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MiCroRNA detective story

Interaction of microRNA with protein translation process
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MicroRNAs (miRNASs) are key regulators of all
important biological processes, including development,
differentiation and cancer.

Many contradictory findings about deciphering the
mechanisms used by miRNAs have been published
that stimulate active debate in this field.



Mechanisms of microRNA actions M1-M9:

M1: Cap-40S Initiation Inhibition

M2: 60S Ribosomal Unit Joining Inhibition

M3: Elongation Inhibition

M4: Ribosome Drop-off (premature termination)
M5: Co-translational Nascent Protein Degradation
M6: Sequestration in P-bodies

M7: mMRNA Decay (destabilisation)

M8: mMRNA Cleavage

MO9: Transcriptional Inhibition through microRNA-mediated
chromatin reorganization following by gene silencing



How people use model reduction approaches

‘“NVox populi, vox Dei”

Google gave on 22 June 2013:

- for “quasi-equilibrium”™ — 215,000 links;

- for ‘quasi steady state” 290,000 and for “pseudo
steady state” 675,000; 965,000 together;

- for “slow manifold” 21,000 only, and for “invariant
manifold” 58,600;

- for “singular perturbation” 321,000 links;

- for "model reduction’” even more, 405,000;

- but for “limiting step” — 1,130,000!
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Limiting step

The concept of the limiting step gives the limit simpli-
fication: the whole network behaves as a single step.
This is the most popular approach for model simplifi-
cation in chemical kinetics.

The most known reason: the bottle neck. EXxistence
of “dominant reagents’ in nonlinear reactions can also
lead to self-simplification: If for reaction A+ B — C
we have cyq > cp then c4 is almost constant and all
interesting dynamics is in cg change. In such a case,
we can consider A+ B — C as a linear reaction B — (C
with constant proportional to cy.

We should not always expect one limiting step.



Hierarchical dominant paths in multiscale networks

PLAN

1. Dominant path in multiscale linear networks

2. Gluing cycles and hierarchy of dominant paths

3. Heuristics for nonlinear networks



Linear network of chemical reactions

A; are reagents, c¢; is concentration of A;.
All the reactions are of the type A; — Aj.
k;; > 0 is the reaction A; — A; rate constant.
The reaction rates: wj; = kj;¢;.

Kinetic equation

c; = Z (kZ]CJ — kﬂcz) or ¢ = Kc, (1)
J, 71



Pseudomonomolecular reactions

Sji+A; — A+ Py
kji — k%[;jz'],
where [§ji] is concentration of the substrate Sj;,
[Sji] > ¢

For example, the catalytic cycle:
S+A1—->A>r— ... A, —> A1+ P
A1 - A — ... — Ap — Aq



Usually, something is big, and something is small enough,
we can guess the constant ordering (I = (4,5)):

ki <kp <k <.

At least, in each diverging fork we can select the largest
constant.



Let us select the fastest reaction
in each diverging fork

The small parameter: ¢ = max;«;{k;;/k;i}



Integration of orderings

1. Auxiliary discrete dynamical systems

For each A;, k; = max;{k;;}, ¢(i) = argmax,{k;;},
¢(i) =1 if there is no outgoing reaction A; — A;.

¢ determines auxiliary dynamical system on a set A =

1A}

Let us decompose this system and find the cycles Cj
with basins of attraction, Att(C;): A = U;Att(C;).



Decomposition of discrete dynamical systems




Gluing cycles

7N K A "kalCPSAJ
AT => A
. ;. 4 \
: ZCZQS =1
\ A;€C )

Then iterate with the smaller number od vertices!



Integration of orderings

2. If all ¢; are sinks in the initial network, then let
us delete the limited steps from cycles Cj. After that,
the kinetics of acyclic reaction network A; — A ;) with
constants x; approximates the proper kinetics uniformly
for any constant values under given ordering.

Example: a “dominant cycle” Ay — A — ... A, — A1, if
all other reactions A; — A; have constants kj; < k;41;-



Integration of orderings

3. If some of C'; are not sinks in the initial network,
then we glue cycles:

A. For each C; we introduce a new vertex A;. The new
set of vertices, Al = Au{Al A2 .} \ (U;C)).

B. For each (C};, we find a normalized stationary distribu-
tion due to internal reactions of ;. Due to limitation,
cf; ~ Klim i/ K5 Aj € C;.

C. For each reaction A; — Aq (A; € C;, Aq & C;) we

define reaction A’ — A, with the constant kqjc;.



We prepared a new reaction network. Iterate.

After several steps, we get an auxiliary dynamic system
with cycles that are sinks. After that, we shall go back,
restore cycles, delete limiting steps,... The result is the
acyclic dynamic system that approximates kinetics of
initial system.



Cycles surgery on the way back

...........................................................................................................................................................................................................................................



Example. 1. The network




Example. 2. Dominance in diverging forks




Example. 3. Typology of links

—>» Cycles
= Transitions
==> Bridges




Example. 4. Cycles and attractions

—> Cycles
= Transitions

4



Example. 5. Bridges between attractors
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Glue cycles, iterate and get the hierarchical multi-
scale dominant path.

Theorem. The error of approximation of the eigenval-
ues and eigenvectors of K by the hierarchical multiscale
dominant path tends to O with

e = mzax{mlax{kli/lcji]j = argmax{ky}t, L # j}}

It is possible to define from a kinetic experiment the
reaction rate constants from the dominant path only
because other constants do not affect kinetics.



First of all, let us describe all possible auxiliary
dynamical systems for the triangle

4 7= 4,

'\/

Attractors

(@) k12 > k3o, ko3 > k13;
(b) k12 > k32, k13 > ko3;
(c) k32 > k12, ko3 > k13;
(d) k3o > k12, k13 > ko3.
argest rate constant — solid bold arrow.



4 if k1 >k
A, == 4, 1 Y N TR O%
SO — k31”k23 p
A A ! kyp ko3

(a) A if kys >k§1

k:zl,)l = maX{k32, k31k12/k§21} > ko3, the dominant
system A — As — Az,

Ao =0, 9~ (0,0,1), 19=(1,1,1);
A~ —kor, = (1,-1,0), I'=(1,0,0); (1)
>\2z—k§1, r?2~(0,1,—-1), 1?~(1,1,0);

ko3 > ki, the dominant system A; — Ap «— Ag,

Ao =0, r9%~(0,1,0), 1°=(1,1,1);
>‘1 ~ _k217 Tl ~ (17 _170)7 ll ~ (17070) : (2)
M~ —koz, 2=~ (0,-1,1), 1=~ (0,0,1).
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(b) A, if k3 > k3,
k3; > k13, the dominant system A; — As — Ag,
Ao =0, ¥~ (0,0,1), 1©=(1,1,1);
Alz_kzla 7“1%(1,—1,0), ll%(lvoao)f (3)
Ao~ —k3;, =~ (0,1,-1), [?=~(1,1,0);

k13 > ki, the dominant system Az — A; — Ap,

Ao =0, r0~(0,1,0), 9= (1,1,1);
M~ —koy, rla(1,-1,0), I!=~(1,0,0); (4)
M~ —kiz, 2=~ (0,-1,1), 1?2~ (0,0,1).



k k
A== 4, =53 4,

4, = 4 A if k3y > ko3
LN = k21nk112 = kzll% r i
1 1 21 23
A, A, A —> A, «—4;
(C) if kyy > k3
k3> > ko3, the dominant system A; — Ay, — Az,
Ao =0, r9~(0,0,1), 19=(1,1,1);
A~ —ko1, ri=(1,-1,0), !=x(1,0,0);  (5)
)\2%—]{'32, TQ%(Oala_l)) l2% (17170)1
ko3 > k3o, the dominant system Ay — Ay «— Ag,
Ao =0, r9~(0,1,0), 19=(1,1,1);
A~ —ko1, ri=x(1,-1,0), !=(1,0,0); (6)
Ao~ —kog, 12~ (0,-1,1), 12~ (0,0,1).
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Three zero-one laws for multiscale linear networks
Steady states (for weakly ergodic networks)

Limit states (for non-ergodic networks)
SINK1... — A; — ...SINK?2

From each vertex almost all flux goes either to SINK1,
or to SINK2 (‘“xor" instead of “or").

Relaxation eigenmodes (eigenvectors)
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1. Based on the existing data, we develop a model
in which all proposed mechanisms of microRNA action

may coexist.
2. We have found sensitive parameters and dominant

mechanisms of the translation process for various con-
ditions.
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Dominant path

Biological interpretation

Corresponding miRNA-mediated
translation repression mechanism(s)

Kk 4k AR k ketk
K I T i k, t k k
L> MFF M > F—> R—5 P
k| K kal K, k,J /
Ky narKarsy war ; )
S MFFFM > F——R

$ ¥ o By g #g b
2" LA TR PAN A T Ktk

¢

Kotk
th thfl e NG
L M SF b M o P ot
K k“l k.l 5 kul A
B,i_ﬂ»M';—'ﬂ'F';"M'TF‘z.—», R
LR P AN R (R L
ktk, g
K, Tk"ﬂﬁk" e AN oy
Lo MSFbM o F R—* P
e
BER MM — 2 R
0% 0 .

kil K (TN "AN U9

) ek

o
S
>
x

o 1 A
Ly M SF LM
k] K
B2 MPF M — F—s

+ Ky k ’ g
TR T AN R L el

x>
—

._
L
>
13
-
2
R
£
:
] g
-
o
4

b

de Tk,, Tk_, de i

Ly MM s 2
SR
B2 MPF

bd b b,

L[_\J[ Y
l;’ &
&

4 4 4

by AN e
L3> MySF M L Fz“ WP
~ R" ',
G R & Ky * k"

MoFoMFRP
Normal translation with negligible
effect of miRNA

MoM’q
The dominant effect is degradation
of mMRNA by miRNA.

MoM’oB
mRNA is captured in P-bodies.

MoM'oF’o
mRNA translation is stuck after initiation,
before the assembly of the ribosome.

MoM’oF'oM’F'R’
mRNA is stuck with ribosomes on it
and destroyed, or mRNA translation
is prematurely aborted.

MoMoF'oM"F'R"P
Protein synthesis in the presence of
miRNA with low mRNA degradation

None

M1: Cap inhibition
M?7: Decay
M8: Cleavage

M6: Sequestration of mRNA in P-Bodies

M2: 60S subunit joining inhibition

M3: Elongation inhibition
M4: Ribosome drop-off

M1: Cap inhibition

M2: 60S subunit joining inhibition

M3: Elongation inhibition

M5: Cotranslational protein degradation
mechanisms
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Volpert’s graph for nonlinear reactions

AL+ Az > A,

wq

A, - A,

W»

As + A, > Ay+A,

W3




Simplification of “forks” for nonlinear reactions

C = —Wpax T (positive terms)
i @)
S GO

Wy Cn

W = const X ¢,

The main difficulty: the result of the operation depends
on constants AND concentrations and might change in
time.



What did we talk about from the mathematical per-
spective?

1. A discrete version of the Wentzel—Freidlin theory;

2. A Lusternik—Vishik—Lidskii perturbation theory for
Markov chains;

3. A tropical asymptotic of chemical kinetics.



