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microRNA detective story

Interaction of microRNA with protein translation process 

 

Several mechanisms of translation repression are shown:  



MicroRNAs (miRNAs) are key regulators of all

important biological processes, including development,

differentiation and cancer.

Many contradictory findings about deciphering the

mechanisms used by miRNAs have been published

that stimulate active debate in this field.



Mechanisms of microRNA actions M1-M9:

M1: Cap-40S Initiation Inhibition

M2: 60S Ribosomal Unit Joining Inhibition

M3: Elongation Inhibition

M4: Ribosome Drop-off (premature termination)

M5: Co-translational Nascent Protein Degradation

M6: Sequestration in P-bodies

M7: mRNA Decay (destabilisation)

M8: mRNA Cleavage

M9: Transcriptional Inhibition through microRNA-mediated

chromatin reorganization following by gene silencing



How people use model reduction approaches

“Vox populi, vox Dei”

Google gave on 22 June 2013:

- for “quasi-equilibrium” – 215,000 links;

- for “quasi steady state” 290,000 and for “pseudo

steady state” 675,000; 965,000 together;

- for “slow manifold” 21,000 only, and for “invariant

manifold” 58,600;

- for “singular perturbation” 321,000 links;

- for “model reduction” even more, 405,000;

- but for “limiting step” – 1,130,000!



 



 



 



 



 



Limiting step

The concept of the limiting step gives the limit simpli-
fication: the whole network behaves as a single step.
This is the most popular approach for model simplifi-
cation in chemical kinetics.

The most known reason: the bottle neck. Existence
of “dominant reagents” in nonlinear reactions can also
lead to self-simplification: If for reaction A + B → C

we have cA À cB then cA is almost constant and all
interesting dynamics is in cB change. In such a case,
we can consider A + B → C as a linear reaction B → C

with constant proportional to cA.

We should not always expect one limiting step.



Hierarchical dominant paths in multiscale networks
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Linear network of chemical reactions

Ai are reagents, ci is concentration of Ai.

All the reactions are of the type Ai → Aj.

kji > 0 is the reaction Ai → Aj rate constant.

The reaction rates: wji = kjici.

Kinetic equation

ċi =
∑

j, j 6=i

(kijcj − kjici) or ċ = Kc, (1)



Pseudomonomolecular reactions

Sji + Ai → Aj + Pji

kji = k0
ji[Sji],

where [Sji] is concentration of the substrate Sji,

[Sji] À ci

For example, the catalytic cycle:

S + A1 → A2 → . . . → An → A1 + P

A1 → A2 → . . . → An → A1



Usually, something is big, and something is small enough,

we can guess the constant ordering (I = (i, j)):

kI1 ¿ kI2 ¿ kI3 ¿ ...

At least, in each diverging fork we can select the largest

constant.



Let us select the fastest reaction
in each diverging fork
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The small parameter: ε = maxl 6=j{kli/kji}



Integration of orderings

1. Auxiliary discrete dynamical systems

For each Ai, κi = maxj{kji}, φ(i) = argmaxj{kji};
φ(i) = i if there is no outgoing reaction Ai → Aj.

φ determines auxiliary dynamical system on a set A =

{Ai}.

Let us decompose this system and find the cycles Cj

with basins of attraction, Att(Cj): A = ∪jAtt(Cj).



Decomposition of discrete dynamical systems
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Gluing cycles
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Then iterate with the smaller number od vertices!



Integration of orderings

2. If all Cj are sinks in the initial network, then let

us delete the limited steps from cycles Cj. After that,

the kinetics of acyclic reaction network Ai → Aφ(i) with

constants κi approximates the proper kinetics uniformly

for any constant values under given ordering.

Example: a “dominant cycle” A1 → A2 → ...An → A1, if

all other reactions Ai → Aj have constants kji ¿ ki+1 i.



Integration of orderings

3. If some of Cj are not sinks in the initial network,

then we glue cycles:

A. For each Ci we introduce a new vertex Ai. The new

set of vertices, A1 = A ∪ {A1, A2, ...} \ (∪iCi).

B. For each Ci, we find a normalized stationary distribu-

tion due to internal reactions of Ci. Due to limitation,

c∗j ≈ κlim i/κj, Aj ∈ Ci.

C. For each reaction Aj → Aq (Aj ∈ Ci, Aq /∈ Ci) we

define reaction Ai → Aq with the constant kqjc
∗
j .



We prepared a new reaction network. Iterate.

After several steps, we get an auxiliary dynamic system

with cycles that are sinks. After that, we shall go back,

restore cycles, delete limiting steps,... The result is the

acyclic dynamic system that approximates kinetics of

initial system.



Cycles surgery on the way back
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Example. 1. The network

 



Example. 2. Dominance in diverging forks

 



Example. 3. Typology of links

  

Cycles 

Transitions 

Bridges 



Example. 4. Cycles and attractions

  

Cycles 

Transitions 



Example. 5. Bridges between attractors

  

Cycles 

Transitions 

Bridges 



Glue cycles, iterate and get the hierarchical multi-

scale dominant path.

Theorem. The error of approximation of the eigenval-

ues and eigenvectors of K by the hierarchical multiscale

dominant path tends to 0 with

ε = max
i
{max

l
{kli/kji|j = argmaxq{kqi}, l 6= j}}

It is possible to define from a kinetic experiment the

reaction rate constants from the dominant path only

because other constants do not affect kinetics.



First of all, let us describe all possible auxiliary

dynamical systems for the triangle
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Attractors

(a) k12 > k32, k23 > k13;

(b) k12 > k32, k13 > k23;

(c) k32 > k12, k23 > k13;

(d) k32 > k12, k13 > k23.

Largest rate constant — solid bold arrow.
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k1
31 = max{k32, k31k12/k21} > k23, the dominant

system A1 → A2 → A3,

λ0 = 0 , r0 ≈ (0,0,1) , l0 = (1,1,1) ;
λ1 ≈ −k21 , r1 ≈ (1,−1,0) , l1 ≈ (1,0,0) ;
λ2 ≈ −k1

31 , r2 ≈ (0,1,−1) , l2 ≈ (1,1,0) ;
(1)

k23 > k1
31, the dominant system A1 → A2 ← A3,

λ0 = 0 , r0 ≈ (0,1,0) , l0 = (1,1,1) ;
λ1 ≈ −k21 , r1 ≈ (1,−1,0) , l1 ≈ (1,0,0) ;
λ2 ≈ −k23 , r2 ≈ (0,−1,1) , l2 ≈ (0,0,1) .
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k1
31 > k13, the dominant system A1 → A2 → A3,

λ0 = 0 , r0 ≈ (0,0,1) , l0 = (1,1,1) ;
λ1 ≈ −k21 , r1 ≈ (1,−1,0) , l1 ≈ (1,0,0) ;
λ2 ≈ −k1

31 , r2 ≈ (0,1,−1) , l2 ≈ (1,1,0) ;
(3)

k13 > k1
31, the dominant system A3 → A1 → A2,

λ0 = 0 , r0 ≈ (0,1,0) , l0 = (1,1,1) ;
λ1 ≈ −k21 , r1 ≈ (1,−1,0) , l1 ≈ (1,0,0) ;
λ2 ≈ −k13 , r2 ≈ (0,−1,1) , l2 ≈ (0,0,1) .

(4)



(c)
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k32 > k23, the dominant system A1 → A2 → A3,

λ0 = 0 , r0 ≈ (0,0,1) , l0 = (1,1,1) ;
λ1 ≈ −k21 , r1 ≈ (1,−1,0) , l1 ≈ (1,0,0) ;
λ2 ≈ −k32 , r2 ≈ (0,1,−1) , l2 ≈ (1,1,0) ;

(5)

k23 > k32, the dominant system A1 → A2 ← A3,

λ0 = 0 , r0 ≈ (0,1,0) , l0 = (1,1,1) ;
λ1 ≈ −k21 , r1 ≈ (1,−1,0) , l1 ≈ (1,0,0) ;
λ2 ≈ −k23 , r2 ≈ (0,−1,1) , l2 ≈ (0,0,1) .

(6)
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Three zero-one laws for multiscale linear networks

Steady states (for weakly ergodic networks)

Limit states (for non-ergodic networks)

SINK1... ← Ai → ...SINK2

From each vertex almost all flux goes either to SINK1,

or to SINK2 (“xor” instead of “or”).

Relaxation eigenmodes (eigenvectors)



 

 

1. Based on the existing data, we develop a model

in which all proposed mechanisms of microRNA action

may coexist.

2. We have found sensitive parameters and dominant

mechanisms of the translation process for various con-

ditions. ....





Dominant path Biological interpretation
Corresponding miRNA-mediated

translation repression mechanism(s)

M0F0MFRP None
Normal translation with negligible
effect of miRNA

M0M90 M1: Cap inhibition
The dominant effect is degradation
of mRNA by miRNA.

M7: Decay
M8: Cleavage

M0M90B M6: Sequestration of mRNA in P-Bodies
mRNA is captured in P-bodies.

M0M90F90 M2: 60S subunit joining inhibition
mRNA translation is stuck after initiation,
before the assembly of the ribosome.

M0M90F90M9F9R9 M3: Elongation inhibition
mRNA is stuck with ribosomes on it
and destroyed, or mRNA translation
is prematurely aborted.

M4: Ribosome drop-off

M0M90F90M9F9R9P M1: Cap inhibition
Protein synthesis in the presence of
miRNA with low mRNA degradation

M2: 60S subunit joining inhibition
M3: Elongation inhibition
M5: Cotranslational protein degradation
mechanisms
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Volpert’s graph for nonlinear reactions

 

 

  

 

   

  

   

     



Simplification of “forks” for nonlinear reactions
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The main difficulty: the result of the operation depends

on constants AND concentrations and might change in

time.



What did we talk about from the mathematical per-

spective?

1. A discrete version of the Wentzel–Freidlin theory;

2. A Lusternik–Vishik–Lidskii perturbation theory for

Markov chains;

3. A tropical asymptotic of chemical kinetics.


