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It is easier to go down a hill than 
up but the view is much better at 

the top - H. W. Beecher

• Rare events matter  - challenge for modeling and computations.

• Rare events pathways are often predictable - large deviation theory (LDT).
           Numerical aspects: minimum action method & string method.

• LDT-based importance sampling strategies - UQ and reliability Q, filtering, etc. 

• Beyond LDT - when entropy matters. 

A tour on the computational side of 
Large Deviation Theory
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Unlikely (or infrequent) events matter

• Some events are rare (i.e. infrequent) but have dramatic consequences - massive 
earthquakes, giant hurricanes, pandemics, etc.

• Rare events can be less dramatic but important nonetheless - for example, electronic 
components or engineering devices used in automobile, aerospace and medical are 
required to be extremely reliable, with very small probability of failure.

• Rare events always happen eventually given enough time and may be the most 
interesting/important aspect of the system’s dynamics - e.g. conformational changes of 
macromolecules, kinetic phase transitions, thermally induced magnetization reversal in 
micromagnets, regime changes in climate, etc. 

              - Metastability.
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Unlikely (or infrequent) events matter

• Realistic models (SODEs, SPDEs, Markov jump processes, etc.) are often too 
complex to be amenable to analytical solution.

• Direct numerical simulations of these models very challenging or even impossible.

• Requires new computational approaches based e.g. on large deviation theory (LDT).

• Requires to go beyond LDT in certain situations - entropic effects, ruggedness, etc.

Friday, September 13, 13



Large Deviation Theory

• The way rare events occur is often predictable:  the probability of the rare event is 
dominated by the most likely (i.e. least unlikely) scenario for it to happen - essence of 
large deviation theory.

  Happy families are all alike; every unhappy family is unhappy in its own way -Tolstoi. 

• Calculation of the path of maximum likelihood (PML) reduces to a deterministic 
optimization problem.

• For example, in gradient systems (i.e. 
systems navigating over an energy landscape), 
rare events are associated with barrier crossing 
events and follow the minimum energy path (MEP) 
connecting two minima of the energy potential.
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Freidlin-Wentzell Approach to LDT
Wentzell-Freidlin theory of large deviations (W. & F.; Da Prato & Zabczyk)

Key object: action functional

ST(�) =
1

2

Z T

0

�

���1(�(t))(�̇(t)� b(�(t)))
�

�

2
dt

associated with S(P)DE

dX"(t) = b(X"(t))dt+
p
" �(X"(t))dW (t)

Then: Probability that {X"(t)}t2[0,T ] be close to a given path {�(t)}t2[0,T ] is roughly

P
⇢

sup
0tT

|X"(t)� �(t)| < �

�

⇣ exp(�"�1ST(�))

.

Reduce estimation of probability to a minimization problem, e.g.

P{X"(T ) 2 A|X"(0) = x} ⇣ exp(�"�1 inf ST(�)),

where the infinum is taken over all �(·) such that �(0) = x and �(T ) 2 A.

Looking at long times, T ⇣ exp("�1C) for some C > 0, the quasi-potential is key:

V (x, y) = inf
T

inf
�
{ST(�) : �(0) = x,�(T ) = y}

Minimizers of quasipotential give the MLP for the event on the infinite time-horizon.
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The role of the Quasi-Potential (QP)

Looking at long time-intervals, T ⇣ exp("�1C) for some C > 0, the quasi-potential
V : H2 7! R is the key quantity:

V (x, y) = inf
T

inf
�
{ST(�) : �(0) = x,�(T ) = y}

Interpretation:

V (x, y) = � lim
T!1

lim
�!0

lim
"!0

"�1 logP{⌧"
y(x)  T}

where ⌧"
y(x) is the first is the first entrance time in a �-neighborhood of y:

⌧"
y(x) = inf{t : X"(t) 2 B�(y), X

"(0) = x}

Long time intervals most relevant since the e↵ects of the noise
is unavoidable on these timescales.
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Computational side of LDT

• Numerical tools (string method, minimum action method - MAM, etc.) have been 
developed to identify the paths by which rare events are most likely to occur.

.

• These tools have been applied to problems from biochemistry, material sciences, 
atmosphere-ocean sciences, etc. 

Over every mountain there is a 
path, although it may not be seen 

from the valley -T. Roethke

String method and MAM evolve curves 
while controlling their parametrization until 
they converge to the MLP. 

Applicable to both gradient systems (where 
MLPs are MEPs) and non-gradient 
systems.
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Geometric rephrasing of QP definition         
(M. Heymann & E. V.-E., 2008)

V (x, y) ⇣ inf
T

inf{ST(') : '(0) = x,'(T ) = y}

= 1
2 inf

n

R

�kbka sin
2(2⌘)ds : � joins x to y

o

where kuk2a = hu, uia with hu, via = ha�1(x)u, vi if h·, ·i was the original inner-product,
and ⌘ is the local value of the angle between � and b.

Parametrize � = {'(s) : s 2 [0,1]} so that:

V (x, y) = inf
n

R 1
0 (k'

0kakb(')ka � h'0, b(')ia) ds : '(0) = x,'(1) = y
o

= inf
'(·)

'(0)=x
'(1)=y

sup
✓(·)

H(',✓)=0

R 1
0h'

0, ✓ids

where H(', ✓) is the Hamiltonian associated with the Lagrangian L(','0) = k'0�b(')k2a:

H(', ✓) = hb('), ✓i+ 1
2h✓, a(')✓i
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Geometric rephrasing of QP definition         
(M. Heymann & E. V.-E., 2008)

The associated Euler-Lagrange equations can be written as
⇢

�'0 = H✓(', ✓) = b(') + ✓

�✓0 = �H'(', ✓) = �rbT(')✓

where � is determined such that 0 = H(', ✓) and we impose some (arbitray) constraint
on the paramterization of �, e.g. |'0| = cst.

Di↵erentiating the equation for ' and using the one for ✓, this system of equations
can be written as

0 = �2'”+ ��0'0 � �H✓''
0 +H✓✓H'

which can be reduced to

0 = �2'”� P
�

�H✓''
0 �H✓✓H'

�

, P = Id�
'0 ⌦ '0

|'0|2
(?)

where we used P'0 = 0, P'00 = '00 (since |'0| = cst) and

✓ = a�1
�

�'0 � b
�

, � =
kbka
k'0ka
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Allen-Cahn equation in 2D - MEPs
Example: Allen-Cahn in one- and two-dimensions (Faris & Jona-Lasiinio (1d); E, Ren
& V.-E.)

Allen-Cahn energy for u : [0,1]2 7! R:

E(u) =
Z

[0,1]2

�

1
2�|ru|2 + 1

4��1(1� u2)2
�

dx

with Dirichlet boundary condition: u = +1 on the right and left edges of [0,1]2,
u = �1 on top and bottom ones.

Two minimizers of the Allen-Cahn energy

Two minimizers of the Allen-Cahn energy

Simulations by W. Ren
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Allen-Cahn equation in 2D - MLPs at finite T
Example: Allen-Cahn in two-dimensions (E, Ren & V.-E.)

Dynamics:

ut = �2�u+ u� u3 +
p
2" ⌘(t, x)

Action:

ST(') =
1

2

Z T

0

Z

⌦
|'t � �2�'� '+ '3|2dxdt

Time-constrained reversalUnconstrained reversal
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Thermally induced magnetization reversal
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Dynamics can be reduced to a Markov jump process on 
energy map, whose nodes are the energy minima and 
whose edges are the minimum energy paths 

(W. E, W. Ren & E. V.-E., 2003: A. Kent, D. Stein & E. V.-E., 2009 ...)

Main building blocks in Magnetoelectronics (used e.g. as 
storage devices, etc.)

Small elements at superparamagnetic limit, where thermal 
effects become important and limit data retention time by 
magnetization reversal.

Reversal complex due to non-uniformity in space.
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Non-gradient effects - example: AC with advection  

in 2D with periodic BC

MLPs for different shear strengths

Example: Allen-Cahn in two-dimensions ( E, Ren & V.-E.)

Dynamics:

u t = � 2 � u + u � u 3 +
p

2 " ⌘ ( t , x )

Action:

S T ( ' ) =
1

2

Z T

0

Z

⌦
| ' t � � 2 � ' � ' + ' 3 | 2 d x d t

Dynamics:

u t = � 2 � u + u � u 3 + c sin( y ) u x +
p

2 " ⌘ ( t , x )

Simulations by M. Heymann and M. Tao
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Non-gradient effects - example: AC with advection  
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Rare event and most probable path
Gradient system

Non-gradient system
Sheared Ginzburg-Landau SPDE

The system
Most probable paths of different types
Optimal shear
Brief description of the numerical method

Transition via a limit cycle instead of saddle

Action⇡0.4.

Dynamics near the limit cycle @ Matlab.

Molei Tao and Eric Vanden-Eijnden gMAM and most probable paths
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Unstable limit cycle along PML
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Application to fluid dynamics problems

u

t

+ uu

x

= ⌫u

xx

+ ⌘(x, t), h⌘(x, t)⌘(x0
, t

0)i = �(x� x

0)�(t� t

0)

We consider the velocity field starting at rest for t ! �1 and we are interested
in noise realizations that lead to strong negative gradients at t = 0. This setup is
similar to the analytic treatment in [1]. We choose as our observable

O(u) =

Z
w(x)u

x

(x, t = 0) dx, w(x) =
1p
2⇡�2

e�x

2
/(2�2). (5.12)

For this case, our Hamiltonian equations can be written as

u0 =
ku0k

�

kB(u)k
�

✓Z
�(x� x0)p(x0)dx0 +B(u)

◆
(5.13a)

p0 = � ku0k
�

kB(u)k
�

(@B)+p = � ku0k
�

kB(u)k
�

(up
x

+ ⌫p
xx

) . (5.13b)

Here, the prime denotes di↵erentiation with respect to arclength-coordinate ⌧ . The
initial condition for the velocity field u is u(x, t) = 0 for t ! �1, the final condition
for the auxiliary field p is p(t = 0�) = �w

x

as we can see from (5.12) using integration
by parts. The norm k ·k

�

is given by the inverse of � on its support (which is compact
in Fourier domain), hence

kfk
�

=
���fF�1

⇣
�̂�1f̂

⌘���
L

2
, (5.14)

where, F�1 denotes the inverse Fourier transform operator and f̂ is the Fourier trans-
form of f .

For comparison with previous work [2, 5], it is useful to compare the above equa-
tions to the corresponding instanton equations in the original parametrization (using
the time t as parameter)

u
t

+ uu
x

� ⌫u
xx

=

Z
�(x� x0)p(x0)dx0 (5.15a)

p
t

+ up
x

+ ⌫p
xx

= 0. (5.15b)

A main problem in solving the above equations with the boundary conditions
u = 0 at t ! 1 and p(0�, x) = �w

x

consists in the fact that the fixpoint of the
system is only reached in the limit t ! �1 and not in finite time. When Chernykh
and Stepanov computed a numerical solution to the system above, they used a com-
bination of two clever tricks to mitigate this di�culty: First, they used self-similar
properties of the heat-kernel to design a coordinate transform that leads to an expo-
nential rescaling in time, second they used the linearization of the system around zero
in order to replace the boundary condition u = 0 by u = �0p (where the constant �0

can be computed from the correlation function �). In the following we show that the
geometric reformulation of the instanton equations leads to a natural rescaling of time
that allows for direct e�cient numerical solution, which is furthermore transferable
to similar situations without any modification.

We implemented the iterative algorithm outlined in section 4, employing a second
order Heun integration of the geometric equations of motion (5.13) and compare it
to a similar iterative algorithm, but integrating the time-parametrized equations of
motion (5.15), instead. The space variable is resolved with N

x

= 512 grid-points, and
all derivatives in space are calculated via Fourier transforms. For the calculations
presented here we chose � = 0.1 and ⌫ = 1

2 .

11

▷	  Random Burgers equation (with T. Grafke, R. Grauer and T. Schäfer)

Key question: statistics of high gradients (responsible for dissipation)

Hamilton’s equation associated with LD action (cf. Balkovsky et al.; Chernykh & Stepanov):
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Application to fluid dynamics problems

▷	  2D barotropic QG equation          (with W. Ren & X. Yang)

Dissipation by Eckman drag - fixes the noise by FDT

Motivation

Methodology

Stochastic
ODE model

Stochastic
PDE model

Conclusions

Dissipation via Ekman drag: �1 = ���2, �2 = e�

@q
@t

+r? ·rq + U(t)
@q
@x

+ �
@ 

@x
= ��q +

p
2"�⌘(t , x , y)� � �(t),

q = � + h,
dU
dt

=

Z
h
@ 

@x
dx � e�� +

p
2"e�⇠(t) + e�U�(t),

where

�(t) =

Z
 (��q +

p
2"� � ⌘) dx + U(e�� �

p
2"e� � ⇠)

�

Z
| |2 dx + e�U2

.

N.B. fixing the damping fixes the forcing by fluctuation-dissipation
theorem (FDT).

Motivation

Methodology

Stochastic
ODE model

Stochastic
PDE model

Conclusions

Metastable states of invariant measure

Minimize the enstrophy Q subject to the constraint E = E0:

min
U, 

Q = �U +
1
2

Z
q2 dx dy ,

s.t.
1
2

U2 +
1
2

Z
|r |2 dx dy = E0.

Using Lagrange multiplier,

µUc = ��, µ� c = �(� c + h).

N.B. These are the stationary solutions of the original system
without dissipation and forcing.

Most likely states of equilibrium distribution 
minimize enstrophy at E = cst:
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For E large enough, there are more than one solution, 
out of which two are stable in absence of noise.

Motivation

Methodology

Stochastic
ODE model

Stochastic
PDE model

Conclusions

Two-dimensional barotropic QG equations

@q
@t

+r? ·rq + U(t)
@q
@x

+ �
@ 

@x
= Dq(�)q + Fq,

q = � + h,
dU
dt

=

Z
h
@ 

@x
dx dy +DU(U) + FU ,

Here  (t , x , y) is the stream function, q(t , x , y) the vorticity,
h(x , y) the bottom topography, U(t) the zonal base flow and
� the beta-plane parameter (Pedlosky 79, Vallis 05).

Inviscid equations with D = F = 0 preserve

Energy E =
1
2

U2 +
1
2

Z
|r |2 dx dy ,

Enstrophy Q = �U +
1
2

Z
|q|2 dx dy .

Motivation

Methodology

Stochastic
ODE model

Stochastic
PDE model

Conclusions

Predictions of equilibrium statistical mechanics

IM maximizes the entropy �
R
µ logµ under the constraints:

Canonical:
Z

Q dµ = Q0, Microcanonical: E = E0.

dµ = Z�1 exp(�"�1Q)�(E � E0) dUd ,

Most likely states = selective decay states – in QG flow,
enstrophy varies faster than energy.
Only choice leading to multimodal distribution.

Dynamics? choose D and F so that we formally have the
invariant measure (cf strategy of Landau-Lifshitz for NS
equations)
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Application to fluid dynamics problems

▷	  2D barotropic QG equation

Motivation

Methodology

Stochastic
ODE model

Stochastic
PDE model

Conclusions

Example (16-mode topography)
We take the domain size as Lx = 2⇡, Ly = ⇡. The
parameters are chosen as � = 1, E0 = 10. The friction
coefficients are taken as � = e� = 4.

16 modes topography with periodic BC:Nonequilibrium Statistical Mechanics of Climate Variability 15
(a) (b) (c)
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Figure 8. Snapshots of the stream function  along the transition path from X0 to X1; the
states labeled by (a) and (i) are the initial and final states, and (f) is the saddle point. The
pathway is di↵erent from the one connecting X1 to X0 as shown in Figure 11.
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Figure 9. The zonal flow U (left) and enstrophy Q (right) along the transition path from X0

to X1. The maximum of Q corresponds to the saddle point (f) in Figure 7 and Figure 8.

4. Conclusion

In this paper, we introduced stochastic models and computational tools for the study of
transitions between metastable states in climate systems. Specifically we studied transi-
tions in the dynamics of barotropic flow on a beta plane with topography in the presence
of a stochastic forcing and dissipation.

The model can capture the noise-induced transition between di↵erent metastable states
that coincide with the physically relevant selective decay states. The maximum likelihood

Snapshots of streamfunction along PML
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Markov Jump Processes

▷	  Application to genetic toggle switch (Roma et al.)
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Expression of gene a inhibits 
expression of gene b and vice-versa 

(Lf)(x) =
NX

j=1

"

�1
aj(x) (f(x+ "⌫j)� f(x))

• M species involved in N reactions with rates depending on system state

• Reactions are fast but lead to small changes:

• Hamiltonian of LDT: H(x, ✓) =
NX

j=1

aj(x)
⇣
eh✓,⌫ji � 1

⌘
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Beyond LDT - when entropy matters

• LDT can fail if entropic effects matter 
   - many alternative paths for the event, 
     with lower probability individually, but large one globally.

• These situations require a more general approach to rare event analysis.
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Transition Path Theory
   

• Main idea: focus on `reactive’ trajectories 
    associated with a given transition (reaction) A B

• Generator = transition rate matrix

• Microscopic reversibility (detailed balance)

• Probability distribution of reactive trajectories

• Probability current of reactive trajectories

• Committor function: 

µiLi,j = µjLj,i

µR
i = µiqi(1� qi)

qi = Ei(⌧B < ⌧A)

fR
i,j = µiLi,j(qj � qi)+ LR

i,j = Li,j(qj � qi)+

Li,j i, j 2 S = {1, 2, . . . , N}

Generator of loop erased reactive paths

                                           (Weinan E & V.-E. 2006, ...
                                                                              Schütte, Metzner & V.-E. 2009,
                                                                              Berezhkovskii, Hummer & Szabo 2009)
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The example of a maze

A

B

Effective current Committor
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No energy landscape, no clear transition state - not a mountain pass problem.

Many different reactive paths from entrance to exit - the walkers wanders 
in the many deadends of the maze and this affects dramatically the rate 
of the `reaction’. 
Yet the current of these reactive trajectories concentrates on a single path.
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 icosahedron

 octahedron

• Double funnel landscape - ground state is not accessible directly by 
self-assembly and requires dynamical reorganization; 

• Can be described by a MJP using the network calculated by Wales; 

• ~1e4 local minima of potential; 
• ~1e4 saddle points between these minima; 
•  Network of orbits (minimum energy paths); 
• Transition matrix ;

• Spectral analysis difficult (large network, many small eigenvalues).

• Can be analyzed by TPT.     
• LDT only applicable at extremely low temperatures. At physical  
temperature, system remains strongly metastable, but pathways and 
rate of transition are different than those predicted by LDT (entropic 
effects).    

Li,j = ⌫e��Vi,j/"

Reorganization of LJ cluster after self-assembly
with Masha Cameron
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Reorganization of LJ cluster after self-assembly
with Masha Cameron

Number of transition pathways 
increase with T

They become shorter and go thru 
higher barriers 

Figure 3: The cartoon of the transition process at T = 0.05 from ICO (state 7) to FCC (state
1). The edges shown carry at least 10% of the total reactive flux from ICO to FCC. The blue
arrows indicate the dominant representative pathway. The red arrows indicate the highest barriers:
V(342,254) = 4.219 and V(958,1) = 4.272. The percentages next to each arrow show the percentages
of the total reactive flux carried by the edge. The values of the committor q at some states are
shown.

11

Figure 6: The cartoon of the transition process at T = 0.15 from ICO (state 7) to FCC (state 1).
The edges shown carry at least 10% of the total reactive flux from ICO to FCC or constitute the
dominant representative pathway. The blue arrows indicate the dominant representative pathway.
The red arrows indicate the highest barriers: V(342,254) = 4.219, V(958,1) = 4.272 and V(3223,354) =
4.352. The percentages next to each arrow show the percentages of the total reactive flux carried
by the edge. The values of the committor q at some states are shown.

14
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Reorganization of LJ cluster after self-assembly
with Masha Cameron

T= 0.05 T= 0.15

The highest potential barrier 
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• LDT gives rough estimate of probability and path of maximum likelihood by which rare 
event occur.

• Can be integrated in importance sampling procedures to estimate the probability of the 
rare events, its rate of occurrence, etc.

• Can be used in data assimilation techniques - allows to optimally incorporate the 
information from noisy observations. Also offers the possibility to prevent or precipitate the 
occurrence of rare events in situations where the system’s evolution can be acted upon.

• In situation where entropy matters and LDT becomes inapplicable, TPT is the right 
framework.

Thanks to Weinan E, Weiqing Ren, Matthias Heymann, Masha Cameron, Jonathan Weare, ...

Thank you!

Conclusions
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