Exclusion Processes and Pedestrians

Cécile Appert-Rolland

Laboratory of Theoretical Physics
CNRS, UMR8627
University Paris-Sud
Orsay, France
Cecile.Appert-Rolland@th.u-psud.fr

Transport team

Out-of-equilibrium
\Leftrightarrow Road Traffic
\Rightarrow Intracellular traffic
\Leftrightarrow Pedestrian traffic

- Experiments on pedestrian traffic (PEDIGREE Project) Data analysis
Experiment-based models
- Today: Modeling based on exclusion processes

Work realized in collaboration with Julien Cividini

and Henk Hilhorst

(1) Introduction: exclusion processes

- Update schemes
- The frozen shuffle update
(2) Crossing of two perpendicular pedestrian flows
- Diagonal patterns and chevron effect
- Mean-field approach
- Wake and effective interaction
(3) Domain-wall theory for deterministic TASEP with parallel update

Exclusion Processes

TASEP = Totally Asymmetric Simple Exclusion Process

Periodic Boundary Conditions

Open Boundary Conditions

Cellular automata models for pedestrians

- Floor field model
[C. Burstedde et al, Physica A 295 (2001) 507-525]
- Ex: PEDGO Software

Cellular automaton = geometry + rules + update

Updates (discrete time)

- random sequential update
- The unit time step is divided into microsteps $\delta t=1 / \mathrm{N}$
- One particle is randomly chosen and updated at each microtimestep
\Rightarrow close to a continuous time
\Rightarrow large fluctuations
- parallel update
- All particles are updated in parallel
- The state of a particle at time $t+1$ is determined by the state of the system at time t
\Rightarrow road traffic ($\Delta t=1=$ reaction time)
\Rightarrow conflicts are possible (crossing, lane changing...).

Updates

- ordered sequential update (forward, backward...)
\Leftrightarrow depends on the geometry of the system
- random shuffle update [Wölki et al (2006); Smith \& Wilson (2007) J. Phys. A]
- The order of the updates is chosen randomly at each time step
- Each particle is updated once per time step according to this predefined order.
\Rightarrow proposed to model pedestrian traffic
\Rightarrow no conflicts, bounded fluctuations
\Rightarrow but still, the same pedestrian can be updated twice in a row
- frozen shuffle update

Frozen shuffle update

- A phase $\tau_{i} \in[0,1[$ is attached to each newly created pedestrian. It remains unchanged during the whole simulation.

- At each time step, pedestrians are updated in the order of increasing phases (time $t+\tau_{i}$).
- $\tau_{i}=$ phase in the walking cycle, slight advance
- pedestrians have the same speed, no large fluctuations
- no conflicts
- Deterministic TASEP : all possible moves are accepted
\Leftrightarrow stochasticity comes only from the phases τ_{i}.
\Rightarrow analytical predictions TASEP+PBC: [C. A-R, Cividini \& Hilhorst, J. Stat. Mech. (2011) P07009] TASEP+OBC: [C. A-R, Cividini \& Hilhorst, J. Stat. Mech. (2011) P10013]
- Can also be applied to more realistic models.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Rightarrow Put a particle on site k if rod i overlaps position $x=k$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Leftrightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Leftrightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Rightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Rightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Mapping a free-flow state to a continuous model

- Continuous model: rods of length one sliding along the x-axis with velocity 1 .
- add an underlying discrete network and take snapshots at integer times s.
\Rightarrow Put a particle on site k if rod i overlaps position $x=k$.
\Rightarrow A rod i jumps from site k to site $k+1$ at time $s+\tau_{i}$.

Intersection of two perpendicular pedestrian flows

Diagonal instability:

- observed in experiments
in
[Hoogendoorn \& Daamen, TGF’03 (Springer) 2005, pp. 121]

Intersection of two perpendicular pedestrian flows

Diagonal instability:

- observed in simulations

(b)

Intersection of two perpendicular pedestrian flows

Diagonal instability:

- observed in simulations

[Hoogendoorn \& Bovy, Optim. Control Appl. Meth., 24 (2003) 153]

Intersection of two perpendicular pedestrian flows

Diagonal instability:

- observed in simulations

BML Model (city traffic)

PBC
[Biham, Middleton \& Levine, PRA 46 (1992) R6124]

Intersection of two corridors

- $\mathcal{E}=$ Eastbound particles
- $\mathcal{N}=$ Northbound particles
$n^{\mathcal{E}}(\mathbf{r}), n^{\mathcal{N}}(\mathbf{r})=$ boolean occupation variables
- As α increases: jamming transition
[H. J. Hilhorst, C. A-R, J. Stat. Mech. (2012) P06009]
\Leftrightarrow Here we consider only the free flow phase.

Observations

with frozen shuffle update

$$
M=400
$$

Number of encounters made by a particle: $g=\rho M$
= effective coupling constant governing pattern formation

Observations

\Leftrightarrow Tilt $\Delta \theta$

Observations

- frozen shuffle update
- $M=640$

- alternating parallel update
- $M=300$

Observations

PBC: no tilt

Figure from Chloé Barré

Observations

Summary: pattern depends on the boundary conditions

PBC

CBC

Mean field equations

We postulate some mean-field equations:

$$
\begin{aligned}
\rho_{t+1}^{\mathcal{E}}(\mathbf{r}) & =\left[1-\rho_{t}^{\mathcal{N}}(\mathbf{r})\right] \rho_{t}^{\mathcal{E}}\left(\mathbf{r}-\mathbf{e}_{x}\right)+\rho_{t}^{\mathcal{N}}\left(\mathbf{r}+\boldsymbol{e}_{x}\right) \rho_{t}^{\mathcal{E}}(\mathbf{r}) \\
\rho_{t+1}^{\mathcal{N}}(\mathbf{r}) & =\left[1-\rho_{t}^{\mathcal{E}}(\mathbf{r})\right] \rho_{t}^{\mathcal{N}}\left(\mathbf{r}-\mathbf{e}_{y}\right)+\rho_{t}^{\mathcal{E}}\left(\mathbf{r}+\boldsymbol{e}_{y}\right) \rho_{t}^{\mathcal{N}}(\mathbf{r})
\end{aligned}
$$

- pair correlations $\left\langle n^{\mathcal{E}} n^{\mathcal{N}}\right\rangle$ have been factorized
- interaction terms $\left\langle n^{X} n^{X}\right\rangle$ between same-type particles have been neglected (low density)

Simulations: same patterns as for the particle model

Mean field equations

PBC

- Linear stability analysis

$$
\rho_{t}^{\mathcal{E}, \mathcal{N}}(\mathbf{r})=\bar{\rho}+\delta \rho_{t}^{\mathcal{E}, \mathcal{N}}(\mathbf{r})
$$

\Rightarrow Most unstable mode traveling in the $(1,1)$ direction with wavelength

$$
\begin{aligned}
\lambda_{\max }=2 \pi /|\mathbf{q}|_{\max } & =\sqrt{2} \pi / \arccos [(1-2 \bar{\rho}) /(2-2 \bar{\rho})] \\
& =3 \sqrt{2}[1-(\sqrt{3} / \pi) \bar{\rho}]+\mathcal{O}\left(\bar{\rho}^{2}\right)
\end{aligned}
$$

Mean field equations

- OBC
- Linear stability analysis:
\Rightarrow In preparation [Cividini \& Hilhorst]
\Rightarrow no sign of the chevron effect

Chevron effect $=$ non linear effect

Chevron effect

- $v^{\mathcal{E}}(\mathbf{r})$ average eastward velocity (in the stationary state)
- $v^{\mathcal{N}}(\mathbf{r})$ average northward velocity

Hypothesis: Moving stripes are mutually impenetrable
\Leftrightarrow Possible only if

$$
\tan \theta(\mathbf{r})=\frac{v^{\mathcal{N}}(\mathbf{r})}{v^{\mathcal{E}}(\mathbf{r})}
$$

Chevron effect

Particle model:

- Definition of velocity

$$
v^{\mathcal{E}, \mathcal{N}}(\mathbf{r})=\frac{J^{\mathcal{E}, \mathcal{N}}(\mathbf{r})}{\left\langle n^{\mathcal{E}, \mathcal{N}}(\mathbf{r})\right\rangle}
$$

where $\mathcal{J}^{\mathcal{E}, \mathcal{N}}(\mathbf{r})=$ stationary current

- If $J^{\mathcal{E}, \mathcal{N}}(\mathbf{r})=J$, then

$$
\tan \theta(\mathbf{r})=\frac{\left\langle n^{\mathcal{E}}(\mathbf{r})\right\rangle}{\left\langle n^{\mathcal{N}}(\mathbf{r})\right\rangle}
$$

- Setting $\theta=\frac{\pi}{4}+\Delta \theta$ and expanding yields

$$
\Delta \theta(\mathbf{r}) \simeq \frac{\left\langle n^{\mathcal{E}}(\mathbf{r})\right\rangle-\left\langle n^{\mathcal{N}}(\mathbf{r})\right\rangle}{2\left\langle n^{\mathcal{N}}(\mathbf{r})\right\rangle}
$$

Chevron effect

- Mean-field equations

- alternating parallel update

Is the system able to sustain modes with tilted stripes?

Chevron effect

In the upper triangle:

Asymmetry:

- \mathcal{E} stripes (orange) are dense and narrow
- \mathcal{N} stripes (blue) are sparse and wide

Chevron effect: Identifying a tilted mode

Idealized tilted mode: (alternating parallel update)
Expected near the entrance of \mathcal{E} particles

figures taken before the hopping of \mathcal{E} particles
\Rightarrow Structure of the stripe is preserved

Chevron effect: Identifying a tilted mode

$\tan \theta=1-\rho_{\text {kink }}=1-\rho^{\mathcal{E}}=1-\boldsymbol{J}^{\mathcal{E}}$

- To lowest order:

$$
\Delta \theta(\mathbf{r})=\frac{\alpha}{2}\left(\frac{180}{\pi}\right)^{\circ}
$$

- Should give an upper bound

Chevron effect: Identifying a tilted mode

In direct simulations:

alternating parallel update with $\alpha=0.15$
and $M=64$

Effective interactions

From which microscopic mechanism does the (tilted) diagonal pattern emerge?
\Leftrightarrow effective interaction between two \mathcal{E} particles crossing a flow of \mathcal{N} particles

Effective interactions

Environment-mediated interactions:
Most well known : depletion forces

[C. Likos, Physics Reports 348 (2001) 267]

Effective interactions

Environment-mediated interactions: extensively studied

- in equilibrium soft matter
[C. Likos, Effective interactions in soft condensed matter physics, Physics Reports 348 (2001) 267]

Effective interactions

Environment-mediated interactions: extensively studied

- in equilibrium soft matter
- and more recently in out-of-equilibrium systems

[Dzubiella, Löwen \& Likos, Depletion forces in nonequilibrium, PRL 91 (2003) 1]

Effective interactions

Environment-mediated interactions: extensively studied

- in equilibrium soft matter
- and more recently in out-of-equilibrium systems

[Khair \& Brady, On the motion of two particles translating with equal velocities through a colloidal dispersion, Proc. R. Soc. A 463 (2007) 223]

Focus: prediction of effective forces

No superposition approximation but

- interactions in the bath are neglected
- probes are taken aligned

Effective interactions

- Forces are not relevant for pedestrians In our case: interaction comes from the dynamical rules

Effective interactions

- Discrete model

[Mejía-Monasterio \& Oshanin, Bias- and bath-mediated pairing of particles driven through a quiescent medium, The royal soc. of chem. 7 (2011) 993] Numerical study \Rightarrow existence of an attractive interaction between the intruders resulting in a statistical pairing

Wake of a single \mathcal{E} particle

Ensemble averaged wake

Frozen shuffle update

Theory

Simulation

Wake of a single \mathcal{E} particle

Microscopic structure of the wake:

Central part of the wake : the shadow

Construction:

- Before move: white dot
- After move: black dot

Again, at low density, $\tan \theta \simeq 1-\rho^{\mathcal{N}}$

Wake of a single \mathcal{E} particle

Microscopic structure of the wake:

Central part of the wake : the shadow

Construction:

- Before move: white dot
- After move: black dot

Again, at low density, $\tan \theta \simeq 1-\rho^{\mathcal{N}}$

Wake of a single \mathcal{E} particle

Microscopic structure of the wake:

Central part of the wake : the shadow

Construction:

- Before move: white dot
- After move: black dot

Again, at low density, $\tan \theta \simeq 1-\rho^{\mathcal{N}}$

Wake of a single \mathcal{E} particle

Microscopic structure of the wake:

Central part of the wake : the shadow

Construction:

- Before move: white dot
- After move: black dot

Two types of rows:

Again, at low density, $\tan \theta \simeq 1-\rho^{\mathcal{N}}$

Two \mathcal{E} particles in a flow of \mathcal{N} particles

Frozen shuffle update:
Let us put a second \mathcal{E} particle (phase τ_{0}) in the shadow of the first one (phase 0) :

$$
P_{S}(t)=P_{W}(t)+P_{B}(t)+\int_{0}^{1} d \tau p_{\tau}(t)
$$

Two \mathcal{E} particles in a flow of \mathcal{N} particles

Frozen shuffle update:
Let us put a second \mathcal{E} particle (phase τ_{0}) in the shadow of the first one (phase 0) :

Low density limit :

$$
\begin{cases}P_{W}^{\mathrm{fs}}(t+1) & =\left(1-\rho^{\mathrm{fs}}\right) P_{W}^{\mathrm{fs}}(t)+\rho^{\mathrm{fs}}\left(1-\tau_{0}\right) P_{B}^{\mathrm{fs}}(t)+P_{>\tau_{0}}^{\mathrm{fs}}(t) \\ P_{B}^{\mathrm{fs}}(t+1) & =\left(1-2 \rho^{\mathrm{fs}}+\rho^{\mathrm{fs}} \tau_{0}\right) P_{B}^{\mathrm{fs}}(t)+P_{<\tau_{0}}^{\mathrm{fs}}(t) \\ P_{<\tau_{0}}^{\mathrm{ss}}(t+1) & =\rho^{\mathrm{fs}} \tau_{0} P_{W}^{\mathrm{ss}}(t)+\rho \tau_{0} P_{B}^{\mathrm{s}}(t) \\ P_{>\tau_{0}}^{\mathrm{fs}}(t+1) & =\rho^{\mathrm{fs}}\left(1-\tau_{0}\right) P_{W}^{\mathrm{fs}}(t)\end{cases}
$$

where $P_{<\tau_{0}}^{\mathrm{fs}}(t) \equiv \int_{\tau=0}^{\tau_{0}} p_{\tau}(t) d \tau$ and $P_{>\tau_{0}}^{\mathrm{fs}}(t) \equiv \int_{\tau=\tau_{0}}^{1} p_{\tau}(t) d \tau$.

Two \mathcal{E} particles in a flow of \mathcal{N} particles

Frozen shuffle update:
Let us put a second \mathcal{E} particle (phase τ_{0}) in the shadow of the first one (phase 0) :

$$
P_{S}^{\mathrm{fs}_{s}}(t+1)=P_{S}^{\mathrm{fs}_{s}}(t)-\rho^{\mathrm{fs}_{s}}\left(1-\tau_{0}\right) P_{B}^{\mathrm{fs}_{S}}(t)
$$

Two \mathcal{E} particles in a flow of \mathcal{N} particles

Diagonalization of the transfer matrix
\rightarrow time evolution of $P_{S}^{\mathrm{fs}}(t)$ (linear combination of exponentials).

Longest characteristic decay time as a function of τ_{0}

red: uncorrelated case

Two \mathcal{E} particles in a flow of \mathcal{N} particles

Probability that the second particle stays in the shadow during the first t timesteps

- blue: frozen shufle update
- red: alternating parallel update
- black: uncorrelated

Alternating parallel update: overlap of shadows \Rightarrow several particles can be localized in the shadow of the first particle.

Conclusion

- Exemple of an effective interaction that can be solved analytically.
- Calculations can be extended to other update schemes, provided the free flow phase is deterministically shifted forward with velocity 1 at each time step.
- The angle of the wake = angle of the long-lived global mode identified before.
- In the full problem, angle may be different and depend on the update, though the order of magnitude should be the same.
[J. Cividini and C. A-R, Wake-mediated interaction between driven particles crossing a perpendicular flow, J. Stat. Mech. (2013) P07015]

Domain wall picture

[Kolomeisky, Schütz, Kolomeisky and Straley, J. Phys. A: Math. Gen. 31 (1998) 6911]

- phenomenological picture
- can be more easily extended to non stationary states, variants of the ASEP
- physical understanding

Domain wall picture

For deterministic updates for which free flow has velocity 1 :

- microscopic definition of the wall
- wall position = position of the leftmost particle that has ever been blocked

Domain wall picture

Usual domain wall theory not appropriate for this case.
\Rightarrow Extension of the domain wall theory to the case of deterministic parallel update

- There are correlations between successive steps of the domain wall
\Leftrightarrow Memory effect
\Leftrightarrow Two coupled master equations (+BC)
- Continuum limit of this exactly soluble model
\Rightarrow Fokker-Planck equation for the position of the wall
\Rightarrow with a diffusion constant different from the one that would be obtained by the usual DW theory
\Rightarrow in agreement with Monte-Carlo simulations.

Domain wall picture

Domain wall picture

Conclusion

For more details:
http://www.th.u-psud.fr/page_perso/Appert/

Thank-you

Experimental study of pedestrians

PEDIGREE Project 2009-2011 (LPT, IMT, CRCA, Bunraku)

- Experiments on pedestrian traffic
- Ring
[Moussaid et al, PLoS Computational Biology 8 (2012) 1002442]
- 1D circle
[Jelic et al, PRE 85 (2012)
 036111]
- Models
- Continuous model for bidirectional crowd motion [C. A.-R., P. Degond, S. Motsch, NHM 6 (2011) 351]
- Following model [S. Lemercier et al, Eurographics (2012)]

And more generally, transport...

Road Traffic

- Kinetic model for a bi-directional road [C. A.-R., H. Hilhorst, G. Schehr, J. Stat.

Mech. (2010)]

- Response of a multi-lane highway to a local perturbation [C. A.-R.,
J. Du Boisberranger, Transp.

Res. C (2013)]

Intracellular Traffic

- Intracellular transport (collab. Sarrebrücken, L. Santen, M. Ebbinghaus, I. Weber, S. Klein)

