Distinct and Common Sites visited by N random Walkers

Satya N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS,
Université Paris-Sud, France

Collaborators:
A. Kundu (LPTMS, Orsay, FRANCE)
G. Schehr (LPTMS, Orsay, FRANCE)
M. V. Tamm (Moscow University, Russia)

Refs:

- S.M. and M. V. Tamm, Phys. Rev. E 86, 021135 (2012)
- A. Kundu, S.M. and G. Schehr, Phys. Rev. Lett. 110, 220602 (2013)

Plan:

- N independent random walkers, each of t-steps, moving on a d-dimensional regular lattice
- N independent random walkers, each of t-steps, moving on a d-dimensional regular lattice
- Two objects of interest
$D_{N}(t) \rightarrow$ no. of distinct sites visited by N walkers
$C_{N}(t) \rightarrow$ no. of common sites visited by N walkers
- N independent random walkers, each of t-steps, moving on a d-dimensional regular lattice
- Two objects of interest
$D_{N}(t) \rightarrow$ no. of distinct sites visited by N walkers
$C_{N}(t) \rightarrow$ no. of common sites visited by N walkers
- Interesting phase transition in the asymptotic growth of $\left\langle C_{N}(t)\right\rangle$
- N independent random walkers, each of t-steps, moving on a d-dimensional regular lattice
- Two objects of interest
$D_{N}(t) \rightarrow$ no. of distinct sites visited by N walkers
$C_{N}(t) \rightarrow$ no. of common sites visited by N walkers
- Interesting phase transition in the asymptotic growth of $\left\langle C_{N}(t)\right\rangle$
- Exact distributions of $D_{N}(t)$ and $C_{N}(t)$ in $d=1$
\Longrightarrow link to Extreme Value Statistics
- N independent random walkers, each of t-steps, moving on a d-dimensional regular lattice
- Two objects of interest

$$
\begin{aligned}
& D_{N}(t) \rightarrow \text { no. of distinct sites visited by } N \text { walkers } \\
& C_{N}(t) \rightarrow \text { no. of common sites visited by } N \text { walkers }
\end{aligned}
$$

- Interesting phase transition in the asymptotic growth of $\left\langle C_{N}(t)\right\rangle$
- Exact distributions of $D_{N}(t)$ and $C_{N}(t)$ in $d=1$

$$
\Longrightarrow \text { link to Extreme Value Statistics }
$$

- Summary and Conclusion

Distinct sites visited by a single random walker

$D_{1}(t) \rightarrow$ no. of distinct sites visited by a RW of t steps
\rightarrow sites visited atleast once
physics, chemistry, metallurgy, ecology,...

Distinct sites visited by a single random walker

$D_{1}(t) \rightarrow$ no. of distinct sites visited by a RW of t steps
\rightarrow sites visited atleast once
physics, chemistry, metallurgy, ecology,...

For large t

$$
\begin{aligned}
\left\langle D_{1}(t)\right\rangle & \sim(\sqrt{t})^{d}, & & d<2 \\
& \sim t / \ln t, & & d=2 \\
& \sim \gamma_{d} t, & & d>2
\end{aligned}
$$

Random walk
recurrent for $d<2$
transient for $d>2$
[Dvoretzky \& Erdös ('51), Vineyard ('63), Montrol \& Weiss ('65),]

Territory covered by \boldsymbol{N} diffusing particles

Hernan Larralde*, Paul Trunfio*, Shlomo Havlin* \dagger, H. Eugene Stanley* \& George H. Weiss \dagger
* Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
\dagger Physical Sciences Laboratory, Division of Computer Research and Technology, National Institutes of Health, Bethesda, Maryland 20892, USA

THE number of distinct sites visited by a random walker after t steps is of great interest ${ }^{1-21}$, as it provides a direct measure of the territory covered by a diffusing particle. Thus, this quantity appears in the description of many phenomena of interest in ecology ${ }^{13-16}$, metallurgy ${ }^{5-7}$, chemistry ${ }^{17,18}$ and physics ${ }^{19-22}$. Previous analyses have been limited to the number of distinct sites visited by a single random walker ${ }^{19-22}$, but the (nontrivial) generalization to the number of distinct sites visited by N walkers is particularly relevant to a range of problems-for example, the classic problem in mathematical ecology of defining the territory covered by N members of a given species ${ }^{13-16}$. Here we present an analytical solution

Distinct sites visited by N indep. random walkers

$D_{N}(t) \rightarrow$ no. of distinct sites visited by N indep. walkers each of t steps
\rightarrow sites visited atleast once by any of the walkers
Larralde, Trunfio, Havlin, Stanley, \& Weiss, Nature, 355, 423 (1992)]

Number of distinct sites: growth with time t

Flg. 3 a Visulization of the aciual set $S_{N / 1}[$ I of sites visited by N random nakers at a sequerce of four sucessive times t, showirg the progessive roughering of the surface of this set as time increases. Shown is the case $N=500$. The set of $\xi_{N}(t)$ nisted sites is shom as wite, the 500 indivitua rarcom wakers are shom in red, and the unvisted virgin teritiony is shoun in bladx. D, The case $\mathrm{N}=1,000$ at late time, which cemmostrates the patt played by onfy a few induivibal random walkers in causing the roughening of the interfate of the set S_{N} (t)

$\left\langle\mathrm{D}_{\mathrm{N}}(\mathrm{t}\rangle{ }{ }^{\text {vs. } \mathrm{t}}\right.$

Asymptotic late time ($t \gg t_{2}^{*}$) growth:

$$
\begin{aligned}
\left\langle D_{N}(t)\right\rangle & \sim(\ln N)^{d / 2}(\sqrt{t})^{d} & & d<2 \\
& \sim N t / \ln t & & d=2 \\
& \sim N t & & d>2
\end{aligned}
$$

Union and Intersection of the visited sites

$S_{i}(t) \rightarrow$ the set of sites visited by the i-th walker up to t

Distinct sites $D_{N}(t) \equiv$ size of $S_{1}(t) \cup S_{2}(t) \cup S_{3}(t) \ldots \cup S_{N}(t) \rightarrow$ Union
A natural counterpart:
Common sites $C_{N}(t) \equiv$ size of $S_{1}(t) \cap S_{2}(t) \cap S_{3}(t) \ldots \cap S_{N}(t)$
\rightarrow Intersection

Common sites visited by N indep. random walkers

$C_{N}(t) \rightarrow$ no. of common sites visited by N indep. walkers each of t steps
\rightarrow sites visited by all the walkers (green sites)

$$
\text { [S.M. \& M. V. Tamm, Phys. Rev. E, 86, } 021135 \text { (2012)] }
$$

Common Sites

Common Sites

light transmits from bottom to top provided the same site in each of the N planes is visited by the corresponding walker

Intensity of transmitted light $I_{N}(t) \propto C_{N}(t)$
\longrightarrow no. of common sites visited by N independent walkers in a single plane

Common Sites

light transmits from bottom to top provided the same site in each of the N planes is visited by the corresponding walker

Intensity of transmitted light $I_{N}(t) \propto C_{N}(t)$
\longrightarrow no. of common sites visited by N independent walkers in a single plane

Asymptotic growth of $\left\langle C_{N}(t)\right\rangle$

[S.M. \& M. V. Tamm, Phys. Rev. E, 86, 021135 (2012)]
Nontrivial exponent $\nu=N-d(N-1) / 2$ in the intermediate Phase II

Asymptotic growth of $\left\langle C_{N}(t)\right\rangle$

Nontrivial exponent $\nu=N-d(N-1) / 2$ in the intermediate Phase II
Few Examples:

- $N=2 \rightarrow d_{c}=4 ; \quad\left\langle C_{2}(t)\right\rangle \sim t^{1 / 2} \quad$ in $2<d=3<4$

Asymptotic growth of $\left\langle C_{N}(t)\right\rangle$

Nontrivial exponent $\nu=N-d(N-1) / 2$ in the intermediate Phase II
Few Examples:

- $N=2 \rightarrow d_{c}=4 ;$
$\left\langle C_{2}(t)\right\rangle \sim t^{1 / 2}$
in $2<d=3<4$
- $N=3 \rightarrow d_{c}=3$;
$\left\langle C_{3}(t)\right\rangle \sim \ln t$
in $d=3$

Asymptotic growth of $\left\langle C_{N}(t)\right\rangle$

Nontrivial exponent $\nu=N-d(N-1) / 2$ in the intermediate Phase II
Few Examples:

- $N=2 \rightarrow d_{c}=4 ; \quad\left\langle C_{2}(t)\right\rangle \sim t^{1 / 2} \quad$ in $2<d=3<4$
- $N=3 \rightarrow d_{c}=3$;
$\left\langle C_{3}(t)\right\rangle \sim \ln t \quad$ in $d=3$
- $N=4 \rightarrow d_{c}=2$;
$\left\langle C_{4}(t)\right\rangle \sim t /(\ln t)^{4} \quad$ in $d=2$

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

For N indep. walkers, prob. that a site is visited by all $\sim \phi^{N}$

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

For N indep. walkers, prob. that a site is visited by all $\sim \phi^{N}$

$$
\Rightarrow \quad\left\langle C_{N}(t)\right\rangle \sim \phi^{N} V(t) \sim\left[\frac{\left\langle D_{1}(t)\right\rangle}{t^{d / 2}}\right]^{N} t^{d / 2}
$$

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

For N indep. walkers, prob. that a site is visited by all $\sim \phi^{N}$

$$
\Rightarrow\left\langle C_{N}(t)\right\rangle \sim \phi^{N} V(t) \sim\left[\frac{\left\langle D_{1}(t)\right\rangle}{t^{d / 2}}\right]^{N} t^{d / 2}
$$

- $d<2: \quad\left\langle D_{1}(t)\right\rangle \sim t^{d / 2} \Longrightarrow\left\langle C_{N}(t)\right\rangle \sim t^{d / 2}$

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

For N indep. walkers, prob. that a site is visited by all $\sim \phi^{N}$

$$
\Rightarrow \quad\left\langle C_{N}(t)\right\rangle \sim \phi^{N} V(t) \sim\left[\frac{\left\langle D_{1}(t)\right\rangle}{t^{d / 2}}\right]^{N} t^{d / 2}
$$

- $d<2: \quad\left\langle D_{1}(t)\right\rangle \sim t^{d / 2} \Longrightarrow\left\langle C_{N}(t)\right\rangle \sim t^{d / 2}$
- $d>2: \quad\left\langle D_{1}(t)\right\rangle \sim t$

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

For N indep. walkers, prob. that a site is visited by all $\sim \phi^{N}$

$$
\Rightarrow \quad\left\langle C_{N}(t)\right\rangle \sim \phi^{N} V(t) \sim\left[\frac{\left\langle D_{1}(t)\right\rangle}{t^{d / 2}}\right]^{N} t^{d / 2}
$$

- $d<2: \quad\left\langle D_{1}(t)\right\rangle \sim t^{d / 2} \Longrightarrow\left\langle C_{N}(t)\right\rangle \sim t^{d / 2}$
- $d>2: \quad\left\langle D_{1}(t)\right\rangle \sim t$
$\Longrightarrow\left\langle C_{N}(t)\right\rangle \sim t^{\nu=N-(N-1) d / 2}$ if $\nu>0$, i.e., for $d<d_{c}=2 N /(N-1)$

Heuristic scaling argument

- In time t, a single walker explores a volume $V(t) \sim t^{d / 2}$
- Fraction of sites visited by the single walker: $\phi=\frac{\left\langle D_{1}(t)\right\rangle}{V(t)}$
\rightarrow prob. that a site is visited by the walker

For N indep. walkers, prob. that a site is visited by all $\sim \phi^{N}$

$$
\Rightarrow \quad\left\langle C_{N}(t)\right\rangle \sim \phi^{N} V(t) \sim\left[\frac{\left\langle D_{1}(t)\right\rangle}{t^{d / 2}}\right]^{N} t^{d / 2}
$$

- $d<2: \quad\left\langle D_{1}(t)\right\rangle \sim t^{d / 2} \Longrightarrow\left\langle C_{N}(t)\right\rangle \sim t^{d / 2}$
- $d>2: \quad\left\langle D_{1}(t)\right\rangle \sim t$

$$
\begin{array}{rlrl}
\Longrightarrow\left\langle C_{N}(t)\right\rangle & \sim t^{\nu=N-(N-1) d / 2} & & \text { if } \nu>0, \text { i.e., } \\
& \sim \text { for } d<d_{c}=2 N /(N-1) \\
& & \text { if } \nu<0 \text {, i.e., } \quad \text { for } d>d_{c}
\end{array}
$$

Exact computation

$$
\begin{aligned}
\sigma(\vec{x}, t) & =1 \\
& \text { if } \vec{x} \text { visited by all } t \text {-step walkers (green) } \\
& \text { otherwise }
\end{aligned}
$$

Exact computation

$$
\begin{aligned}
\sigma(\vec{x}, t) & =1 \\
& \text { if } \vec{x} \text { visited by all } t \text {-step walkers (green) } \\
& \text { otherwise }
\end{aligned}
$$

Then $C_{N}(t)=\sum_{\vec{x}} \sigma(\vec{x}, t)$

Exact computation

$$
\begin{array}{rlrl}
\sigma(\vec{x}, t) & =1 & \text { if } \vec{x} \text { visited by all } t \text {-step walkers (green) } \\
& =0 & & \text { otherwise }
\end{array}
$$

Then $C_{N}(t)=\sum_{\vec{x}} \sigma(\vec{x}, t)$

- $\left\langle C_{N}(t)\right\rangle=\sum_{\vec{x}}\langle\sigma(\vec{x}, t)\rangle=\sum_{\vec{x}}[p(\vec{x}, t)]^{N}$
$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker

Exact computation

$$
\begin{array}{rlrl}
\sigma(\vec{x}, t) & =1 & \text { if } \vec{x} \text { visited by all } t \text {-step walkers (green) } \\
& =0 & & \text { otherwise }
\end{array}
$$

Then $C_{N}(t)=\sum_{\vec{x}} \sigma(\vec{x}, t)$

- $\left\langle C_{N}(t)\right\rangle=\sum_{\vec{x}}\langle\sigma(\vec{x}, t)\rangle=\sum_{\vec{x}}[p(\vec{x}, t)]^{N}$
$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker
- Also $[1-p(\vec{x}, t)]^{N} \rightarrow$ prob. that \vec{x} is NOT visited by any of the walkers

Exact computation

$$
\begin{array}{rlrl}
\sigma(\vec{x}, t) & =1 & \text { if } \vec{x} \text { visited by all } t \text {-step walkers (green) } \\
& =0 & & \text { otherwise }
\end{array}
$$

Then $C_{N}(t)=\sum_{\vec{x}} \sigma(\vec{x}, t)$

- $\left\langle C_{N}(t)\right\rangle=\sum_{\vec{x}}\langle\sigma(\vec{x}, t)\rangle=\sum_{\vec{x}}[p(\vec{x}, t)]^{N}$
$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker
- Also $[1-p(\vec{x}, t)]^{N} \rightarrow$ prob. that \vec{x} is NOT visited by any of the walkers

$$
\Longrightarrow\left\langle D_{N}(t)\right\rangle=\sum_{\vec{x}}\left[1-[1-p(\vec{x}, t)]^{N}\right]
$$

Exact computation

$$
\begin{array}{rlrl}
\sigma(\vec{x}, t) & =1 & \text { if } \vec{x} \text { visited by all } t \text {-step walkers (green) } \\
& =0 & & \text { otherwise }
\end{array}
$$

Then $C_{N}(t)=\sum_{\vec{x}} \sigma(\vec{x}, t)$

- $\left\langle C_{N}(t)\right\rangle=\sum_{\vec{x}}\langle\sigma(\vec{x}, t)\rangle=\sum_{\vec{x}}[p(\vec{x}, t)]^{N}$
$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker
- Also $[1-p(\vec{x}, t)]^{N} \rightarrow$ prob. that \vec{x} is NOT visited by any of the walkers

$$
\Longrightarrow\left\langle D_{N}(t)\right\rangle=\sum_{\vec{x}}\left[1-[1-p(\vec{x}, t)]^{N}\right]
$$

$p(\vec{x}, t) \longrightarrow$ central quantity

The probability $p(\vec{x}, t)$

$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker

Let $\tau \longrightarrow$ last time before t the site \vec{x} was visited
t-step random walker

The probability $p(\vec{x}, t)$

$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker

Let $\tau \longrightarrow$ last time before t the site \vec{x} was visited

Then $p(\vec{x}, t)=\int_{0}^{t} G(\vec{x}, \tau) q(t-\tau) d \tau$
t- step random walker

The probability $p(\vec{x}, t)$

$p(\vec{x}, t) \rightarrow$ prob. that \vec{x} is visited by a single t-step walker

Let $\tau \longrightarrow$ last time before t the site \vec{x} was visited

Then $p(\vec{x}, t)=\int_{0}^{t} G(\vec{x}, \tau) q(t-\tau) d \tau$
t- step random walker

- $G(\vec{x}, t)=(4 \pi D \tau)^{-d / 2} \exp \left[-x^{2} /(4 D \tau)\right] \rightarrow$ diffusion Green's function
- $q(\tau) \rightarrow$ prob. of no return to the starting pt. in time τ

Scaling form of $p(\vec{x}, t)$:

$$
p(\vec{x}, t) \sim \begin{cases}f_{<}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d<2) \\ \frac{1}{1{ }^{1} t} f_{2}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d=2) \\ t^{1-d / 2} f_{5}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d>2)\end{cases}
$$

Scaling form of $p(\vec{x}, t)$:

$$
p(\bar{x}, t) \sim \begin{cases}f_{<}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d<2) \\ \frac{1}{1{ }^{1} t} f_{2}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d=2) \\ t^{1-d / 2} f_{5}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d>2)\end{cases}
$$

$$
\begin{array}{rlrl}
f_{<}(z) & \sim \text { const. } & & \text { as } z \rightarrow 0 \\
& \sim z^{-d} e^{-z^{2}} & \text { as } z \rightarrow \infty \\
f_{>}(z) & \sim z^{2-d} & & \text { as } z \rightarrow 0 \\
& \sim z^{-2} e^{-z^{2}} & & \text { as } z \rightarrow \infty
\end{array}
$$

Scaling form of $p(\vec{x}, t)$:

$$
p(\vec{x}, t) \sim\left\{\begin{array}{lll}
f_{<}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d<2) & f_{<}(z) \sim \text { const. }
\end{array} \begin{array}{lll}
& \text { as } z \rightarrow 0 \\
\frac{1}{\ln t} f_{2}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d=2) & \sim z^{-d} e^{-z^{2}} \\
& \text { as } z \rightarrow \infty \\
t^{1-d / 2} f_{>}\left(\frac{x}{\sqrt{4 \pi D t}}\right) & (d>2) & f_{>}(z) \sim z^{2-d}
\end{array}\right.
$$

$$
\left\langle C_{N}(t)\right\rangle=\int d \vec{x}[p(\vec{x}, t)]^{N} \sim \int_{1}^{\infty} d x x^{d-1}[p(\vec{x}, t)]^{N} \Longrightarrow
$$

Exact asymptotic results

[S.M. \& M. V. Tamm, Phys. Rev. E, 86, 021135 (2012)]

Distribution of Distinct and Common sites

$D_{N}(t), C_{N}(t) \rightarrow$ no. of
distinct/common sites visited by N
indep. walkers each of t steps
$D_{N}(t)$ and $C_{N}(t) \rightarrow$ random variables

What about the full distribution of $D_{N}(t)$ and $C_{N}(t)$?

Distribution of Distinct and Common sites

$D_{N}(t), C_{N}(t) \rightarrow$ no. of
distinct/common sites visited by N
indep. walkers each of t steps
$D_{N}(t)$ and $C_{N}(t) \rightarrow$ random variables

What about the full distribution of $D_{N}(t)$ and $C_{N}(t)$?
Focus on $d=1$:

$D_{N}(t), C_{N}(t) \rightarrow$ no. of
distinct/common sites visited by N
indep. walkers each of t steps
$D_{N}(t)$ and $C_{N}(t) \rightarrow$ random variables

What about the full distribution of $D_{N}(t)$ and $C_{N}(t)$?
Focus on $d=1$:

- maximum overlap between walkers in $d=1 \longrightarrow$ nontrivial
- interesting link to Extreme Value Statistics \longrightarrow exactly solvable
- Various applications in $d=1$:
biological applications \Rightarrow proteins diffusing along DNA
environmental applications \Rightarrow diffusion of river pollutants

A single walker $N=1$ in one dimension

$$
\begin{aligned}
D_{1}(t)=C_{1}(t) & =D_{1}^{+}(t)+D_{1}^{-}(t) \\
& \longrightarrow \text { span of the walk }
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{1}^{+}(t)=M_{1}(t)=\max _{0 \leq \tau \leq t}\left\{x_{1}(\tau)\right\} \\
& D_{1}^{-}(t)=m_{1}(t)=-\min _{0 \leq \tau \leq t}\left\{x_{1}(\tau)\right\}
\end{aligned}
$$

\Longrightarrow link to Extreme Value Statistics

A single walker $N=1$ in one dimension

$$
\begin{aligned}
D_{1}(t)=C_{1}(t) & =D_{1}^{+}(t)+D_{1}^{-}(t) \\
& \longrightarrow \text { span of the walk }
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{1}^{+}(t)=M_{1}(t)=\max _{0 \leq \tau \leq t}\left\{x_{1}(\tau)\right\} \\
& D_{1}^{-}(t)=m_{1}(t)=-\min _{0 \leq \tau \leq t}\left\{x_{1}(\tau)\right\}
\end{aligned}
$$

\Longrightarrow link to Extreme Value Statistics

Note that $\left\{M_{1}(t), m_{1}(t)\right\} \longrightarrow$ correlated random variables

Joint distribution of $M_{1}(t)$ and $m_{1}(t)$

Prob. $\left[M_{1}(t) \leq L_{1}, m_{1}(t) \leq L_{2}\right]$
\longrightarrow prob. that the walker stays inside the box $\left[-L_{2}, L_{1}\right]$ up to time t
$\xrightarrow[t \rightarrow \infty]{\longrightarrow} g\left(\frac{L_{1}}{\sqrt{4 D t}}=I_{1}, \frac{L_{2}}{\sqrt{4 D t}}=I_{2}\right)$

Joint distribution of $M_{1}(t)$ and $m_{1}(t)$

Prob. $\left[M_{1}(t) \leq L_{1}, m_{1}(t) \leq L_{2}\right]$
\longrightarrow prob. that the walker stays inside the box $\left[-L_{2}, L_{1}\right]$ up to time t
$\xrightarrow[t \rightarrow \infty]{\longrightarrow} g\left(\frac{L_{1}}{\sqrt{4 D t}}=I_{1}, \frac{L_{2}}{\sqrt{4 D t}}=I_{2}\right)$

Solving Fokker-Planck equation with absorbing b.c. at L_{1} and $-L_{2}$ gives

$$
g\left(I_{1}, l_{2}\right)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{2 n+1} \sin \left(\frac{(2 n+1) \pi I_{2}}{I_{1}+I_{2}}\right) \exp \left[-\frac{(2 n+1)^{2} \pi^{2}}{4\left(I_{1}+I_{2}\right)^{2}}\right]
$$

Joint distribution:
$\operatorname{Prob} .\left[M_{1}(t) \leq L_{1}, m_{1}(t) \leq L_{2}\right] \rightarrow g\left(\frac{L_{1}}{\sqrt{4 D t}}=I_{1}, \frac{L_{2}}{\sqrt{4 D t}}=I_{2}\right)$
No. of distinct/common sites $D_{1}(t)=C_{1}(t)=M_{1}(t)+m_{1}(t)$
Prob. density: Prob. $\left[D_{1}(t)\right]=\operatorname{Prob} .\left[C_{1}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} P_{1}\left(\frac{D_{1}(t)}{\sqrt{4 D t}}\right)$

Prob. density of distinct/common sites for N

Joint distribution:
Prob. $\left[M_{1}(t) \leq L_{1}, m_{1}(t) \leq L_{2}\right] \rightarrow g\left(\frac{L_{1}}{\sqrt{4 D t}}=I_{1}, \frac{L_{2}}{\sqrt{4 D t}}=I_{2}\right)$
No. of distinct/common sites $D_{1}(t)=C_{1}(t)=M_{1}(t)+m_{1}(t)$
Prob. density: Prob. $\left[D_{1}(t)\right]=\operatorname{Prob} .\left[C_{1}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} P_{1}\left(\frac{D_{1}(t)}{\sqrt{4 D t}}\right)$

$$
P_{1}(x)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2} g}{\partial l_{1} \partial l_{2}} \delta\left(x-I_{1}-I_{2}\right) d l_{1} d l_{2}
$$

Prob. density of distinct/common sites for N

Joint distribution:
$\operatorname{Prob} .\left[M_{1}(t) \leq L_{1}, m_{1}(t) \leq L_{2}\right] \rightarrow g\left(\frac{L_{1}}{\sqrt{4 D t}}=I_{1}, \frac{L_{2}}{\sqrt{4 D t}}=I_{2}\right)$
No. of distinct/common sites $D_{1}(t)=C_{1}(t)=M_{1}(t)+m_{1}(t)$
Prob. density: Prob. $\left[D_{1}(t)\right]=\operatorname{Prob} .\left[C_{1}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} P_{1}\left(\frac{D_{1}(t)}{\sqrt{4 D t}}\right)$

$$
P_{1}(x)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2} g}{\partial l_{1} \partial l_{2}} \delta\left(x-I_{1}-l_{2}\right) d l_{1} d l_{2}
$$

$$
P_{1}(x)=\frac{8}{\sqrt{\pi}} \sum_{m=1}^{\infty}(-1)^{m+1} m^{2} e^{-m^{2} x^{2}}
$$

Prob. density of distinct/common sites for N

Joint distribution:
Prob. $\left[M_{1}(t) \leq L_{1}, m_{1}(t) \leq L_{2}\right] \rightarrow g\left(\frac{L_{1}}{\sqrt{4 D t}}=I_{1}, \frac{L_{2}}{\sqrt{4 D t}}=I_{2}\right)$
No. of distinct/common sites $D_{1}(t)=C_{1}(t)=M_{1}(t)+m_{1}(t)$
Prob. density: Prob. $\left[D_{1}(t)\right]=\operatorname{Prob} .\left[C_{1}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} P_{1}\left(\frac{D_{1}(t)}{\sqrt{4 D t}}\right)$

$$
P_{1}(x)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2} g}{\partial l_{1} \partial l_{2}} \delta\left(x-I_{1}-I_{2}\right) d l_{1} d l_{2}
$$

$$
P_{1}(x)=\frac{8}{\sqrt{\pi}} \sum_{m=1}^{\infty}(-1)^{m+1} m^{2} e^{-m^{2} x^{2}}
$$

$$
P_{1}(x) \rightarrow \begin{cases}2 \pi^{2} x^{-5} e^{-\pi^{2} / 4 x^{2}} & x \rightarrow 0 \\ \frac{8}{\sqrt{\pi}} e^{-x^{2}} & x \rightarrow \infty\end{cases}
$$

Multiple $(N>1)$-step walkers

$M_{i}(t) \rightarrow$ maximum of the i-th walker
$-m_{i}(t) \rightarrow$ minimum of the i-th walker

Distinct sites $D_{N}(t)$ for $(N>1)$ walkers

$M_{i}(t) \rightarrow$ maximum of the i-th walker
$-m_{i}(t) \rightarrow$ minimum of the i-th walker

Distinct sites $D_{N}(t)$ for $(N>1)$ walkers

$M_{i}(t) \rightarrow$ maximum of the i-th walker
$-m_{i}(t) \rightarrow$ minimum of the i-th walker

Distinct:

$$
\begin{aligned}
D_{N}(t) & =D_{N}^{+}(t)+D_{N}^{-}(t) \text { where } \\
D_{N}^{+}(t) & =\max \left[M_{1}(t), M_{2}(t), \ldots, M_{N}(t)\right] \\
D_{N}^{-}(t) & =\max \left[m_{1}(t), m_{2}(t), \ldots, m_{N}(t)\right]
\end{aligned}
$$

Common sites $C_{N}(t)$ for $(N>1)$ walkers

$M_{i}(t) \rightarrow$ maximum of the i-th walker
$-m_{i}(t) \rightarrow$ minimum of the i-th walker

Common sites $C_{N}(t)$ for $(N>1)$ walkers

$M_{i}(t) \rightarrow$ maximum of the i-th walker
$-m_{i}(t) \rightarrow$ minimum of the i-th walker

Common:

$$
\begin{aligned}
C_{N}(t) & =C_{N}^{+}(t)+C_{N}^{-}(t) \text { where } \\
C_{N}^{+}(t) & =\min \left[M_{1}(t), M_{2}(t), \ldots, M_{N}(t)\right] \\
C_{N}^{-}(t) & =\min \left[m_{1}(t), m_{2}(t), \ldots, m_{N}(t)\right]
\end{aligned}
$$

Distribution of $D_{N}(t)$

$$
\begin{aligned}
& D_{N}(t)=D_{N}^{+}(t)+D_{N}^{-}(t) \\
& D_{N}^{+}(t)=\max _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& D_{N}^{-}(t)=\max _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Distribution of $D_{N}(t)$

$$
\begin{aligned}
& D_{N}(t)=D_{N}^{+}(t)+D_{N}^{-}(t) \\
& D_{N}^{+}(t)=\max _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& D_{N}^{-}(t)=\max _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Prob. $\begin{aligned} {\left[D_{N}^{+}(t) \leq L_{1}, D_{N}^{-}(t) \leq L_{2}\right] } & =\prod_{i=1}^{N} \text { Prob. }\left[M_{i}(t) \leq L_{1}, m_{i}(t) \leq L_{2}\right] \\ & =\left[g\left(I_{1}, l_{2}\right)\right]^{N} ; \quad I_{1}=\frac{L_{1}}{\sqrt{4 D t}}, \quad I_{2}=\frac{L_{2}}{\sqrt{4 D t}}\end{aligned}$

Distribution of $D_{N}(t)$

$$
\begin{aligned}
& D_{N}(t)=D_{N}^{+}(t)+D_{N}^{-}(t) \\
& D_{N}^{+}(t)=\max _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& D_{N}^{-}(t)=\max _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Prob. $\left[D_{N}^{+}(t) \leq L_{1}, D_{N}^{-}(t) \leq L_{2}\right]=\prod_{i=1}^{N}$ Prob. $\left[M_{i}(t) \leq L_{1}, m_{i}(t) \leq L_{2}\right]$

$$
=\left[g\left(l_{1}, l_{2}\right)\right]^{N} ; \quad l_{1}=\frac{L_{1}}{\sqrt{4 D t}}, \quad I_{2}=\frac{L_{2}}{\sqrt{4 D t}}
$$

Prob. density: Prob. $\left[D_{N}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} P_{N}\left(\frac{D_{N}(t)}{\sqrt{4 D t}}\right)$

Distribution of $D_{N}(t)$

$$
\begin{aligned}
& D_{N}(t)=D_{N}^{+}(t)+D_{N}^{-}(t) \\
& D_{N}^{+}(t)=\max _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& D_{N}^{-}(t)=\max _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Prob. $\left[D_{N}^{+}(t) \leq L_{1}, D_{N}^{-}(t) \leq L_{2}\right]=\prod_{i=1}^{N}$ Prob. $\left[M_{i}(t) \leq L_{1}, m_{i}(t) \leq L_{2}\right]$

$$
=\left[g\left(l_{1}, l_{2}\right)\right]^{N} ; \quad l_{1}=\frac{L_{1}}{\sqrt{4 D t}}, \quad I_{2}=\frac{L_{2}}{\sqrt{4 D t}}
$$

Prob. density: Prob. $\left[D_{N}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} P_{N}\left(\frac{D_{N}(t)}{\sqrt{4 D t}}\right)$

$$
P_{N}(x)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2} g^{N}}{\partial l_{1} \partial l_{2}} \delta\left(x-l_{1}-l_{2}\right) d l_{1} d l_{2}
$$

Distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

$$
\text { Prob. } \begin{aligned}
{\left[C_{N}^{+}(t) \geq L_{1}, C_{N}^{-}(t) \geq L_{2}\right] } & =\prod_{i=1}^{N} \operatorname{Prob} .\left[M_{i}(t) \geq L_{1}, m_{i}(t) \geq L_{2}\right] \\
& =\left[h\left(l_{1}, l_{2}\right)\right]^{N}
\end{aligned}
$$

Distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Prob. $\left[C_{N}^{+}(t) \geq L_{1}, C_{N}^{-}(t) \geq L_{2}\right]=\prod_{i=1}^{N}$ Prob. $\left[M_{i}(t) \geq L_{1}, m_{i}(t) \geq L_{2}\right]$

$$
=\left[h\left(l_{1}, l_{2}\right)\right]^{N}
$$

where $h\left(l_{1}, l_{2}\right)=1-\operatorname{erf}\left(l_{1}\right)-\operatorname{erf}\left(l_{2}\right)+g\left(l_{1}, l_{2}\right)$

Distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Prob. $\left[C_{N}^{+}(t) \geq L_{1}, C_{N}^{-}(t) \geq L_{2}\right]=\prod_{i=1}^{N}$ Prob. $\left[M_{i}(t) \geq L_{1}, m_{i}(t) \geq L_{2}\right]$

$$
=\left[h\left(l_{1}, l_{2}\right)\right]^{N}
$$

where $h\left(l_{1}, l_{2}\right)=1-\operatorname{erf}\left(l_{1}\right)-\operatorname{erf}\left(l_{2}\right)+g\left(l_{1}, l_{2}\right)$
Prob. density: Prob. $\left[C_{N}(t)\right] \rightarrow \frac{1}{\sqrt{4 D t}} Q_{N}\left(\frac{C_{N}(t)}{\sqrt{4 D t}}\right)$

$$
Q_{N}(x)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial^{2} h^{N}}{\partial l_{1} \partial l_{2}} \delta\left(x-l_{1}-l_{2}\right) d l_{1} d l_{2}
$$

Distributions for fixed N

Distributions for fixed N

Asymptotics for fixed $N \geq 2$:

Distinct:
$P_{N}(x) \rightarrow\left\{\begin{array}{ll}a_{N} x^{-5} e^{-N \pi^{2} / 4 x^{2}} & x \rightarrow 0 \\ b_{N} e^{-x^{2} / 2} & x \rightarrow \infty\end{array} \quad Q_{N}(x) \rightarrow \begin{cases}c_{N} x & x \rightarrow 0 \\ d_{N} x^{1-N} e^{-N x^{2}} & x \rightarrow \infty\end{cases}\right.$
[Kundu, S.M. \& Schehr, PRL, 110, 220602 (2013)]

First and second moments for large N :

First moment:
Distinct: $\quad \frac{\left\langle D_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty} x \frac{d}{d x}[\operatorname{erf}(x)]^{N} d x$
Common: $\quad \frac{\left\langle C_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty}[\operatorname{erfc}(x)]^{N} d x$

First and second moments for large N :

First moment:
Distinct: $\quad \frac{\left\langle D_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty} x \frac{d}{d x}[\operatorname{erf}(x)]^{N} d x$
Common: $\quad \frac{\left\langle C_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty}[\operatorname{erfc}(x)]^{N} d x$
Large N:

First and second moments for large N :

First moment:
Distinct: $\quad \frac{\left\langle D_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty} x \frac{d}{d x}[\operatorname{erf}(x)]^{N} d x$
Common: $\quad \frac{\left\langle C_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty}[\operatorname{erfc}(x)]^{N} d x$

Large N :

Distinct:

$$
\begin{aligned}
\frac{\left\langle D_{N}(t)\right\rangle}{\sqrt{4 D t}} & \approx 2 \sqrt{\ln N}+\frac{\gamma}{\sqrt{\ln N}} ; & & \gamma=0.577216 \ldots \rightarrow \text { Euler const. } \\
\operatorname{Var}\left[\frac{D_{N}(t)}{\sqrt{4 D t}}\right] & \approx \frac{2 \alpha}{\ln N} ; & & \alpha=\gamma+\pi^{2} / 6
\end{aligned}
$$

First moment:
Distinct: $\quad \frac{\left\langle D_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty} x \frac{d}{d x}[\operatorname{erf}(x)]^{N} d x$
Common: $\quad \frac{\left\langle C_{N}(t)\right\rangle}{\sqrt{4 D t}}=2 \int_{0}^{\infty}[\operatorname{erfc}(x)]^{N} d x$

Large N:
Distinct:

$$
\begin{aligned}
\frac{\left\langle D_{N}(t)\right\rangle}{\sqrt{4 D t}} & \approx 2 \sqrt{\ln N}+\frac{\gamma}{\sqrt{\ln N}} ; & & \gamma=0.577216 \ldots \rightarrow \text { Euler const. } \\
\operatorname{Var}\left[\frac{D_{N}(t)}{\sqrt{4 D t}}\right] & \approx \frac{2 \alpha}{\ln N} ; & & \alpha=\gamma+\pi^{2} / 6
\end{aligned}
$$

Common:

$$
\begin{aligned}
\frac{\left\langle C_{N}(t)\right\rangle}{\sqrt{4 D t}} & \approx \frac{\sqrt{\pi}}{N} \quad \text { decreases with } N!! \\
\operatorname{Var}\left[\frac{C_{N}(t)}{\sqrt{4 D t}}\right] & \approx \frac{\pi}{2 N^{2}}
\end{aligned}
$$

Scaling form for the distribution of $D_{N}(t)$

Suggests a scaling form:

$$
P_{N}(x) \sim 2 \sqrt{\ln N} \mathcal{D}(2 \sqrt{\ln N}(x-2 \sqrt{\ln N}))
$$

Scaling form for the distribution of $D_{N}(t)$

Suggests a scaling form:

$$
P_{N}(x) \sim 2 \sqrt{\ln N} \mathcal{D}(2 \sqrt{\ln N}(x-2 \sqrt{\ln N}))
$$

Exact scaling analysis gives:

$$
\mathcal{D}(y)=2 e^{-y} \mathrm{~K}_{0}\left(2 e^{-y / 2}\right) \text { where } \mathrm{K}_{0}(z) \rightarrow \text { modified Bessel function }
$$

$$
\mathcal{D}(y) \rightarrow \begin{cases}y e^{-y} & y \rightarrow \infty \\ \sqrt{\pi} e^{-3 y / 4} \exp \left[-2 e^{-y / 2}\right] & y \rightarrow-\infty\end{cases}
$$

Simple interpretation of the scaling function

$$
\begin{aligned}
& D_{N}(t)=D_{N}^{+}(t)+D_{N}^{-}(t) \\
& D_{N}^{+}(t)=\max _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& D_{N}^{-}(t)=\max _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

$\frac{M_{i}}{\sqrt{4 D t}}=z_{i}$'s \rightarrow i.i.d variables each drawn from: $p(z)=\frac{2}{\sqrt{\pi}} e^{-z^{2}}$ with $z \geq 0$
$\Rightarrow D_{N}^{+}($centered and scaled $) \rightarrow$ Gumbel distributed:

$$
P_{G}(x)=e^{-x} \exp \left[-e^{-x}\right]
$$

As $N \rightarrow \infty, D_{N}^{+}$and D_{N}^{-}becomes uncorrelated
Thus, $D_{N}(t) \rightarrow$ sum of two independent Gumbel variables

$$
\mathcal{D}(y)=\int_{-\infty}^{\infty} d x P_{G}(x) P_{G}(y-x)=2 e^{-y} \mathrm{~K}_{0}\left(2 e^{-y / 2}\right)
$$

Scaling form for the distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Scaling form for the distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Exact large N analysis gives: $Q_{N}(x) \sim N \mathcal{C}(N x)$ where $\mathcal{C}(y)=\frac{4}{\pi} y \exp \left[-\frac{2}{\sqrt{\pi}} y\right]$ [Kundu, S.M. \& Schehr, PRL, 110, 220602 (2013)]

Scaling form for the distribution of $C_{N}(t)$

$$
\begin{aligned}
& C_{N}(t)=C_{N}^{+}(t)+C_{N}^{-}(t) \\
& C_{N}^{+}(t)=\min _{1 \leq i \leq N}\left\{M_{i}(t)\right\} \\
& C_{N}^{-}(t)=\min _{1 \leq i \leq N}\left\{m_{i}(t)\right\}
\end{aligned}
$$

Exact large N analysis gives: $Q_{N}(x) \sim N \mathcal{C}(N x)$ where $\mathcal{C}(y)=\frac{4}{\pi} y \exp \left[-\frac{2}{\sqrt{\pi}} y\right] \quad[K u n d u$, S.M. \& Schehr, PRL, 110, 220602 (2013)]
Interpretation: For large N, C_{N}^{+}and C_{N}^{-}get uncorrelated
Thus, $C_{N}(t) \rightarrow$ sum of two independent Weibull variables each distributed with $P_{W}(x)=\frac{2}{\sqrt{\pi}} e^{-2 x / \sqrt{\pi}} \theta(x)$

$$
\mathcal{C}(y)=\int_{0}^{\infty} d x P_{W}(x) P_{W}(y-x)=\frac{4}{\pi} y \exp \left[-\frac{2}{\sqrt{\pi}} y\right]
$$

Summary and Conclusions

- Mean number of common sites visited by N noninteracting random walkers in all dimensins d

$$
\begin{array}{ll}
\text { As } t \rightarrow \infty \\
\left\langle C_{N}(t)\right\rangle \sim t^{\nu}
\end{array} \quad \nu= \begin{cases}d / 2 & d<2 \\
N-\frac{d}{2}(N-1) & 2<d<d_{c}(N)=\frac{2 N}{N-1} \\
0 & d>d_{c}(N)\end{cases}
$$

Summary and Conclusions

- Mean number of common sites visited by N noninteracting random walkers in all dimensins d

$$
\begin{array}{ll}
\text { As } t \rightarrow \infty \\
\left\langle C_{N}(t)\right\rangle \sim t^{\nu}
\end{array} \quad \nu= \begin{cases}d / 2 & d<2 \\
N-\frac{d}{2}(N-1) & 2<d<d_{c}(N)=\frac{2 N}{N-1} \\
0 & d>d_{c}(N)\end{cases}
$$

- Full prob. dist. of the number of distinct sites $D_{N}(t)$ and common sites $C_{N}(t)$ in $d=1$ for all N
Exact scaling functions for large $N: \quad \mathcal{D}(y)=2 e^{-y} \mathrm{~K}_{0}\left(2 e^{-y / 2}\right)$

$$
\mathcal{C}(y)=\frac{4}{\pi} y \exp \left[-\frac{2}{\sqrt{\pi}} y\right]
$$

Summary and Conclusions

- Mean number of common sites visited by N noninteracting random walkers in all dimensins d

$$
\begin{array}{ll}
\text { As } t \rightarrow \infty \\
\left\langle C_{N}(t)\right\rangle \sim t^{\nu}
\end{array} \quad \nu= \begin{cases}d / 2 & d<2 \\
N-\frac{d}{2}(N-1) & 2<d<d_{c}(N)=\frac{2 N}{N-1} \\
0 & d>d_{c}(N)\end{cases}
$$

- Full prob. dist. of the number of distinct sites $D_{N}(t)$ and common sites $C_{N}(t)$ in $d=1$ for all N
Exact scaling functions for large $N: \mathcal{D}(y)=2 e^{-y} \mathrm{~K}_{0}\left(2 e^{-y / 2}\right)$

$$
\mathcal{C}(y)=\frac{4}{\pi} y \exp \left[-\frac{2}{\sqrt{\pi}} y\right]
$$

Open Questions:

- Distributions of $D_{N}(t)$ and $C_{N}(t)$ in higher dimensions $d>1$
- Interacting walkers: e.g. Vicious walkers

Growth of the mean no. of distinct sites visited with time

Flg. 3 a Visudication of the actual set $\mathrm{S}_{\text {N }}(t)$ of sites visited by N random nakers at a sequerce of four susessive imes t, showirg the progessive routhering of the surface of this set as time increases. Shown is the case $N=500$. The set of $\xi_{,}(t)$ nisted sites is shomn as wite, the 500 individua rancom wakers re shom in ined, and the unvisted virgin ternitory is shown in tiadk., The case $N=1,00$ at late time, which demonstrates the part played by ony a few indivibual random walkers in causirt the roughening of the interface of the set S_{N} it
$\left\langle D_{N}(t)\right\rangle$

$$
\sim t^{d} \quad t<t_{1}^{*}
$$

$$
\sim t^{d / 2}\left[\ln \left(N\left\langle D_{1}(t)\right\rangle t^{-d / 2}\right)\right]^{d / 2}
$$

$$
t_{1}^{*}<t<t_{2}^{*}
$$

