

The rebinding effect and reduced models for ligand binding processes

Marco Sarich Freie Universität Berlin

DFG Research Center MATHEON *Mathematics for key technologies*

10.09.2013

Bivalent docking examples

Ligand: tamoxifen with PEG bridge Receptor: a-estrogen receptor Solvent: water

Bivalent docking examples

Ligand: tamoxifen with PEG bridge Receptor: a-estrogen receptor Solvent: water

Ligand: bivalent ammonium-ion Receptor: bivalent rotaxane Solvent: water & methanol

Intermediate states lead to problems

Partitioning of state space

Marco Sarich - Freie Universität Berlin

Rebinding effect as recrossing problem

Weber, Fackeldey, 2013.

$$dX_t = -\nabla V(X_t)dt + \sigma dB_t$$

Less pronounced rebinding effect

Strong rebinding effect for all possible boundaries

Does this solve the problem?

How well does the Markov chain $P_{ij} = \mathbb{P}[X_{t+\tau} \in A_j | X_t \in A_i]$ approximate the dynamics?

Transfer operator:

$$T := T_{\tau} = e^{L\tau}, \qquad (Lv)(x) = \frac{1}{2}\sigma^2 \Delta v(x) - \nabla V(x) \cdot \nabla v(x).$$

Implied timescales

$$\eta_i = -\frac{\tau}{\log \lambda_i}$$

 λ_i - largest eigenvalues of transfer operator and its approximation.

	η_1	η_2	η_{3}	η_4
original	17.5267	3.1701	0.9804	0.4524
full partition	16.5478	2.9073	0.8941	0.4006

$$D = span\{\mathbb{1}_{A_1}, ..., \mathbb{1}_{A_n}\}$$

 ${\cal Q}$ - orthogonal projection onto ${\cal D}$

 ${\cal P}$ can be considered as projection of the original transfer operator of the system

 $QT: D \rightarrow D,$

- T : self-adjoint transfer operator (reversible dynamics)
- λ : some eigenvalue
- *u* : a corresponding normalized eigenvector
- λ_1 : largest non-trivial eigenvalue of $\mathcal{T}(\lambda_1 < 1)$
- Q: orthogonal projection onto some subspace D

 $\delta = \|Qu - u\|$ projection error of eigenvector

Then

QT has an eigenvalue $\hat{\lambda}$ with

$$|\lambda - \hat{\lambda}| \le 2\lambda_1 \delta.$$

Sarich, Schütte. Comm. Math. Sci., 2012.

Use instead of a full partition....

...so called **core sets** by cutting out a transition region.

Marco Sarich - Freie Universität Berlin

The core set approach and committors

Projection of transfer operator QT onto $D = span\{q_1, ..., q_n\}$ leads to matrix $P = \hat{T}M^{-1}$ with

 $M_{ij} = \mathbb{P}[\text{after time } t \text{ process will hit next } C_j \mid at time t \text{ process came last from } C_i]$

and

 $\hat{T}_{ij} = \mathbb{P}[\text{after time } t + \tau \text{ process will hit next } C_j \mid at time t \text{ process came last from } C_i].$

...and it can be proven to be more accurate!

$$||u - Q_{cores}u|| \le ||u - Q_{full}u|| - ||(u - Q_{full}u)|_{c}|| + \frac{\rho}{\eta},$$

$$\rho \leq \max_{x \in C} \mathbb{E}_x[\tau(C^c)]$$

- $\blacktriangleright \eta$ implied timescale belonging to u
- *C* region that is cut out

Sarich, Schütte. Comm. Math. Sci., 2012.

removing the error that comes from approximation by a stepfunction in the region that is cut out

$$\|u - Q_{cores} u\| \le \|u - Q_{full} u\| - \|(u - Q_{full} u)|_{C}\| + \frac{\rho}{\eta},$$

- $\rho \leq \max_{x \in C} \mathbb{E}_x[\tau(C^c)]$
- η implied timescale belonging to u
- C region that is cut out

ratio is small if the region that is cut out is left on a much faster timescale than the timescale of interest

Example

	η_1	η_2	η_3	η_4
original	17.5267	3.1701	0.9804	0.4524
core sets	17.3298	3.1332	0.9690	0.4430
full partition	16.5478	2.9073	0.8941	0.4006

The two committor functions define affiliations to the bound and unbound state.

Approximation of the eigenvector by the committors with respect to two macro states.

Example

	T_1	T_2	<i>T</i> ₃	T_4
original	17.5267	3.1701	0.9804	0.4524
2 core sets	17.5043	-	-	_
9 core sets	17.3298	3.1332	0.9690	0.4430
full partition	16.5478	2.9073	0.8941	0.4006

Building a finer model

Using a multigrid

Let $C_j = \{C_1^j, ..., C_{n_j}^j\}$ be an increasing sequence of core set discretizations, i.e.

 $C_i \subset C_j$ for all $j \ge i$.

Using a multigrid

Let $C_j = \{C_1^j, ..., C_{n_j}^j\}$ be an increasing sequence of core set discretizations, i.e.

 $C_i \subset C_j$ for all $j \ge i$.

Iterative Space Construction

Level 1: $D_1 = span\{q_1, ..., q_n\}$, q_i usual committors. Level k + 1: $D_{k+1} = \hat{D}_{k+1} \cap D_k^{\perp}$, where \hat{D}_{k+1} is the usual committor space for the cores on level k + 1.

Total space for projection with *m* levels: $D = D_1 + ... + D_m$

Computing the model

A matrix representation $P = \hat{T}M^{-1}$ can again be computed from stochastic quantities.

Assume C_i was first introduced on level k and C_j was first introduced on level l, then

 $M_{ij} = \mathbb{P}[\text{hit } C_j \text{ next on level } l \mid \text{came from } C_i \text{ on level } k].$

Mutilevel committors for 4 sets and 2 levels.

Example

	T_1	<i>T</i> ₂	<i>T</i> ₃	<i>T</i> ₄
original	17.5267	3.1701	0.9804	0.4524
9 cores multigrid	17.5043	3.1579	0.9703	0.4441
9 core sets	17.3298	3.1332	0.9690	0.4430
full partition	16.5478	2.9073	0.8941	0.4006
2 core sets	17.5043	_	-	_

Ch. Schütte and M. Sarich. Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches. Courant Lecture Notes, 24. American Mathematical Society, 2013.

M. Weber, K. Fackeldey. Computing the Minimal Rebinding Effect Included in a Given Kinetics. Submitted to MMS, 2013.

M. Sarich and Ch. Schütte. Approximating Selected Non-dominant Timescales by Markov State Models. Comm. Math. Sci., 2012.

N. Djurdjevac, M. Sarich, and Ch. Schütte. Estimating the Eigenvalue Error of Markov State Models. Multiscale Modeling and Simulation, 10(1): 61–81, 2012.

M. Weber, A. Bujotzek, R. Haag: Quantifying the rebinding effect in multivalent chemical ligand-receptor systems. Journal of Chemical Physics, 137(5):054111, 2012.

C. Schütte, F. Noé, J. Lu, M. Sarich, and E. Vanden-Eijnden. Markov state models based on milestoning. J. Chem. Phys, 134 (20), 2011.

M. Sarich, F. Noe, and Ch. Schütte. On the approximation quality of markov state models. Multiscale Modeling and Simulation, 8(4): 1154–1177, 2010.