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Earth and Jupiter’s Zonal Jets
We look for a theoretical description of zonal jets

Jupiter’s atmosphere
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003)

How to theoretically predict such a velocity profile?
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Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path.
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Phase Transitions in Rotating Tank Experiments
The rotation as an ordering field (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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The Main Issues for Physicists

Why do the large scales of geophysical flows self-organize?
Can we predict the statistics of the large scales of geophysical
flows?
Can we predict phase transitions for geophysical turbulent
flows and their statistics?
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The Main Mathematical Questions

How to characterize and predict attractors in turbulent
geophysical flows?
When is Freidlin–Wentzell theory relevant for turbulent flows?
Large deviation results beyond Freidlin–Wentzell theory?
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Non-Equilibrium Stat. Mech.

1 Stochastic averaging technics (kinetic theory in a stochastic
framework).

2 Large deviation for transition probabilities of rare events (through
path integrals, or the Freidlin–Wentzell theory).

3 Tools from field theory in statistical physics.
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1 Basics of mid-latitude atmosphere dynamics.

2 2D Euler and Quasi-Geostrophic Langevin dynamics: Large
Deviations and Instantons.

Path integral representation of transition probabilities and
time reversal symmetry.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
equations (F.B. and J. Laurie)

3 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.
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Atmosphere Convection and Jet Streams

Atmosphere convection cells Schematic jet stream
configuration
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Atmosphere Jet Dynamics

Upper atmosphere velocity
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The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Geostrophic balance: v =−∇ψ ∧ez with ψ proportional to
the pressure. β = 2Ωcosy is the Coriolis parameter.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = νd∆ω−λω +

√
2εfs ,

where ω = (∇∧v) .ez is the vorticity, q = ω + βy is the Potential
Vorticity (PV), fs is a random Gaussian field with correlation
〈fS(x, t)fS(x′, t ′)〉= C (x−x′)δ (t− t ′), ε is the average energy input
rate, λ is the Rayleigh friction coefficient.
Quasi-Geostrophic models: the basic models for midlatitude
large scale dynamics.
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The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence.
Navier Stokes equations with random forces

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
σ fs ,

where ω = (∇∧v) .ez is the vorticity, fs is a random force, α is the
Rayleigh friction coefficient.
An academic model with experimental realizations (Sommeria
and Tabeling experiments, rotating tanks, magnetic flows, and
so on). Analogies with geophysical flows (Quasi Geostrophic
and Shallow Water layer models).
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The 2D Stochastic Navier-Stokes Equations

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Kuksin, Shirikyan,
Bricmont, Kupiainen, Hairer, Mattingly, Sinai, and so on;

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional
turbulence. Cambridge University Press.

We would like to describe the invariant measure:
Is it concentrated close to steady solutions of the 2D Euler
(quasi-geostrophic) equations?
Can we describe the dynamics among these states?
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Large Deviations for the Stochastic Navier-Stokes Eq.
Mathematical results

Mathematicians established large deviation principles, for
instance for the 2D stochastic Navier-Stokes equations:
M. Gourcy, A large deviation principle for 2D stochastic
Navier-Stokes equation, Stochastic Process. Appl. 117 (2007),
no. 7, 904-927.
V. Jaksic, V. Nersesyan, C.-A. Pillet, A. Shirikyan, Large
deviations from a stationary measure for a class of dissipative
PDE’s with random kicks, preprint.
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1 Basics of mid-latitude atmosphere dynamics.

2 2D Euler and Quasi-Geostrophic Langevin dynamics: Large
Deviations and Instantons.

Path integral representation of transition probabilities and
time reversal symmetry.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
equations (F.B. and J. Laurie)

3 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.
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Kramers’ Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of Arrhenius’ law for
a bistable mechanical system with stochastic noise

dx

dt
=−dV

dx
(x) +

√
2kBTη (t) Rate : λ =

1
τ
exp
(
− ∆V

kBT

)
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The problem was solved by Kramers (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians).
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Path Integrals for ODE – Onsager Machlup (50’)

Path integral representation of transition probabilities:

P (xT ,T ;x0,0) =
∫ x(T )=xT

x(0)=x0
e
−AT [x]

2kBT D [x]

with AT [x] =
∫ T

0
L [x , ẋ] dt and L [x , ẋ] =

1
2

[
ẋ +

dV
dx

(x)

]2
.

The most probable path from x0 to xT is the minimizer of

AT (x0,xT ) = min
{x(t)}

{AT [x ] |x(0) = x0 and x(T ) = xT } .

We may consider the low temperature limit, using a saddle
point approximation (WKB), Then we obtain the large
deviation result

logP (xT ,T ;x0,0) ∼
kBT
∆V →0

−AT (x0,xT )

2kBT
.
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Relaxation Paths Minimize the Action

AT [x] =
∫ T

0
L [x , ẋ] dt and L [x , ẋ] =

1
2

[
ẋ +

dV
dx

(x)

]2
.

A relaxation path {xr (t)}0≤t≤T is a solution of

ẋ =−dV
dx

.

Then we see that
AT [xr ] = 0.

Interpretation: if one follows the deterministic dynamics, no noise
is needed and the cost is zero.

Because for any path AT [xr ]≥ 0, any relaxation path
minimizes the action.
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Fluctuation Paths and Instantons

The most probable path from an attractor of the system x0 to
a state x is called a fluctuation path. It solves

A∞(x0,x) = min
{x(t)}

{A∞ [x ] |x(−∞) = x0 and x(0) = x } .

When the WKB limit is justified (low temperature), most of
the paths leading to a rare fluctuation x concentrate close to
the fluctuation path. The probability to observe x is

P(x)∼ Ce−
A∞(x)
2kBT .

In bistable systems (more than one attractor), fluctuation
paths from one attractor x1 to a saddle point xs play an
important role. They lead to a change of basin of attraction.
They are called instantons. The transition rate is

P(x−1,T ;x1,0)∼ Ce
− A(x−1 ,x1)

2kBT ,

with A(x−1,x1) = min
{x(t)}

{A∞ [x] |x(−∞) = x1 and x(+∞) = xs } .
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Time Reversed Relaxation Paths Minimize the Action

We have the symmetry relation

AT [R [x ]] = AT [x ]+2V (x(T ))−2V (x(0)).

We conclude that the time
reversed relaxation paths also
minimizes the action.

The minimizer of the action from an attractor of the system to
any point of its basin of attraction is the reversed of the
relaxation path.
This is an extended Onsager-Machlup relation. For time
reversible systems, the most probable way to get a fluctuation
is through the reversal of the relaxation path from this
fluctuation.
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Instantons are Time Reversed Relaxation Paths

We have the symmetry relation

AT [R [x ]] = AT [x ] +2V (x(T ))−2V (x(0)).

Using this equation, we can conclude that instantons are time
reversed relaxation paths from a saddle to an attractor. Then
we obtain the large deviation result

logP (x1,T ;x−1,0) ∼
kBT
∆V →0

−∆V

kBT
.

The computation of the prefactor is more tricky

P(x−1,T ;x1,0) '
t�1/λ

T

τ
exp
(
− ∆V

kBT

)
with τ = 2π

(
d2V

dx2 (x0)
d2V

dx2 (x−1)

)−1/2

.

This is the subject of Langer theory (70’), see also Caroli, Caroli, and
Roulet, J. Stat. Phys., 1981, for a computation through path integrals.
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Time Reversal and Action Symmetry: Conclusions

We consider a path x = {x(t)}0≤t≤T and its reversed path
R [x ] = {x(T − t)}0≤t≤T . We have

AT [R [x ]] = AT [x ] +2V (x(T ))−2V (x(0)).

This implies detailed balance.
This implies that the most probable path to reach a state x (a
fluctuation) is the time reversal of a relaxation path starting
from x (dissipation).
This is a generalized Onsager-Machlup relation, that explains
quite easily and naturally fluctuation-dissipation relations.
For dynamics with time reversal symmetry, instantons are time
reversed relaxation paths.
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Langevin Dynamics In a General Framework

∂q

∂ t
= F [q] (r)−α

∫
D
C (r,r′)

δG

δq(r′)
[q]dr′+

√
2αγη ,

Assumptions: i) F verifies a Liouville theorem

∇.F ≡
∫

D

δF

δq(r)
dr = 0

(
Generalization of ∇.F ≡

N

∑
i=1

∂F

∂qi
= 0

)
,

ii) The potential G is a conserved quantity of ∂q
∂ t = F [q] (r):∫

D
F [q] (r)

δG

δq(r)
[q]dr = 0.

iii) η a Gaussian process, white in time, with covariance

E
[
η(r, t)η(r′, t ′)

]
= C (r,r′)δ (t− t ′).

For most classical Langevin dynamics:

F [q] (r) = {q,H } and G = H .
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Time Reversal and Action Duality: Conclusions

We consider a path q = {q(t)}0≤t≤T and its reversed path
qr = {I [q(T − t)]}0≤t≤T . We have

AT [qr ] = AT [q] +2V (q(T ))−2V (q(0)).

Transition probabilities of the direct process are related to
transition probabilities of the dual process (a generalization of
detailed balance).
This implies that the most probable path to reach a state x (a
fluctuation) is the time reversal of a relaxation path starting
from I [x ] for the dual process (dissipation).
This is a generalized Onsager-Machlup relation, that justifies
generalization of fluctuation-dissipation relations.
Instantons are the time reversed relaxation paths of the dual
process.
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Langevin Dynamics for the Quasi-Geostrophic Eq.

∂q

∂ t
= v [q−h] .∇q−α

∫
D
C (r,r′)

δG

δq(r′)
[q]dr′+

√
2αγη .

Assumptions: i) F =−v [q−h] .∇q verifies a Liouville theorem.
ii) The potential G is a conserved quantity of ∂q

∂ t
= F [q] (r)

with
G =C + βE ,

with a Casimir functionals

Cc =
∫

D
drc(q),

and energy

E =−1
2

∫
D
dr [q−H cos(2y)]ψ =

1
2

∫
D
dr∇ψ

2.
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Tricritical Points
Bifurcation from a second order to a first order phase transition

a

b

4a=b

16a=3b

E

λ

2

2

Tricritical point corresponding to the normal form
s(m) =−m6-3b2 m

4−3am2.
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A Quasi-Geostrophic Potential with A Tricritical Point

G = (1−ε)
1
2

∫
D
dr [q−H cos(2y)]ψ +

∫
D
dr
[
q2

2
−a4

q4

4
+a6

q6

4

]
with h(y) =H cos(2y).

There is a tricritical transition (transition from first order to
second order) close to ε = 0 and a4 = 0 for small H.
Close to the transition the stochastic dynamics can be reduced
to a two-degrees of freedom stochastic dynamics, which is a
gradient dynamics with potential

G(A,B) =−H2

3
+ε
[
A2 +B2]− 3a4

2
[
A2 +B2]2+

a6
6

γ
[
A2 +B2]3+

5π

144
a6H

2 (A2−B2)2 .
And the potential vorticity field is

q(y)' Acos(y) +B sin(y).
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The Reduced Potential and the Instanton

The reduced potential and one instanton/relaxation path.
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Quasi-Geostrophic Tricritical Point

For this turbulent dynamics, we can predict the phase diagram
(a tricritical point). For a range of parameter, we have first
order phase transitions.
Using large deviations, we can compute transition probabilities.
We can compute the transition rate between two attractors.
Most transitions concentrate close to the optimal one, it is
describe by an instanton that is easily computed.
Sufficiently close to the tricritical point, the dynamics reduces
to a two degrees of freedom stochastic dynamics.
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Bistability Between Horizontal and Vertical Parallel Flows
A further example for the 2D Navier-Stokes equations

The reduced potential and one instanton/relaxation path.
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2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+v.∇ω = ν∆ω−αω +

√
2αfs

This is no more a Langevin dynamics.
Time scale separation: magenta terms are small.
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Stochastic averaging for geostrophic jets. (F.B. and J.L.)

Non-Equilibrium Phase Transition (2D Navier–Stokes Eq.)
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫
dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet and E. Simonnet, PRL, 2009.
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Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Stochastic averaging for geostrophic jets. (F.B. and J.L.)

Instantons from Dipole to Parallel Flows
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In the limit of weak forces and dissipations, instantons follows the
set of attractors of the 2D Euler equations (with J. Laurie).
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Basics of mid-latitude atmosphere dynamics.
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Outline

1 Basics of mid-latitude atmosphere dynamics.

2 2D Euler and Quasi-Geostrophic Langevin dynamics: Large
Deviations and Instantons.

Path integral representation of transition probabilities and
time reversal symmetry.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
equations (F.B. and J. Laurie)

3 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

The Barotropic Quasi-Geostrophic Equations

The simplest model for geostrophic turbulence.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

with q = ω + βy .
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

The 2D Stochastic Navier-Stokes Equations

∂ω

∂ t
+u.∇ω = ν∆ω +

√
νfs

Some recent mathematical results: Kuksin, Shirikyan,
Bricmont, Kupiainen, Hairer, Mattingly, Sinai, and so on;

Existence of a stationary measure µν . Existence of limν→0 µν ,
In this limit, almost all trajectories are solutions of the 2D
Euler equations.

Kuksin, S. B., & Shirikyan, A. (2012). Mathematics of two-dimensional
turbulence. Cambridge University Press.

We would like to describe the invariant measure:
Is it concentrated close to steady solutions of the 2D Euler
(quasi-geostrophic) equations?
Can we describe the dynamics among these states?
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
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Jet Formation in the Barotropic QG Model
In the weak forces and dissipation limit
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Figure by P. Ioannou (Farrell and Ioannou).
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Basics of mid-latitude atmosphere dynamics.
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

The Inertial Limit

The non-dimensional version of the barotropic QG equation.
Quasi-Geostrophic equations with random forces

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs ,

with q = ω + β ′y .
Spin up or spin down time = 1/α� 1 = jet inertial time scale.
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Basics of mid-latitude atmosphere dynamics.
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Weak Fluctuations around Jupiter’s Zonal Jets

Jupiter’s atmosphere.
Jupiter’s zonal winds (Voyager and
Cassini, from Porco et al 2003).

We will treat those weak fluctuations perturbatively.

F. Bouchet CNRS–ENSL Phase transitions in geophysical fluid dynamics.



Basics of mid-latitude atmosphere dynamics.
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Stochastic averaging for geostrophic jets.
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Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Orbital Stability of the Euler or QG Equations?

The inertial equations is an Hamiltonian system.
Quasi-Geostrophic equations with no forces and dissipation

∂q

∂ t
+v.∇q = 0,

with q = ω + β ′y .
It conserves energy

E =
1
2

∫
D

v2dx,

enstrophy, and an infinite number of Casimir invariants.
Zonal jets or other steady states of the inertial dynamics are
attractors. Orbital stability?
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2 2D Euler and Quasi-Geostrophic Langevin dynamics: Large
Deviations and Instantons.

Path integral representation of transition probabilities and
time reversal symmetry.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
equations (F.B. and J. Laurie)

3 Stochastic averaging and jet formation in geostrophic turbulence.
The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Averaging out the Turbulence

∂q

∂ t
+v.∇q = ν∆ω−αω +

√
2αfs .

P [q] is the PDF for the Potential Vorticity field q (a
functional). Fokker–Planck equation:

∂P

∂ t
=
∫

dr
δ

δq(r)

{[
v.∇q−ν∆ω + αω +

∫
dr′C (r,r′)

δ

δq(r)

]
P

}
.

Time scale separation. We decompose into slow (zonal flows)
and fast variables (eddy turbulence)

qz(y) = 〈q〉 ≡ 1
2π

∫
D
dx q and q = qz +

√
αqm.

Stochastic reduction (Van Kampen, Gardiner, ...) using the
time scale separation.
We average out the turbulent degrees of freedom.
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

A New Fokker–Planck Equation for the Zonal Jets

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz :

1
α

∂R

∂ t
=
∫
dy1

δ

δqz (y1)

{[
∂

∂y
Eqz

〈
vm,yqm

〉
+ ωz (y1)− ν

α

∂2qz
∂y2 (y1)+

+
∫
dy2Cz (y1,y2)

δ

δqz (y2)

]
R

}
.

This new Fokker–Planck equation is equivalent to the
stochastic dynamics

1
α

∂qz
∂ t

=− ∂

∂y
Eqz 〈vm,yqm〉−ωz +

ν

α

∂ 2qz
∂y2

+ ηz ,

with 〈ηz(y , t)ηz(y ′, t ′)〉= Cz(y ,y ′)δ (t− t ′).
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Basics of mid-latitude atmosphere dynamics.
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

The Deterministic Part and the Quasilinear Approximation

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

.

F [qz ] =− ∂

∂yEqz 〈vm,yqm〉. The average of the Reynolds stress
is over the statistics of the quasilinear dynamics:

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= ν∆qm−αωm +
√
2αfs .

and
〈vm,yqm〉=

1
Ly

∫
dy Eqz [vm,yqm] .

We identify SSST by Farrell and Ioannou (JAS, 2003); quasilinear
theory by Bouchet (PRE, 2004); CE2 by Marston, Conover and
Schneider (JAS, 2008); Sreenivasan and Young (JAS, 2011).
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Stochastic averaging for geostrophic jets.
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Dynamics of the Relaxation to the Averaged Zonal Flows
The turbulence has been averaged out
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Figure by P. Ioannou (Farrell and Ioannou).

Extremely efficient numerical simulation of the average jet
dynamics.
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2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

The Stochastic Dynamics of the Zonal Jet
The turbulence has been averaged out

We can now go further. What is the effect of the noise term?

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

+ηz .

R [qz ] is the PDF to observe the Zonal Potential Vorticity qz :

1
α

∂R

∂ t
=
∫
dy1

δ

δqz (y1)

{[
∂

∂y
Eqz

〈
vm,yqm

〉
+ ωz (y1)− ν

α

∂2qz
∂y2 (y1)+

+
∫
dy2Cz (y1,y2)

δ

δqz (y2)

]
R

}
.

This equation describes the zonal jet statistics and not only
the mean zonal flow.
This statistics can be nearly Gaussian, but can also be strongly
non-Gaussian.
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Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Rare Transitions in Real Flows?
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil).

Can such multiple attractors and rare transitions exists for
geostrophic turbulence?
Theory based on non-equilibrium statistical mechanics?
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Stochastic averaging for geostrophic jets.
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Multiple Attractors Do Exist for the Barotropic QG Model
Two attractors for the same set of parameters
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Figure by P. Ioannou (Farrell and Ioannou).

Two attractors for the mean zonal flow for one set of
parameters.
What is the dynamics for the transition? What is the rate?
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Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
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Work in Progress : Zonal Flow Instantons
Onsager Machlup formalism (50’). Statistical mechanics of histories

1
α

∂qz
∂ t

= F [qz ]−ωz +
ν

α

∂ 2qz
∂y2

+ηz .

Path integral representation of transition probabilities:

P(qz ,0,qz ,T ,T ) =
∫ q(T )=qz ,T

q(0)=qz ,0
D [qz ]exp(−S [qz ]) with

S [qz ] =
1
2

∫ T

0
dt
∫
dy1dy2

[
∂qz
∂ t
−F [qz ] + ωz −

ν

α

∂2qz
∂y2

]
(y1)CZ (y1,y2)

[
∂qz
∂ t
−F [qz ] + ωz −

ν

α

∂2qz
∂y2

]
(y2).

Instanton (or Freidlin-Wentzel theory): the most probable path
with fixed boundary conditions

S(qz,0,qz,T ,T ) = min
{qz |qz (0)=qz ,0 and qz (T )=qz ,T }

{S [qz ]} .
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Deviations and Instantons.

Path integral representation of transition probabilities and
time reversal symmetry.
Instantons for Langevin quasi-geostrophic dynamics (F.B., J.
Laurie, and O. Zaboronski).
Non-Equilibrium Instantons for the 2D Navier–Stokes
equations (F.B. and J. Laurie)
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Stochastic averaging (with C. Nardini and T. Tangarife).
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The Real Issue was to Cope with UltraViolet Divergences
We have proven that they are no such divergences

∂tqm +U(y)
∂qm
∂x

+ vm,y
∂qz
∂y

= ν∆qm−αωm +
√
2αfs

We need to prove that the Gaussian process has an invariant
measure which is well behaved in the limit ν → 0, and α → 0.

This is true because the linearized Quasi-Geostrophic or Euler
dynamics is non-normal.
The result is based on asymptotics of the linearized equations:

vm,x (y ,t) ∼
t→∞

vm,x ,∞ (y)

t
exp(−ikU(y)t) and vm,y (y ,t) ∼

t→∞

vm,y ,∞ (y)

t2
exp(−ikU(y)t) .

F. Bouchet and H. Morita, 2010, Physica D.
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Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Stat. Mech. of Zonal Jets: Conclusions

Stochastic averaging for the barotropic Quasi-Geostrophic
equation leads to a non-linear Fokker-Planck equation.
This Fokker-Planck equation predicts the Reynolds stress and
jet statistics. Related to Quasilinear theory and SSST.
For some parameters, multiple attractors are observed.
Path integral, instanton and large deviation theories can
predict rare transitions between attractors.
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Stochastic averaging (with C. Nardini and T. Tangarife).
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Bistability in a Rotating Tank Experiment
Rotating tank with a single-bump topography

Bistability (hysteresis) in rotating tank experiments

M. MATHUR, and J. SOMMERIA, to be submitted to J. Geophys. Res., M.
MATHUR, J. SOMMERIA, E. SIMONNET, and F. BOUCHET, in preparation.
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Stochastic averaging for geostrophic jets.

The stochastic quasi-geostrophic equations.
Stochastic averaging (with C. Nardini and T. Tangarife).
Validity of this approach, and the main technical points.

Non-Equilibrium Phase Transitions for the Stochastic Vlasov
Eq.
with a theoretical prediction based on non-equilibrium kinetic theory

Time series for the order parameter for the 1D stochastic Vlasov Eq.

C. NARDINI, S. GUPTA, S. RUFFO, T. DAUXOIS, and F. BOUCHET, 2012,
J. Stat. Mech., L01002, and 2012 J. Stat. Mech., P12010.
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Stochastic averaging (with C. Nardini and T. Tangarife).
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Summary and Perspectives

Non-equilibrium statistical mechanics and large deviations can
be applied to geophysical turbulence and climate.

Ongoing projects and perspectives:
Large deviations and non-equilibrium free energies for particles
with long range interactions (with K. Gawedzki).
Microcanonical measures for the Shallow Water equations
(with M. Potters and A. Venaille) and for the 3D axisymmetric
Euler equations (with S. Thalabard).
Instantons for zonal jets in the quasi-geostrophic dynamics
(with C. Nardini, T. Tangarife and O. Zaboronski).

F. Bouchet, and A. Venaille, Physics Reports, 2012, Statistical mechanics of

two-dimensional and geophysical flows.

F. Bouchet, C. Nardini and T. Tangarife
http://hal.archives-ouvertes.fr/hal-00819779.
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