Spatiotemporally complete condensation in a non-Poissonian exclusion process
 Robert Concannon and Richard Blythe

arXiv:1307.7511

mRNA translation

Steitz (2008) Nat. Rev. Mol. Cell Biol. 9242

Translocation $=$ moves

Asymmetric Simple Exclusion Process

Waiting time algorithm

"dumb"
"smart"

"CP" symmetry
"PT" symmetry

Periodic system
Steady state uniform
"Fluid"

But

"Reset-on-fail" waiting-time algorithm
Gorrisen and Vanderzande (2012) J. Stat. Phys. 148627

Breaks both "CP" and "PT" symmetries!

Hereafter:

$$
P(W)=(\gamma-1) W^{-\gamma}
$$

$$
W>1, y>1
$$

Condensate forms by a particle receiving anomalously large W Travels distance $\sim \mathrm{L}$, formation time $\sim \mathrm{L}$

$$
\mathrm{P}[\mathrm{~W}>\mathrm{O}(\mathrm{~L})] \sim \mathrm{L}^{1-\gamma} \quad \text { nucleation time } \sim \mathrm{L}^{\gamma-2}
$$

Fluid lifetime $\sim L^{\max \{1, \gamma-2\}}$
Solid lifetime $\left.\quad \bar{W}\right|_{W>O(L)} \sim L$ if $\varphi>2$

$\gamma>3$: no condensation

$2<\gamma<3$: condensation but for how long?

Y<2: "black hole" condensate

Residual waiting time $\boldsymbol{\Delta}$

$$
\begin{aligned}
\mathrm{P}(\Delta \mid \mathrm{T}) & =\int_{0}^{\mathrm{T}} \mathrm{dt} \omega(\mathrm{t}) \mathrm{P}(\mathrm{~T}+\Delta-\mathrm{t}) \\
\omega(\mathrm{t}) & \xrightarrow{\mathrm{t} \rightarrow \infty} \frac{1}{\overline{\mathrm{~W}}} \\
\mathrm{P}(\Delta \mid \mathrm{T}) & \sim \frac{\mathrm{P}(\mathrm{~W}>\Delta)-\mathrm{P}(\mathrm{~W}>\mathrm{T}+\Delta)}{Z}
\end{aligned}
$$

Power law $P(W)=(\gamma-1) W^{-\gamma}$

$$
\mathrm{P}(\Delta \mid \mathrm{T})=\frac{\gamma-2}{1-\mathrm{T}^{2-\gamma}}\left[\Delta^{1-\gamma}-(\Delta+\mathrm{T})^{1-\gamma}\right]
$$

fraction of time spent in complete condensate revisited

$$
\mathrm{P}(\Delta \mid \mathrm{T})=\frac{\gamma-2}{1-\mathrm{T}^{2-\gamma}}\left[\Delta^{1-\gamma}-(\Delta+\mathrm{T})^{1-\gamma}\right]
$$

Dissolution probability

$$
\prod_{i=2}^{N} \mathrm{P}\left(\Delta_{\mathrm{i}}<\mathrm{O}(\mathrm{~L}) \mid \mathrm{T}_{\mathrm{i}}\right)=\prod_{\mathrm{i}=2}^{\mathrm{N}}\left[1-\int_{\mathrm{O}(\mathrm{~L})}^{\infty} \mathrm{d} \Delta_{\mathrm{i}} \mathrm{P}\left(\Delta_{\mathrm{i}} \mid \mathrm{T}_{\mathrm{i}}\right)\right] \sim \exp \left[-\sum_{\mathrm{i}=2}^{\mathrm{N}} \int_{\mathrm{O}(\mathrm{~L})}^{\infty} \mathrm{d} \Delta_{\mathrm{i}} \mathrm{P}\left(\Delta_{\mathrm{i}} \mid \mathrm{T}_{\mathrm{i}}\right)\right]
$$

Lower bound: all $\mathbf{T}_{\mathbf{i}} \rightarrow \infty \quad$ Upper bound: all $\mathbf{T}_{\mathbf{i}} \sim \mathbf{O}$ (L)

$$
\exp \left[-a L^{3-\nu}\right] \quad \exp \left[-b L^{3-v}\right]
$$

For $\gamma<3$ the condensate does not dissolve once formed
(NB: argument holds for any finite particle density)

Blocking time $\mathbf{T}_{\mathbf{i}+\mathbf{N}}=\operatorname{depart}(\mathbf{i}+\mathbf{N} \mathbf{- 1})-\operatorname{arrive}(\mathbf{i}+\mathbf{N})$

```
\[
\mathrm{T}_{\mathrm{i}+\mathrm{N}}=\sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{i}+\mathrm{N}-1} \Delta_{i}+\mathrm{C}_{\mathrm{i}}
\]
depart (i+N-2) + \(\Delta_{i+N-1}\)
```

\author{
$\stackrel{\uparrow}{\text { depart }(i+N-3)}+\Delta_{i+N-2}$

```
\ \
```

```
\ \
```

Steady state

$$
\overline{\mathrm{T}}=(\mathrm{N}-1) \bar{\Delta}+\overline{\mathrm{C}}
$$

$$
\left.\bar{\Delta}\right|_{T} \sim \mathrm{~T}^{3-\gamma}
$$

"Mean field"
$\bar{\Delta} \sim \bar{T}^{3-\gamma}$
$\overline{\mathrm{T}} \sim \mathrm{L}^{\frac{1}{v-2}}$

Pack leader

$$
\left.\bar{\Delta}\right|_{\Delta>O(\mathrm{~L})} \sim \mathrm{L}^{\frac{3-\gamma}{\gamma-2}+\gamma-2}
$$

Evidence for a condensate

complete in space and time
in a homogeneous exclusion process
with short-range (?) interactions
whose stability arises due to an "aging" of the blocking time
that exists at all densities
but relies on "reset-on-fail" dynamics and infinite-variance waiting time
which seems to be related to PH (and PT??) symmetries

