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I Fisher-KPP Equation (1d)

Population density u(x , t) obeys

∂u
∂t

= D
∂2u
∂x2 + αu(K − u)

Fisher (1937) - The wave of advance of advantageous gene
Kolmogorov, Petrovsky, Piskunov (1937) Study of the diffusion
equation with growth of the quantity of matter and its application
to a biological problem.
Skellam (1951) Random dispersals in theoretical populations.

Basically a nonlinear diffusion equation - nonlinearity is growth with
saturation

Linear growth rate αK , Carrying capacity K

Appears ubiquitously in: disordered systems such as Directed
Polymers in random media; nonequilibrium systems such as directed
percolation; computer science search problems etc
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Travelling Wave Solutions
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Tip

Front

Nonlinear wave with finite width travelling at speed v .

Stable f.p. solution u = K invades unstable f.p. solution u = 0

Speed selection principle

The selected speed of the front is determined by tip dynamics and
initial conditions
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Physical Examples
Ordering Dynamics e.g. Time-dependent Landau-Ginzburg equation

∂m
∂t

= D∇2m − ∂

∂m
f (m) f (m) = −am2 + bm4

Contact Process

1 → 0 rate 1
01 → 11 rate λ

10 → 11 rate λ

Mean field for density ρi

∂ρi

∂t
= −ρi + λ(1− ρi)ρi+1 + λρi−1(1− ρi)

→ ∂ρ

∂t
' λ

∂2ρ

∂x2 + (2λ− 1)ρ− 2λρ2

Generally stable phase (fixed point) invades unstable phase (fixed
point)
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Speed Selection Principle (physics approach) I
Simple Linear Analysis: linearise at tip u � 1

∂u
∂t

= D
∂2u
∂x2 + αuK

Try wave solution u(x , t) = f (z) where z = x − vt

−vf ′ = Df ′′ + αKf

Exponential solutions f = e−λz where vλ = Dλ2 + αK .
Solve for λ

λ =
v ± (v2 − 4αDK )1/2

2D
Real if

v > v∗ = 2
√
αDK

Speed selection principle

The marginal speed v∗ is selected for sufficiently steep initial
conditions.
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Speed Selection Principle II:
More involved Linear Analysis

∂u
∂t

= D
∂2u
∂x2 + αuK

Solve for initial condition u(x ,0) = e−λx for x ≥ 0:

u(x , t) = (1/2)e−λ(x−v(λ)t)
[
1 + erf

(
(x − 2Dλt)/(2

√
Dt)
)]

where
v(λ) = Dλ+

αK
λ

.

Far tip x � 2Dλt
Use erf(z) ' 1 for z � 1⇒ u(x , t) ' exp [−λ(x − v(λ)t ]
Thus the tip speed is v(λ)

Front x � 2Dλt

Use erf(−z) ' −1 +
e−z2

z
√
π

for z � 1

⇒ u ' exp
[
−λ∗(x − v∗t)− (x − v∗t)2/(4Dt)

]
where v∗ = 2(DαK )1/2.
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Speed Selection Principle III:

Crossover point between far tip and front regimes x = 2Dλt .

If λ > λ∗ = v∗/2D (steep i.c.), then the crossover point advances
faster than the tip, and “front” has speed v∗.

If λ < λ∗, the front catches up with crossover point which falls behind
tip, the speed of the front will be controlled by the tip v(λ).

Speed selection principle

If the initial profile decays faster than u(x ,0) ∼ e−λ
∗x , where

λ∗ = v∗/2D, then wave travels at marginal speed
v = v∗ = 2

√
αDK

If the initial profile decays less steeply, say as e−λx where λ < λ∗,
the wave advances at faster speed v(λ) = Dλ+ αK/λ.
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Propagation of coupled Fisher-KPP waves

Motivation
Horizontal gene transfer within bacterial population
More generally acquisation of trait⇒ two sub populations NA and
NB: those with trait and those with without

∂NA

∂t
= D

∂2NA

∂x2 + αNA(K − NT)− βNA + γNANB ,(1)

∂NB

∂t
= D

∂2NB

∂x2 + αNB(K − NT) + βNA − γNANB(2)

NT = NA + NB is the total population density

New parameters

γ rate of horizontal transmission of trait β loss rate of trait

Summing (1,2) gives a standard Fisher-KPP equation:

(3)
∂NT

∂t
= D

∂2NT

∂x2 + αNT(K − NT) , with speed vT = 2
√
αKD
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Propagation of coupled Fisher-KPP waves

∂NA

∂t
= D

∂2NA

∂x2 + αNA(K − NT)− βNA + γNANB ,

∂NT

∂t
= D

∂2NT

∂x2 + αNT(K − NT)

Numerics reveal

Space

Po
pu

la
tio

n 
de

ns
ity

v
c

v
tot

i.e. an invading population wave which does not carry the trait in turn
being invaded by a ‘trait wave’ with different speed
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Fixed point Structure

∂NA

∂t
= D

∂2NA

∂x2 + αNA(K − NT)− βNA + γNANB ,

∂NT

∂t
= D

∂2NT

∂x2 + αNT(K − NT)

Choose intermediate transmission rate α > γ > β/K .

There are three homogeneous density, steady-state solutions
(N∗T ,N

∗
A) with dynamical stabilities:

The fixed point (N∗T ,N
∗
A) = (0,0) is unstable.

(N∗T ,N
∗
A) = (K ,0) is a saddle point.

(N∗T ,N
∗
A) = (K ,K − β/γ) is stable

The coupled travelling waves we observe correspond to a
homogeneous spatial domain of (0,0) being invaded by the solution
(K ,0) being invaded by the solution (K ,K − β/γ) (i.e. the trait wave).
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Effect of different initial conditions
Spread of trait in established Population
Initially NT = K throughout the domain (and remains so)

t/100000
x/

10
00

0 v
s

0

4

1

Spread of trait in expanding population
Domain initially empty NT = 0.

t/100000

x/
10

00
0

v
c

v
s

4

0 1

Clearly the trait wave advances at speed vc (to be determined) that is
greater than the speed vs at which it invades an established
population – but still less than the speed vtot of the total population
wave.

At very long times, when the total population wave is very far ahead
of the trait wave, the speed of the trait wave reverts to vs
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Summary of different speeds I

vT = 2
√

DαK speed of total population wave

vs speed of trait wave invading saturated population (NT = K )

vc speed of trait wave invading expandng population

also we have
vtip speed of far tip of trait wave (NA, NT � 1)

vs : Set NT = K yields F-KPP equation

∂NA

∂t
= D

∂2NA

∂x2 + γNA

(
K − β

γ
− NA

)
.

Thus usual speed selection predicts vs = 2
√

D(γK − β)

vtip : Set NT , NA � 1 and linearise

∂NA

∂t
= D

∂2NA

∂x2 + NA (αK − β) .

Thus usual speed selection predicts vtip = 2
√

D(αK − β)
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Summary of different speeds II

vT = 2
√

DαK speed of total population wave

vs = 2
√

D(γK − β) speed of trait wave invading saturated
population (NT = K )

vtip = 2
√

D(αK − β) speed of far tip of trait wave (NA, NT � 1)

We show that

Speed of trait wave invading expandng population

vc = vT −
vtip(vT − vtip)

vT −
√

(vT − vtip)2 + v2
tip − v2

s

N.B.
vT > vtip > vc > vs
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Determination of vc: the kink in the trait wave
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Speed selection mechanism for the trait wave
Ahead of kink
Linearise NA, NB � 1 to get ∂NA/∂t = D(∂2NA/∂x2) + NA(αK − β)
Then vtip = 2

√
D(αK − β) is selected and defining zR = x − vT t we

get
NA(zR, t) ∼ exp[−vtip(zR + (vT − vtip)t)/(2D)

Behind kink
Write

NA(zL, t) ∼ exp[−at + bzL]

,
where zL = vT t − x and a and b are unknown constants such that

vc = vT − a/b

By demanding that our two asymptotic expressions must match at the
kink: i.e. NA(zR = 0, t) = NA(zL = 0, t), we can determine

a = vtip(vT − vtip)/(2D)

.
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Speed selection mechanism for the trait wave II
To find the remaining constant b, we linearize in the region behind the
kink, where the total population is large (NT ≈ K ), but the amplitude
of the trait wave is still small (NA � 1). This gives

∂NA/∂t = D(∂2NA/∂x2) + NA(γK − β)

But now we need a new selection mechanism for solution

Substituting in NA(zL, t) ∼ exp[−at + bzL] with a now determined by
matching gives a quadratic for b with root

b = (1/(2D))
(

vT −
√
(vT − vtip)2 + v2

tip − v2
s

)
.
Using

vc = vT − a/b

we finally obtain the following expression for the speed of the trait
wave:

vc = vT −
vtip(vT − vtip)

vT −
√
(vT − vtip)2 + v2

tip − v2
s
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Analytical prediction and simulation results for the
speed vc of the trait wave
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The black lines show the analytical result while the red circles show
simulation results for the trait wave speed

For comparison the blue lines show the speed of the total population
wave vT = 2

√
αDK while the purple lines show the speed of the trait

wave as it invades an established population, vs = 2
√

D(γK − β).
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Recap: Spread of trait in expanding population
Consider an expanding population starting with the spatial domain
initially empty.
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Invasion of Expanding Population

Clearly the trait wave advances at speed vc that is greater than the
speed vs at which it invades an established population – but still less
than the speed vT of the total population wave.

At very long times, when the total population wave is very far ahead
of the trait wave, the speed of the trait wave reverts to vs
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Initial-condition dependent speeding-up transition
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Initially system partially occupied by non-trait population.
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Summary

Summary
Fisher-KPP equation exhibits nonlinear travelling waves
We study coupled Fisher waves and find new selection
mechanism

Outlook
Many other generalisations to coupled Fisher waves remain to be
studied
Important to consider effect of noise
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