Coja-Oghlan, Feige, Krivelevich, Reichman 13]
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9 Definition of the problem and statistical mechanics formulation
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Reminder : threshold / on a k + 1 regular graph G with N vertices

1 ifol™" =1
oM )1 itV =0and Yol >
! jeoi
0 otherwise

of =lim a(t) as t — oo (exists by monotonicity)

mm(G) N mm{za'(o ‘ O' =1 VI}

minimal fraction of active sites in an initial configuration
that activates all vertices (i.e. minimal contagious set)

Omin(l, k) = NIEWOOIE Omin(G) average over random regular graphs

limit should exist, and 6,,i,(G) should concentrate around it
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Variant of the problem : “time horizon” T
Oin(G, T) = 7 min{>0\? | {7 = 1 vi}
a7

minimal fraction of active sites in an initial configuration
that activates all vertices in T steps
(minimal contagious set corresponds to T = o)

Omin(l, Kk, T) = Nlim E6nmin(G, T) average over random regular graphs
—00
here limit and concentration can be proven by interpolation method

Omin(l, k) < lim Opin(l, k, T) (could be equal)
T—o0
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Different views on the problem

@ packing problem : put as many inactive sites as possible in the
initial configuration, under some constraints :
o for/ = k+1 (and any T) : maximal independent set

(hardcore model)
two neighboring inactive vertices will never evolve

o for T = 1, Biroli-Mézard model : one inactive site can have at most
k + 1 — I inactive neighbors
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Different views on the problem

@ Avoided (core) percolation

activate a site with > / active neighbors <
remove an inactive site with < k — [ + 2 inactive neighbors

in ¢', the inactive sites form the (k — / + 2)—core (largest subset
with induced degree > k — | + 2) of the inactive sites in the initial
configuration

1 — Omin : maximal density of vertices avoiding core percolation
reminiscent of offline version of Achlioptas processes

[Bohman, Frieze, Wormald 04]
cf. Lutz Warnke talk on monday
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Statistical mechanics formulation

Statistical mechanics formulation (for finite T) :

wo) = 3= [o,m, . 2= T [5m,
i o i

1 “chemical potential”, “activity”, minimal sets when y — —o0:
the partition function Z contains the relevant information :

. 1 . )
“gn_qoo Na InZ = 0min(G, T) and even more precisely :

@ define the entropy s71(f) as
(1/N)In(] activating initial configurations with 6N active vertices|)

@ then 4 InZ ~ sup,[s7(0) + 8] (Legendre transform)

can one compute Z ?
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Statistical mechanics formulation

i a i

a,m function of all o; at distance smaller than T, non local interactions,
not convenient

= reformulation with additional (redundant) time variables
[Altarelli, Braunstein, Dall’Asta, Zecchina 12]

ti(o) : first time at which i is active starting from ¢ (or oo if > T)

0 if oj =1
ti(g) =<1+ mlin({l;-(g)}jea,-) if oj = Oand1+--- < T
00 otherwise

wheremlin(t1,...,t,,):t,if H<-- <ty
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Statistical mechanics formulation

One can thus rewrite
z=> =%t < T) [ wilti. {8 }jeor)
t i i

where the w; encode the local consistency between activation times

Turned into a model with variables {j € {0, ..., T,oo} on each vertex,
with local interactions

Cavity method has been precisely developed to compute Z for such
models, when the graph is a sparse random graph
(local convergence towards a tree)
[Mézard, Parisi 00]
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9 The cavity method
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The cavity method

Simplest example : Ising ferromagnet on a k + 1 random regular graph

Ising spins on the vertices : o = (01,...,0n) € {1, +1}VN
interaction along the edges : H(o) = —J }_ ojo;
(ij)eE

n(e) = e —BH() | Z= Z e AH(a)

random graphs converge locally to trees

models on finite trees are simple
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The cavity method

H(o1,....,on) =—Jd > oioj, Z= Z LY e PHran)

(i) on==1

Zy(0) : partition function

@ conditioned on the value of the root o
@ in a regular tree with g generations
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The cavity method

Zgi1(0) = X Zg(ov) ... Zg(ok) ePlolortan)

. i Zg(o Bhgo
Normalized probability : ng(c) = zg(+jc]iz)g(_) — 2c§sh(gﬁhg)

Recursion on the effective magnetic field :
hg+1 = %atanh (tanh(8J) tanh(8hy))

Fixed point when g — oo : (infinitesimal field to break the symmetry)

@ h =0 at high temperature
@ h+# 0 at low temperature

True magnetic field can be recovered
with k + 1 instead of k neighbors on the root
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The cavity method

@ Generalization to any model on a finite tree :

solvable via exchange of “messages” between neighboring
variables (Belief Propagation)

@ Generalization to models on random graphs :
only locally tree-like, effect of the loops (boundary conditions)

@ in simple cases, Replica Symmetric phase, fast correlation decay
@ Ferromagnetic Ising models [Dembo, Montanari 08]
@ Matchings [Bordenave, Lelarge, Salez 11]
@ in more complicated cases, Replica Symmetry Breaking, correlated
boundary conditions, computation of the number of clusters (pure
states)

Method applicable to any model with an interaction graph converging
locally to a tree, random constraint satisfaction problems, lattice
glasses, properties of random graphs...
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The cavity method

lots of (heuristic) predictions from statistical physics
for various random graph problems

in particular random constraint satisfaction problems (k-SAT, q-COL)
[Mézard, Parisi, Zecchina 03]
[Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova 07]

Two recent rigorous confirmations :

@ largest independent sets of random regular graphs
[Ding, Sly, Sun 13]

@ Kk-SAT threshold [Coja-Oghlan 13]

Guilhem Semerjian (LPT-ENS) 08.05.2014 / Warwick 25/32



a Results
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Back to the contagion problem :
1 , o
n(a) = 2eu2; ai Héalgr)J , Z= Z gh i 1_.[50’@71
1 g ]

For all k,/ and finite T, structure of the support of 7 :

| | |
I

0 emin (90 ed

One step of replica symmetry breaking (1RSB) scenario
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To compute numerically the 1RSB prediction for Oin(k, I, T) :

@ there are two functions ¥(y) and 6(y), that can be computed from
the solution of a set of 2T algebraic equations on 2T unknowns,
dependent on the parameter y € [0, oo

@ find y, such that X(y.) =0
@ return ()

Lots of numbers as a function of k,/, T...

The limit T — oo can be performed analytically, in the sense that ¥(y)
and 0(y) can be computed from the solution of a finite set of algebraic
equations

Yields qualitatively different results depending on k and /
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Simplestcase: k=1/=2
(i.e. 3-regular random graph with activation threshold 2)

Conjecture :

im Oumin(k=1=2,T) = lim 6u(k=1=2,T)
T—o0 T—o0
= lim 6g(k=1=2,T)
T—o0

1 1
such minimal contagious sets can be easily found by a greedy

algorithm
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Further conjecture on the entropy inthe T — oo limitfor / = k =2 :

0.7
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@ for ¢ > 6;, one has s(f) = —0Ind — (1 —0)In(1 —0) :
typical random configurations do activate (trivial, true for all k, /)

@ for 6 € [6,/2,0,],
s(0)=— (20— 3)In(20 — 3) +20IN0+3IN2  $(Omin) = (IN2)/2
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Second simplestcase : k=/=3
Omin(k =1=3,T) 372 0:(k =1=23)

but such minimal contagious set will not be found by a simple greedy
algorithm

for | = k > 4 and (most) / < k cases, no simple prediction for O,

Analytical expansion at large k to be performed
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Conclusions

@ one among many other examples where random graph problems
can be treated with statistical mechanics methods (matchings,
independent sets, random constraint satisfaction problems...)

@ conjectures awaiting for a rigorous (dis)proof

@ if/when true (stability of the 1RSB scenario), same flavour as the
recent rigorous results on largest independent sets of random
regular graphs [Ding, Sly, Sun 13]
and k-SAT threshold [Coja-Oghlan 13]
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