Hierarchy of Dominant Paths in Multiscale Networks

Dynamic and static limitation in reaction networks, revisited

Alexander Gorban
University of Leicester, UK
with

Andrei Zinovyev
Institut Curie, Paris, France and
Ovidiu Radulescu
University of Montpellier, France

Plan

1. microRNA detective story: plot
2. Google test of model reduction approaches
3. Dominant paths in linear and pseudo-monomolecular networks
4. Simple examples
5. microRNA detective story: denouement
6. Dominant paths in nonlinear networks: an outline.

microRNA detective story

Interaction of microRNA with protein translation process

MicroRNAs (miRNAs) are key regulators of all important biological processes, including development, differentiation and cancer.

Many contradictory findings about deciphering the mechanisms used by miRNAs have been published that stimulate active debate in this field.

Mechanisms of microRNA actions M1-M9:
M1: Cap-40S Initiation Inhibition
M2: $60 S$ Ribosomal Unit Joining Inhibition
M3: Elongation Inhibition
M4: Ribosome Drop-off (premature termination)
M5: Co-translational Nascent Protein Degradation
M6: Sequestration in P-bodies
M7: mRNA Decay (destabilisation)
M8: mRNA Cleavage
M9: Transcriptional Inhibition through microRNA-mediated chromatin reorganization following by gene silencing

How people use model reduction approaches

"Vox populi, vox Dei"

Google gave on 22 June 2013:

- for "quasi-equilibrium" - 215,000 links;
- for "quasi steady state" 290,000 and for "pseudo steady state" 675,000; 965,000 together;
- for "slow manifold" 21,000 only, and for "invariant manifold" 58,600;
- for "singular perturbation" 321,000 links;
- for "model reduction" even more, 405,000;
- but for "limiting step" - 1,130,000!

Chemical Engineering Science 58 (2003) 4751-4768

> Chemical ant manifolds for Engineering Science ${ }_{S}$
> wwwelsevier.comlocatecces, Andrei Yu. Zinovyev ${ }^{\text {b,c }}$ iomneggsi. 3. ML JI9, CH-so92 Zürich
dok. Krasnoyarsk 660036. Russia Chantres. F-91440. Bures-sur-Ytette. France

[^0]

Chemical Engineering St

Method of invariant ma
Alexander N. Gorl

Available online at www.sciencedirect.com

Invariant grids for reaction kinetics
Alexander N. Gorban ${ }^{\text {a,b,c, }}$, Iliya V. Karlin ${ }^{\text {a,b,* }}$, Andrei Yu. Zinovyev ${ }^{\text {b,c }}$

Constructive methods of invariant manifolds for kinetic problems

Alexander N. Gorban ${ }^{\text {a,b,c, },}$, Iliya V. Karlin ${ }^{\text {a,b }}$, Andrei Yu. Zinovyev ${ }^{\text {b,c }}$
"ETH-Zentrum. Deparument of Materiaks, Institute of Polymers. Sonneggstr. 3. ML J19, CH-8092 Zürich. Switzerland
${ }^{\text {b }}$ Institute of Computational Modeling SB RAS, Akademgorodok, Krasnoyarsk 660036, Russia ${ }^{5}$ Institut des Houtes Enudes Scientifiques, Le Bois-Marie, 35, route de Charres, F-91440, Bures-swr-Yvette, France

Limiting step

The concept of the limiting step gives the limit simplification: the whole network behaves as a single step. This is the most popular approach for model simplification in chemical kinetics.

The most known reason: the bottle neck. Existence of "dominant reagents" in nonlinear reactions can also lead to self-simplification: If for reaction $A+B \rightarrow C$ we have $c_{A} \gg c_{B}$ then c_{A} is almost constant and all interesting dynamics is in c_{B} change. In such a case, we can consider $A+B \rightarrow C$ as a linear reaction $B \rightarrow C$ with constant proportional to c_{A}.

We should not always expect one limiting step.

Hierarchical dominant paths in multiscale networks

PLAN

1. Dominant path in multiscale linear networks
2. Gluing cycles and hierarchy of dominant paths
3. Heuristics for nonlinear networks

Linear network of chemical reactions

A_{i} are reagents, c_{i} is concentration of A_{i}.
All the reactions are of the type $A_{i} \rightarrow A_{j}$. $k_{j i}>0$ is the reaction $A_{i} \rightarrow A_{j}$ rate constant.

The reaction rates: $w_{j i}=k_{j i} c_{i}$.

Kinetic equation

$$
\begin{equation*}
\dot{c}_{i}=\sum_{j, j \neq i}\left(k_{i j} c_{j}-k_{j i} c_{i}\right) \text { or } \dot{c}=\mathbf{K} c \tag{1}
\end{equation*}
$$

Pseudomonomolecular reactions

$$
\begin{gathered}
\underline{\mathrm{S}}_{j i}+A_{i} \rightarrow A_{j}+\underline{\mathrm{P}}_{j i} \\
\quad k_{j i}=k_{j i}^{0}\left[\underline{\mathrm{~S}}_{j i}\right],
\end{gathered}
$$

where $\left[\underline{S}_{j i}\right]$ is concentration of the substrate $\underline{S}_{j i}$,

$$
\left[\underline{\mathrm{S}}_{j i}\right] \gg c_{i}
$$

For example, the catalytic cycle:

$$
\begin{aligned}
& \underline{\mathrm{S}}+A_{1} \rightarrow A_{2} \\
& \rightarrow \ldots \rightarrow A_{n} \rightarrow A_{1}+\underline{\mathrm{P}} \\
& A_{1} \rightarrow A_{2} \rightarrow \ldots \rightarrow A_{n} \rightarrow A_{1}
\end{aligned}
$$

Usually, something is big, and something is small enough, we can guess the constant ordering $(I=(i, j))$:

$$
k_{I_{1}} \ll k_{I_{2}} \ll k_{I_{3}} \ll \ldots
$$

At least, in each diverging fork we can select the largest constant.

Let us select the fastest reaction

 in each diverging fork

The small parameter: $\varepsilon=\max _{l \neq j}\left\{k_{l i} / k_{j i}\right\}$

Integration of orderings

1. Auxiliary discrete dynamical systems

For each $A_{i}, \kappa_{i}=\max _{j}\left\{k_{j i}\right\}, \phi(i)=\arg \max _{j}\left\{k_{j i}\right\}$; $\phi(i)=i$ if there is no outgoing reaction $A_{i} \rightarrow A_{j}$.
ϕ determines auxiliary dynamical system on a set $\mathcal{A}=$ $\left\{A_{i}\right\}$.

Let us decompose this system and find the cycles C_{j} with basins of attraction, $\operatorname{Att}\left(C_{j}\right): \mathcal{A}=\cup_{j} \operatorname{Att}\left(C_{j}\right)$.

Decomposition of discrete dynamical systems

Gluing cycles

Then iterate with the smaller number od vertices!

Integration of orderings

2. If all C_{j} are sinks in the initial network, then let us delete the limited steps from cycles C_{j}. After that, the kinetics of acyclic reaction network $A_{i} \rightarrow A_{\phi(i)}$ with constants κ_{i} approximates the proper kinetics uniformly for any constant values under given ordering.

Example: a "dominant cycle" $A_{1} \rightarrow A_{2} \rightarrow \ldots A_{n} \rightarrow A_{1}$, if all other reactions $A_{i} \rightarrow A_{j}$ have constants $k_{j i} \ll k_{i+1 i}$.

Integration of orderings

3. If some of C_{j} are not sinks in the initial network, then we glue cycles:
A. For each C_{i} we introduce a new vertex A_{i}. The new set of vertices, $\mathcal{A}^{1}=\mathcal{A} \cup\left\{A^{1}, A^{2}, \ldots\right\} \backslash\left(\cup_{i} C_{i}\right)$.
B. For each C_{i}, we find a normalized stationary distribution due to internal reactions of C_{i}. Due to limitation, $c_{j}^{*} \approx \kappa_{\lim i} / \kappa_{j}, A_{j} \in C_{i}$.
C. For each reaction $A_{j} \rightarrow A_{q}\left(A_{j} \in C_{i}, A_{q} \notin C_{i}\right)$ we define reaction $A^{i} \rightarrow A_{q}$ with the constant $k_{q j} c_{j}^{*}$.

We prepared a new reaction network. Iterate.

After several steps, we get an auxiliary dynamic system with cycles that are sinks. After that, we shall go back, restore cycles, delete limiting steps,... The result is the acyclic dynamic system that approximates kinetics of initial system.

Cycles surgery on the way back

Example. 1. The network

Example. 2. Dominance in diverging forks

Example. 3. Typology of links

Example. 4. Cycles and attractions

Example. 5. Bridges between attractors

Glue cycles, iterate and get the hierarchical multiscale dominant path.

Theorem. The error of approximation of the eigenvalues and eigenvectors of K by the hierarchical multiscale dominant path tends to 0 with

$$
\varepsilon=\max _{i}\left\{\max _{l}\left\{k_{l i} / k_{j i} \mid j=\arg \max _{q}\left\{k_{q i}\right\}, l \neq j\right\}\right\}
$$

It is possible to define from a kinetic experiment the reaction rate constants from the dominant path only because other constants do not affect kinetics.

First of all, let us describe all possible auxiliary dynamical systems for the triangle

(a) $k_{12}>k_{32}, k_{23}>k_{13}$;
(b) $k_{12}>k_{32}, k_{13}>k_{23}$;
(c) $k_{32}>k_{12}, k_{23}>k_{13}$;
(d) $k_{32}>k_{12}, k_{13}>k_{23}$.

Largest rate constant - solid bold arrow.
(a)

$k_{31}^{1}=\max \left\{k_{32}, k_{31} k_{12} / k_{21}\right\}>k_{23}$, the dominant system $A_{1} \rightarrow A_{2} \rightarrow A_{3}$,

$$
\begin{array}{lll}
\lambda_{0}=0, & r^{0} \approx(0,0,1), & l^{0}=(1,1,1) ; \\
\lambda_{1} \approx-k_{21}, & r^{1} \approx(1,-1,0), & l^{1} \approx(1,0,0) ; \tag{1}\\
\lambda_{2} \approx-k_{31}^{1}, & r^{2} \approx(0,1,-1), & l^{2} \approx(1,1,0) ;
\end{array}
$$

$$
k_{23}>k_{31}^{1}, \text { the dominant system } A_{1} \rightarrow A_{2} \leftarrow A_{3},
$$

$$
\begin{array}{lll}
\lambda_{0}=0, & r^{0} \approx(0,1,0), & l^{0}=(1,1,1) \tag{2}\\
\lambda_{1} \approx-k_{21}, & r^{1} \approx(1,-1,0), & l^{1} \approx(1,0,0) ; \\
\lambda_{2} \approx-k_{23}, & r^{2} \approx(0,-1,1), & l^{2} \approx(0,0,1) .
\end{array}
$$

(b)

$k_{31}^{1}>k_{13}$, the dominant system $A_{1} \rightarrow A_{2} \rightarrow A_{3}$,

$$
\begin{array}{ll}
\lambda_{0}=0, & r^{0} \approx(0,0,1), \quad l^{0}=(1,1,1) ; \\
\lambda_{1} \approx-k_{21}, & r^{1} \approx(1,-1,0), \quad l^{1} \approx(1,0,0) ; \tag{3}\\
\lambda_{2} \approx-k_{31}^{1}, & r^{2} \approx(0,1,-1), \quad l^{2} \approx(1,1,0) ;
\end{array}
$$

$k_{13}>k_{31}^{1}$, the dominant system $A_{3} \rightarrow A_{1} \rightarrow A_{2}$,

$$
\begin{array}{ll}
\lambda_{0}=0, & r^{0} \approx(0,1,0), \quad l^{0}=(1,1,1) ; \\
\lambda_{1} \approx-k_{21}, & r^{1} \approx(1,-1,0), \quad l^{1} \approx(1,0,0) ; \tag{4}\\
\lambda_{2} \approx-k_{13}, & r^{2} \approx(0,-1,1), \quad l^{2} \approx(0,0,1) .
\end{array}
$$

> (c)

$k_{32}>k_{23}$, the dominant system $A_{1} \rightarrow A_{2} \rightarrow A_{3}$,

$$
\begin{array}{lll}
\lambda_{0}=0, & r^{0} \approx(0,0,1), & l^{0}=(1,1,1) ; \\
\lambda_{1} \approx-k_{21}, & r^{1} \approx(1,-1,0), & l^{1} \approx(1,0,0) ; \tag{5}\\
\lambda_{2} \approx-k_{32}, & r^{2} \approx(0,1,-1), & l^{2} \approx(1,1,0) ;
\end{array}
$$

$$
k_{23}>k_{32}, \text { the dominant system } A_{1} \rightarrow A_{2} \leftarrow A_{3},
$$

$$
\begin{array}{ll}
\lambda_{0}=0, & r^{0} \approx(0,1,0), \quad l^{0}=(1,1,1) \tag{6}\\
\lambda_{1} \approx-k_{21}, & r^{1} \approx(1,-1,0), \quad l^{1} \approx(1,0,0) \\
\lambda_{2} \approx-k_{23}, & r^{2} \approx(0,-1,1), \quad l^{2} \approx(0,0,1)
\end{array}
$$

a)

$$
\text { e) } A_{4} \stackrel{10}{\stackrel{\text { en }}{\rightleftarrows}} A_{1}^{1}
$$

$$
\begin{aligned}
& \text { d) } A_{5} \xrightarrow{2} \longrightarrow A_{6}
\end{aligned}
$$

Three zero-one laws for multiscale linear networks

Steady states (for weakly ergodic networks)

Limit states (for non-ergodic networks)
SINK1... $\leftarrow A_{i} \rightarrow$...SINK2
From each vertex almost all flux goes either to SINK1, or to SINK2 ("xor" instead of "or").

Relaxation eigenmodes (eigenvectors)

Kinetic signatures of microRNA modes of action

NADYA MOROZOVA, ${ }^{1,2,7}$ ANDREI ZINOVYEV, ${ }^{3,4,5,7}$ NORA NONNE, ${ }^{1,2}$ LINDA-LOUISE PRITCHARD, ${ }^{1,2}$
ALEXANDER N. GORBAN, ${ }^{6}$ and ANNICK HAREL-BELLAN ${ }^{1,2,8}$
${ }^{1}$ CNRS FRE 3377, CEA Saclay, and ${ }^{2}$ Université Paris-Sud, F-91191, Gif-sur-Yvette, France
Institut Curie, Service Bioinformatique, F-75248 Paris, France
Ecole des Mines ParisTech, F-77300 Fon
${ }^{5}$ INSERM, U900, Paris, F-75248, France
${ }^{6}$ University of Leicester, Centre for Mathematical Modelling, Leicester, LE1 7RH, United Kingdom

1. Based on the existing data, we develop a model in which all proposed mechanisms of microRNA action may coexist.
2. We have found sensitive parameters and dominant mechanisms of the translation process for various conditions.
Corresponding miRNA-mediated
(ranslation repression mechanism(s)

References

1. A.N. Gorban, O. Radulescu, A.Y. Zinovyev, Asymptotology of chemical reaction networks, Chemical Engineering Science 65 (7), 2310-2324.
2. A.N. Gorban and O. Radulescu, Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited, Advances in Chemical Engineering 34 (2008), 103-173. 3. O. Radulescu, A.N. Gorban, A. Zinovyev, and A. Lilienbaum Robust simplifications of multiscale biochemical networks, BMC Systems Biology 2008, 2:86.
3. A. Zinovyev, N. Morozova, N. Nonne, E. Barillot, A. Harel-Bellan, A.N. Gorban, Dynamical modeling of microRNA action on the protein translation process, BMC Systems Biology 2010, 4:1
4. A. Zinovyev, N. Morozova, A.N. Gorban, and A. Harel-Belan, Mathematical Modeling of microRNA-Mediated Mechanisms of Translation Repression, in MicroRNA Cancer Regulation: Advanced Concepts, Bioinformatics and Systems Biology Tools, Advances in Experimental Medicine and Biology Vol. 774, Springer, 2013, pp. 189-224.
5. N. Morozova, A. Zinovyev, N. Nonne, L.-L. Pritchard, A.N. Gorban, and A. Harel-Bellan, Kinetic signatures of microRNA modes of action, RNA, Vol. 18, No. 9 (2012) 1635-1655

Volpert's graph for nonlinear reactions

Simplification of "forks" for nonlinear reactions

$$
\dot{c}=-w_{\max }+(\text { positive terms })
$$

The main difficulty: the result of the operation depends on constants AND concentrations and might change in time.

What did we talk about from the mathematical perspective?

1. A discrete version of the Wentzel-Freidlin theory;
2. A Lusternik-Vishik-Lidskii perturbation theory for Markov chains;
3. A tropical asymptotic of chemical kinetics.

[^0]: Alexander N. Gorban ${ }^{\text {a,b }}$, Iliya V. Karlin ${ }^{\text {a,* }}$

