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Introduction

Tensor models were introduced already in the 90’s - replicate in
dimensions higher than 2 the success of random matrix models:
J. Ambjorn et. al., Mod. Phys. Lett. (’91), N. Sasakura, Mod. Phys. Lett. (’91), M. Gross Nucl. Phys. Proc.

Suppl. (’92)

The Feynman graphs arising from the perturbative expansion of
the partition function of matrix models are dual graphs to
triangulated 2D surfaces.
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The model defines a certain statistical ensemble over discrete
geometries - connection with 2D quantum gravity.

An important technique is the large N expansion, which is
controlled by the genus of the ribbon Feynman graphs; the
leading order contribution to the partition function is given by
planar graphs (pave the 2D sphere S2).

By simultaneous scaling of N and the coupling constant, the
double-scaling limit allowed to define a continuum limit,
where all topologies contribute, connected to 2D gravity.

the Kontsevich matrix model (the Witten conjecture): rigorous
approach to the moduli space of punctured Riemann surfaces
E. Witten, Nucl. Phys. B (1990), M. Kontsevich, Commun. Math. Phys. (1992)

QCD with a large number of colors
’t Hooft Nucl. Phys. B (1974)
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Matrix models

Ph. Di Francesco et. al., Phys. Rept. (1995), hep-th/9306153

M - N × N matrix

the partition function:

Z = eF =

∫
dMe

− 1
2
TrM2+ g√

N
TrM3

.

diagrammatic expansion - Feynman ribbon graphs

generates random triangulations

sum over random triangulations - discretized analogue of the
integral over all possible geometries

0−dimensional string theory (a pure theory of surfaces with no
coupling to matter on the string worldsheet)
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Large N expansion of matrix models

the matrix amplitude can be combinatorially computed - in terms
of number of vertices (V ), edges and faces (F ) of the graph
change of variables: M → M

√
N (easy to count powers of N)

A = λV N−
1
2

V +F = λV N2−2g

(since E = 3
2 V )

the partition function (and the free energy) supports a 1/N
expansion:

Z = N2Z0(λ) + Z1(λ) + . . . =
∑

g

N2−2g Zg (λ)

Zg gives the contribution from surfaces of genus g

large N limit, only planar surfaces survive - dominant graphs
(triangulations of the sphere S2)
V. A. Kazakov, Phys. Lett. B (’85), F. David, Nucl. Phys. B (’85), E. Brézin et al., Commun. Math. Phys. (’78)
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The double scaling limit for matrix models

The successive coefficient functions Zg (λ) as well diverge at the
same critical value of the coupling λ = λc

the leading singular piece of Zg :

Zg (λ) ∝ fg (λc − λ)(2−γstr)χ/2 with γstr = −1

2
(pure gravity)

contributions from higher genera (χ < 0) are enhanced as λ→ λc

κ−1 := N(λ− λc)(2−γstr)/2

the partition function expansion:

Z =
∑

g

κ2g−2fg

double scaling limit: N →∞, λ→ λc while holding fixed κ
coherent contribution from all genus surfaces
M. Douglas and S. Shenker, Nucl. Phys. B (’90), E. Brézin and V. Kazakov, Phys. Lett. B, Nucl. Phys. B (’90),

D. Gross and M. Migdal, Phys. Rev. Lett., Nucl. Phys. B (’90)
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3D tensor models

natural generalization of matrix models

matrix → rank three tensor
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QFT-inspired simplification - the colored tensor models

highly non-trivial combinatorics
→ a QFT simplification of these models - colored tensor models
(R. Gurău, Commun. Math. Phys. (2011), arXiv:0907.2582)

a quadruplet of complex fields
(
φ0, φ1, φ2, φ3

)
;

S [{φi}] = S0[{φi}] + Sint [{φi}]

S0[{φi}] =
1

2

3∑
p=0

N∑
i ,j ,k,=1

φp
ijkφ

p
ijk (1)

Sint [{φi}] =
λ

4

N∑
i ,j ,k,i ′,j ′,k ′=1

φ0
ijkφ

1
i ′j ′kφ

2
i ′jk ′φ3

k ′j ′i + c. c.,

the indices 0, . . . , 3 - color indices.
extra property: the faces of the Feynman graphs of this model
have always exactly two (alternating) colors.
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Various QFT developments for colored tensor models

large N expansion
R. Gurau, Annales Henri Poincare (2011), [arXiv:1011.2726 [gr-qc]]

large N expansion in any dimension
R. Gurau and V. Rivasseau, Europhys. Lett. (2011), arXiv:1101.4182[gr-qc],

R. Gurău, Annales Henri Poincaré (2012) [arXiv:1102.5759 [gr-qc]] .

continuum phase transition and computation of critical
exponents
V. Bonzom et. al., Nucl. Phys. B (2011) arXiv:1105.3122[hep-th]

double-scale limit G. Schaeffer and R. Gurău, arXiv:1307.5279,

S. Dartois et. al., JHEP (2013)

Noether currents
J. Ben Gelon, J. Math. Phys. (2012), [arXiv:1107.3122 [hep-th]]

renormalizable tensor models
J. Ben Geloun and V. Rivasseau, Commun. Math. Phys. (2013), arXiv:1111.4997 [hep-th].

S. Carrozza et. al., arXiv:1207.6734 [hep-th].

Connes-Kreimer algebraic reformulation of tensor
renormalizability M. Raasakka and A. T., Sém. Loth. Comb. (in press)
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Question:
How much of these large N scaling properties of colored tensor
models generalize to larger family of tensor graphs?
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A (Moyal) QFT-inspired simplification of tensor models

highly non-trivial combinatorics
→ a QFT simplification of these models - multi-orientable models
A. Tanasă, J. Phys. A (2012)

proposal made within the Group Field Theory framework (quantum
gravity approach related to Loop Quantum Gravity)

edge going from a + to a − corner
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The action: the propagator and the vertex

S [φ] = S0[φ] + Sint [φ], (2)

S0[φ] =
1

2

N∑
i ,j ,k=1

φ̄ijkφijk , Sint [φ] =
λ

4

N∑
i ,j ,k,i ′,j ′,k ′=1

φijk φ̄kj ′i ′φk ′ji ′ φ̄k ′j ′i .
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Multi-orientable tensor Feynman graphs

no twists on the propagators → one-to-one correspondence
between multi-orientable tensor Feynman graphs and embedded
graphs

A four-edge colorable graph is a graph for which the edge
chromatic number is equal to four.

Proposition

The set of Feynman graphs generated by the colored action (1) is
a strict subset of the set of Feynman graphs generated by the MO
action (2).
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Proposition

A bipartite graph is four-edge colorable.
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Example of tensor graphs

A tadface is a face “going” several times through the same edge.

The condition of multi-orientability discards tadfaces
(A. T., J. Phys. A (2012), arXiv:1109.0694).

example of a graph with a tadface which is edge-colorable

0

1

2

3
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the planar double tadpole as an example of a MO graph which is
not colorable. On the right, an example of a MO graph which is
4-edge colorable but does not occur in colorable tensor models.

Figure 4: Ex-
ample of a multi-
orientable graph
which is not col-
orable.

0

1

2

3

Figure 5: The “twisted sunshine” is
an example of a m.o. graph which is
4-edge colorable but does not occur
in the colored models.

Figure 6: A 4-edge colorable m.o. graph which is not bipartite.

indexed by an integer called the degree which is the sum of the genera of all jackets.
In particular in dimension 3 colored tensor graphs have three jackets which define three
di↵erent Hegaard splitting of the dual of the underlying (pseudo)manifold [17].

In the multi-orientable case we want to implement a similar 1/N expansion, hence
we need to generalize the notion of jackets. We remark that six strands meet at any vertex
v. In the most general case there is no way to split them into three pairs av, bv, cv in a
coherent way throughout the graph, namely in a way such that any face is made out only
of strands of the same type, a, b or c (see Fig. 7 for an example of a stranded graph where
such a splitting is impossible).

In the m.o. case, such a coherent splitting is possible. Indeed at each vertex the
inner pair of strands (those acting on the E2 space) is unique and well-defined. Let us
say that this pair has type c. This pair is coherent, that is throughout the graph any
face containing an inner strand is made of inner strands only. But we can also split at
each vertex the four outer strands, or “corner strands”, into two coherent pairs, of opposite
strands. Consider indeed a vertex and turn clockwise around it starting at the inner strand
of a �̂ field, as shown on Fig.8. Call the first and third corner strands we meet type a,

indexed by such ribbon graphs.

7
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A 4-edge colorable MO graph which is not bipartite
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A graph without tadfaces which is not m.o. Edges of the box are
identified so that the graph is drawn on the torus
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Combinatorial and topological tools - jacket ribbon
subgraphs

In the colored case the 1/N expansion relies on the notion of
jacket ribbon subgraphs, which are associated to the cycle of
colors up to orientation.
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Generalization of the notion of jackets for MO graphs

three pairs of opposite corner strands

Definition
A jacket of an MO graph is the graph made by excluding one
type of strands throughout the graph. The outer jacket c̄ is made
of all outer strands, or equivalently excludes the inner strands (the
green ones); jacket ā excludes all strands of type a (the red ones)
and jacket b̄ excludes all strands of type b (the blue ones).

↪→ such a splitting is always possible
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Example of jacket subgraphs

A MO graph with its three jackets ā, b̄, c̄

ADRIAN TANASĂ Some combinatorics of random tensor models



Is such a jacket subgraph a ribbon subgraph?

Proposition

Any jacket of a MO graph is a (connected vacuum) ribbon graph
(with uniform degree 4 at each vertex).

untwisting vertex procedure:

may introduce twists on the edges
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this does not hold for any, non-m. o., tensor graph

Example: Deleting a pair of opposite corner strands in this tadpole
(which has tadfaces), does not lead to a ribbon graph.
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Euler characteristic & degree of MO tensor graphs

ribbon graphs can represent orientable or non-orientable surfaces.

Euler characteristic formula:

χ(J ) = VJ − EJ + FJ = 2− kJ ,

kJ is the non-orientable genus,
VJ is the number of vertices,
EJ the number of edges and
FJ the number of faces.

If the surface is orientable, k is even and equal to twice the
orientable genus g

Given an MO graph G, its degree $(G) is defined by

$(G) =
∑
J

kJ
2

= 3 +
3

2
VG − FG ,

the sum over J running over the three jackets of G.
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Large N expansion of the MO tensor model

Feynman amplitude calculation - each tensor graph face
contributes with a factor N, N being the size of the tensor

=⇒ one needs to count the number of faces of the tensor graph

this can be achieved using the graph’s jackets (ribbon subgraphs)

The Feynman amplitude of a general MO tensor graph G writes:

A(G) = λVGN3−$(G).

The free energy writes as a formal series in 1/N:

F (λ,N) =
∑

$∈N/2

C [$](λ)N3−$,

C [$](λ) =
∑

G,$(G)=$

1

s(G)
λvG .
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Dominant graphs

dominant graphs:

$ = 0.
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An example of a dominant tensor graph

outer jacket is orientable (always the case for the outer
jacket), and it has genus g1 = 0.

the two remaining jackets also have vanishing genus
g2 = g3 = 0 (can be directly computed using Euler’s
characteristic formula)

=⇒ vanishing degree ($ = 0) ⇔ dominant graph
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Two examples of non-dominant tensor graphs

Figure 4: Ex-
ample of a multi-
orientable graph
which is not col-
orable.

0

1

2

3

Figure 5: The “twisted sunshine” is
an example of a m.o. graph which is
4-edge colorable but does not occur
in the colored models.

Figure 6: A 4-edge colorable m.o. graph which is not bipartite.

indexed by an integer called the degree which is the sum of the genera of all jackets.
In particular in dimension 3 colored tensor graphs have three jackets which define three
di↵erent Hegaard splitting of the dual of the underlying (pseudo)manifold [17].

In the multi-orientable case we want to implement a similar 1/N expansion, hence
we need to generalize the notion of jackets. We remark that six strands meet at any vertex
v. In the most general case there is no way to split them into three pairs av, bv, cv in a
coherent way throughout the graph, namely in a way such that any face is made out only
of strands of the same type, a, b or c (see Fig. 7 for an example of a stranded graph where
such a splitting is impossible).

In the m.o. case, such a coherent splitting is possible. Indeed at each vertex the
inner pair of strands (those acting on the E2 space) is unique and well-defined. Let us
say that this pair has type c. This pair is coherent, that is throughout the graph any
face containing an inner strand is made of inner strands only. But we can also split at
each vertex the four outer strands, or “corner strands”, into two coherent pairs, of opposite
strands. Consider indeed a vertex and turn clockwise around it starting at the inner strand
of a �̂ field, as shown on Fig.8. Call the first and third corner strands we meet type a,

indexed by such ribbon graphs.

7

double tadpole:
$ = 0 + 1

2 + 0 = 1
2 .

“twisted sunshine” (bipartite 4−edge colorable graph):
Its outer jacket is orientable (always the case for the outer jacket),
and it has genus g1 = 1.
The two remaining jackets are isomorphic and have non-orientable
genus k2 = k3 = 1.
=⇒ $ = 2.
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General identification of dominant graphs

Theorem
Non-bipartite MO graphs have at least one non-orientable jacket
and are thus non-dominant of degree

$ ≥ 1

2
.

Proof. cycle parity (at least one odd cycle in a non-bipartite
graph) & MO parity constraints on cycles
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The only bipartite (and hence edge-colorable) MO tensor graphs of
vanishing degree ($ = 0) are the graphs obtained from insertions
of the “melon” graph.

series-parallel graphs in combinatorics
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Dominant graphs of the large N expansion

Main result:

Theorem
The MO model admits a 1/N expansion whose dominant graphs
are the “melonic” ones.
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More on ”melonic” tensor graphs

1 they maximize the number of faces for a given number of
vertices.

2 they correspond to a particular class of triangulations of the
sphere S3.
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Next-to-leading order (NLO) in the 1/N expansion

M. Raasakka and A. T., arXiv:1310.3132, Annales Henri Poincaré (in press)

The multi-orientable next-to-leading order sector is given by
ω = 1/2, because of non-orientable jackets, not ω = 1 as for
colored models!

The simplest NLO graph is the double-tadpole:

Any insertion of a melonic 2-point subgraph conserves the
degree.

Main result:
All possible NLO (ω = 1/2) graphs are given by melon insertions in
the double-tadpole MO tensor graph.
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LO series

V. Bonzom et. al. Nucl. Phys. B (2011), W. Kaminski et. al. arXiv:1304.6934 [hep-th]

GLO ∝ const.+

(
1−

(
λ
λc

)2
)1/2

GLO - the LO two-point function
λc - critical value of the coupling constant (radius of convergence
of the GLO series)

FLO ∝ const.+
(

1− λ2

λ2
c

)2−γLO

, γLO = 1
2

F - the free energy
γ - the susceptibility exponent (the entropy exponent)

same behavior for the LO series of the MO model
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Next-to-leading order series for the MO tensor model

Following the combinatorics of NLO graphs, one may analyze
the NLO series by relating it to the LO series.
Let G and Σ be the connected and the 1PI 2-point functions.

GNLO = G 2
LOΣNLO :

One has: ΣNLO = λGLO + 3λ2G 2
LOGNLO
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Substituting, one has

GNLO =
λG 3

LO

1− 3λ2G 4
LO

Differentiating the LO two-point function relation
GLO = 1 + λ2G 4

LO we get

∂

∂λ
GLO =

2λG 4
LO

1− 4λ2G 3
LO

=
2λG 5

LO

1− 3λ2G 4
LO

,

This leads to:

GNLO =
λ

G 2
LO

∂

∂λ2
GLO ,

which implies, together with
GLO ∝ const. + (1− (λ2/λ2

c ))1/2,

GNLO ∝
(

1− λ2

λ2
c

)−1/2

.
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From the Schwinger-Dyson equation relating the connected
two-point function GNLO to the free energy FNLO one has:

Critical behavior of the NLO free energy:

FNLO ∝
(

1− λ2

λ2
c

)2−γNLO

, where γNLO = 3/2.

same critical value of the coupling constant (radius of
convergence) for the NLO series as for the LO series;

distinct value for the NLO susceptibility exponent.

similar behaviour to the matrix model case

ADRIAN TANASĂ Some combinatorics of random tensor models



Some considerations on the general term of the expansion

work in progress with E. Fusy

generalization of the Gurău-Schaeffer combinatorial approach
R. Gurău and G. Schaeffer, arXiv:1307.5279[math.CO]

(S. Dartois et. al., JHEP (2013))

generalization of the ”colored” notion of 2-dipole:
A two-dipole is a subgraph formed by a couple of vertices
connected by two parallel edges which has a face of length two.
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some configurations (particular chains of 2−dipoles) can be
repeated without increasing the degree ω̄ - except for the tadpole
case

the dominant configurations maximize the number of such chains

gluing together 1/2-degree building blocks leads to dominant
configurations (even with respect to the dominant configuration of
same degree of the colored model)

bijection with binary trees with 2ω̄ + 1 leaves
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Perspectives

double-scaling limit of the MO tensor model; convergence of
the series ?
work in progress with Eric Fusy

study the Noether currents of MO tensor models -
generalization of J. Ben Geloun, J. Math. Phys. (2012)

renormalizable MO models

generalization of the matrix integral techniques to tensor
integral techniques - 3D map counting

Schaeffer bijection G. Schaeffer, Electronic J. Comb. (1997)

3D geodesic length?

enlarge the MO framework to include still larger classes of
tensor graphs and check whether they admit a 1/N expansion
and a double scaling limit.

ADRIAN TANASĂ Some combinatorics of random tensor models



Thank you for your attention!
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“The amount of theoretical work one has to cover before being
able to solve
problems of real practical value is rather large, but this
circumstance is [...] likely to become more pronounced in the
theoretical physics of the future.”
P.A.M. Dirac, “The principles of Quantum Mechanics”, 1930

ADRIAN TANASĂ Some combinatorics of random tensor models


