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Transport team

Out-of-equilibrium
å Road Traffic
å Intracellular traffic
å Pedestrian traffic

Experiments on pedestrian
traffic (PEDIGREE Project)
Data analysis
Experiment-based models
Today: Modeling based on
exclusion processes
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Work realized in collaboration
with Julien Cividini and Henk Hilhorst
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Plan

1 Introduction: exclusion processes
Update schemes
The frozen shuffle update

2 Crossing of two perpendicular pedestrian flows
Diagonal patterns and chevron effect
Mean-field approach
Wake and effective interaction

3 Domain-wall theory for deterministic TASEP with parallel update
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Exclusion Processes

TASEP = Totally Asymmetric Simple Exclusion Process

Periodic Boundary
Conditions

1 β

α

1

1 L

Open Boundary Conditions
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Cellular automata models for pedestrians

Floor field model
[C. Burstedde et al, Physica A 295 (2001) 507-525]

Ex: PEDGO Software

Cellular automaton = geometry + rules + update
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Updates (discrete time)

random sequential update
The unit time step is divided into microsteps δt = 1/N
One particle is randomly chosen and updated at each
microtimestep

å close to a continuous time
å large fluctuations

parallel update
All particles are updated in parallel
The state of a particle at time t + 1 is determined by the state of the
system at time t

å road traffic (∆t = 1 = reaction time)
å conflicts are possible (crossing, lane changing...).
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Updates

ordered sequential update (forward, backward...)
å depends on the geometry of the system

random shuffle update [Wölki et al (2006); Smith & Wilson (2007)
J. Phys. A]

The order of the updates is chosen randomly at each time step
Each particle is updated once per time step according to this
predefined order.

å proposed to model pedestrian traffic
å no conflicts, bounded fluctuations
å but still, the same pedestrian can be updated twice in a row

frozen shuffle update
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Frozen shuffle update

A phase τi ∈ [0,1[ is attached
to each newly created pedestrian.
It remains unchanged during the
whole simulation.

At each time step, pedestrians are updated in the order of
increasing phases (time t + τi ).

τi = phase in the walking cycle, slight advance
pedestrians have the same speed, no large fluctuations
no conflicts

Deterministic TASEP : all possible moves are accepted
å stochasticity comes only from the phases τi .
å analytical predictions

TASEP+PBC: [C. A-R, Cividini & Hilhorst, J. Stat. Mech. (2011) P07009]
TASEP+OBC: [C. A-R, Cividini & Hilhorst, J. Stat. Mech. (2011) P10013]

Can also be applied to more realistic models.
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Mapping a free-flow state to a continuous model

Continuous model: rods of
length one sliding along the
x-axis with velocity 1.

add an underlying discrete network and take snapshots at integer
times s.

å Put a particle on site k if rod i overlaps position x = k .
å A rod i jumps from site k to site k + 1 at time s + τi .
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Intersection of two perpendicular pedestrian flows

Diagonal instability:
• observed in experiments

in
[Hoogendoorn & Daamen,
TGF’03 (Springer) 2005,
pp. 121]

C. Appert-Rolland (LPT) Warwick 9-13 Sept. 2013 11 / 49



Intersection of two perpendicular pedestrian flows

Diagonal instability:
• observed in simulations

[Yamamoto & Okada, in 2011 IEEE Int. Conf. on Robotics and
Automation (ICRA)]
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Intersection of two perpendicular pedestrian flows

Diagonal instability:
• observed in simulations

[Hoogendoorn & Bovy, Optim. Control Appl. Meth., 24 (2003) 153]
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Intersection of two perpendicular pedestrian flows

Diagonal instability:
• observed in simulations

BML Model (city
traffic)

PBC

[Biham, Middleton & Levine, PRA 46 (1992) R6124]
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Intersection of two corridors

α

L

α

O

L
M

M

E = Eastbound
particles
N = Northbound
particles

nE(r), nN (r) = boolean oc-
cupation variables

As α increases: jamming transition
[H. J. Hilhorst, C. A-R, J. Stat. Mech. (2012) P06009]

å Here we consider only the free flow phase.
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Observations

with frozen shuffle update M = 400

Number of encounters made by a particle: g = ρM
= effective coupling constant governing pattern formation
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Observations

å Tilt ∆θ
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Observations

frozen shuffle update
M = 640

alternating parallel
update
M = 300
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Observations

PBC: no tilt
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Figure from Chloé Barré
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Observations

Summary: pattern depends on the boundary conditions
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Mean field equations

We postulate some mean-field equations:

ρEt+1(r) = [1− ρNt (r)]ρEt (r− ex ) + ρNt (r + ex )ρEt (r)

ρNt+1(r) = [1− ρEt (r)]ρNt (r− ey ) + ρEt (r + ey )ρNt (r)

pair correlations 〈nEnN 〉 have been factorized
interaction terms 〈nX nX 〉 between same-type particles have been
neglected (low density)

Simulations: same patterns as for the particle model
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Mean field equations

u PBC

Linear stability analysis
ρE,Nt (r) = ρ+ δρE,Nt (r)

å Most unstable mode
traveling in the (1,1)
direction with
wavelength
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λmax = 2π/|q|max =
√

2π/arccos[(1− 2ρ)/(2− 2ρ)]
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√
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√

3/π)ρ] +O(ρ2),
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Mean field equations

u OBC
Linear stability analysis:

å In preparation [Cividini & Hilhorst]
å no sign of the chevron effect

Chevron effect = non linear effect
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Chevron effect

vE(r) average eastward velocity (in the stationary state)
vN (r) average northward velocity

Hypothesis: Moving stripes are mutually impenetrable

å Possible only if

tan θ(r) =
vN (r)

vE(r)
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Chevron effect

Particle model:
• Definition of velocity

vE,N (r) =
JE,N (r)

〈nE,N (r)〉

where JE,N (r) = stationary current

• If JE,N (r) = J, then

tan θ(r) =
〈nE(r)〉
〈nN (r)〉

• Setting θ = π
4 + ∆θ and expanding yields

∆θ(r) ' 〈n
E(r)〉 − 〈nN (r)〉

2〈nN (r)〉
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Chevron effect

Mean-field equations alternating parallel
update

Is the system able to sustain modes with tilted stripes?
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Chevron effect

In the upper triangle:

Asymmetry:
E stripes (orange) are
dense and narrow
N stripes (blue) are sparse
and wide
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Chevron effect: Identifying a tilted mode

Idealized tilted mode: (alternating parallel update)
Expected near the entrance of E particles

time t time      1t+

A

B

D

(a)

B

A

C

D

(b)

C

figures taken before the hopping of E particles

å Structure of the stripe is preserved
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Chevron effect: Identifying a tilted mode

tan θ = 1−ρkink = 1−ρE = 1−JE

• To lowest order:

∆θ(r) =
α

2

(
180
π

)◦
• Should give an upper bound
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Chevron effect: Identifying a tilted mode

In direct simulations:
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y

alternating parallel update
with α = 0.15
and M = 64
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Effective interactions

From which microscopic mechanism does the (tilted) diagonal pattern
emerge?

å effective interaction between two E particles crossing a flow of N
particles
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Effective interactions

Environment-mediated interactions:

Most well known : depletion forces

[C. Likos, Physics Reports 348 (2001) 267]
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Effective interactions

Environment-mediated interactions: extensively studied
in equilibrium soft matter
[C. Likos, Effective interactions in soft condensed matter physics,
Physics Reports 348 (2001) 267]
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Effective interactions

Environment-mediated interactions: extensively studied
in equilibrium soft matter
and more recently in out-of-equilibrium systems

[Dzubiella, Löwen & Likos, Deple-
tion forces in nonequilibrium, PRL
91 (2003) 1]

Approx: perturbation of the den-
sity field due to the two large par-
ticles
= superposition of the perturba-
tion due to each large particle
separately.
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Effective interactions

Environment-mediated interactions: extensively studied
in equilibrium soft matter
and more recently in out-of-equilibrium systems

[Khair & Brady, On the motion of
two particles translating with equal
velocities through a colloidal disper-
sion, Proc. R. Soc. A 463 (2007)
223]

No superposition approximation
but

interactions in the bath are
neglected
probes are taken aligned

Focus: prediction of effective forces
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Effective interactions

Forces are not relevant for pedestrians
In our case: interaction comes from the dynamical rules
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Effective interactions

Discrete model

[Mejía-Monasterio & Oshanin, Bias- and bath-mediated pairing of particles
driven through a quiescent medium, The royal soc. of chem. 7 (2011) 993]

Numerical study ê existence of an attractive interaction between the
intruders resulting in a statistical pairing
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Wake of a single E particle

Ensemble averaged wake

Frozen shuffle update

Theory Simulation
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Wake of a single E particle

Microscopic structure of the wake:

Central part of the wake : the
shadow

Construction:
Before move: white dot
After move: black dot

Again, at low density, tanθ ' 1− ρN

C. Appert-Rolland (LPT) Warwick 9-13 Sept. 2013 37 / 49



Wake of a single E particle

Microscopic structure of the wake:

Central part of the wake : the
shadow

Construction:
Before move: white dot
After move: black dot

Again, at low density, tanθ ' 1− ρN

C. Appert-Rolland (LPT) Warwick 9-13 Sept. 2013 37 / 49



Wake of a single E particle

Microscopic structure of the wake:

Central part of the wake : the
shadow

Construction:
Before move: white dot
After move: black dot

Again, at low density, tanθ ' 1− ρN

C. Appert-Rolland (LPT) Warwick 9-13 Sept. 2013 37 / 49



Wake of a single E particle

Microscopic structure of the wake:

Central part of the wake : the
shadow

Construction:
Before move: white dot
After move: black dot

Two types of rows:

Again, at low density, tanθ ' 1− ρN
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Two E particles in a flow of N particles

Frozen shuffle update:
Let us put a second E particle (phase τ0) in the shadow of the first one
(phase 0) :

DW DB Kτ

PS(t) = PW (t) + PB(t) +

∫ 1

0
dτ pτ (t)
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Two E particles in a flow of N particles

Frozen shuffle update:
Let us put a second E particle (phase τ0) in the shadow of the first one
(phase 0) :

DW DB Kτ

Low density limit :
Pfs

W (t + 1) = (1− ρfs)Pfs
W (t) + ρfs(1− τ0)Pfs

B (t) + Pfs
>τ0

(t)
Pfs

B (t + 1) = (1− 2ρfs + ρfsτ0)Pfs
B (t) + Pfs

<τ0
(t)

Pfs
<τ0

(t + 1) = ρfsτ0Pfs
W (t) + ρτ0Pfs

B (t)
Pfs
>τ0

(t + 1) = ρfs(1− τ0)Pfs
W (t)

where Pfs
<τ0

(t) ≡
∫ τ0
τ=0 pτ (t)dτ and Pfs

>τ0
(t) ≡

∫ 1
τ=τ0

pτ (t)dτ .
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Two E particles in a flow of N particles

Frozen shuffle update:
Let us put a second E particle (phase τ0) in the shadow of the first one
(phase 0) :

DW DB Kτ

Pfs
S (t + 1) = Pfs

S (t)− ρfs(1− τ0)Pfs
B (t)
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Two E particles in a flow of N particles

Diagonalization of the transfer matrix
→ time evolution of Pfs

S (t) (linear combination of exponentials).

Longest characteristic decay time as a function of τ0

0.2 0.4 0.6 0.8 1.0

50

100

150

200

red: uncorrelated case
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Two E particles in a flow of N particles

Probability that the second particle stays in the shadow during the first
t timesteps
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blue: frozen shufle update
red: alternating parallel update
black: uncorrelated

Alternating parallel update: overlap of shadows ê several particles can
be localized in the shadow of the first particle.
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Conclusion

Exemple of an effective interaction that can be solved analytically.
Calculations can be extended to other update schemes, provided
the free flow phase is deterministically shifted forward with
velocity 1 at each time step.
The angle of the wake = angle of the long-lived global mode
identified before.
In the full problem, angle may be different and depend on the
update, though the order of magnitude should be the same.

[J. Cividini and C. A-R, Wake-mediated interaction between driven
particles crossing a perpendicular flow, J. Stat. Mech. (2013) P07015]
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Domain wall picture

[Kolomeisky, Schütz, Kolomeisky and Straley, J. Phys. A: Math. Gen.
31 (1998) 6911]

phenomenological picture
can be more easily extended to non stationary states, variants of
the ASEP
physical understanding
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Domain wall picture

For deterministic updates for which free flow has velocity 1:
microscopic definition of
the wall
wall position = position
of the leftmost particle
that has ever been
blocked

-20 -10 0 10 20
l

0.4

0.6

0.8

1

ρ(
k w

+
l)

ρ
c

F

ρ
c

J

α = β = 0.4
L = 3000

frozen shuffle update
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Domain wall picture

Usual domain wall theory not appropriate for this case.
ê Extension of the domain wall theory to the case of deterministic
parallel update

There are correlations between successive steps of the domain
wall

å Memory effect
å Two coupled master equations (+BC)

Continuum limit of this exactly soluble model
å Fokker-Planck equation for the position of the wall

ê with a diffusion constant different from the one that would be
obtained by the usual DW theory

ê in agreement with Monte-Carlo simulations.
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Domain wall picture

1 2 3 4 5
i

0.2
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ρ

Flag theory, this work
MFDW
Monte Carlo, this work
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Domain wall picture
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i/L
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L=25
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L=100
L=200
Flag theory, infinite L
MFDW, infinite L
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Conclusion

For more details:
http://www.th.u-psud.fr/page_perso/Appert/

Thank-you
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Experimental study of pedestrians

PEDIGREE Project 2009-2011 (LPT, IMT, CRCA, Bunraku)
Experiments on pedestrian
traffic

Ring
[Moussaid et al, PLoS
Computational Biology 8
(2012) 1002442]
1D circle
[Jelic et al, PRE 85 (2012)
036111]

Models

Continuous model for bidirectional crowd motion
[C. A.-R., P. Degond, S. Motsch, NHM 6 (2011) 351]
Following model [S. Lemercier et al, Eurographics (2012)]
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And more generally, transport...

Road Traffic

Kinetic model for a
bi-directional road [C. A.-R.,
H. Hilhorst, G. Schehr, J. Stat.
Mech. (2010)]

Response of a multi-lane
highway to a local
perturbation [C. A.-R.,
J. Du Boisberranger, Transp.
Res. C (2013)]

Intracellular Traffic

Intracellular transport (collab. Sarrebrücken, L. Santen, M.
Ebbinghaus, I. Weber, S. Klein)
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