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Introduction

● Method of critical polynomials is used to locate 
critical points in percolation and the Potts model

● Critical points found as zeros of a graph 
polynomial

● For many standard problems, the accuracy 
outstrips Monte Carlo and standard transfer 
matrix methods

● Provides detailed view of antiferromagnetic 
regime of the Potts model



Introduction

● Potts model partition function

● Spins 
● For         , critical points are not known exactly, 

except for a few special cases in 
● Numerical techniques needed: Monte Carlo, 

transfer matrix 



Introduction

● Instead of physical representation, we define       
              to get random cluster representation 

● With          and                     we get bond 
percolation: each edge has probability    of being 
open. Critical probability      marks transition to 
infinite cluster

● Most critical thresholds are not exactly known in 
percolation
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Introduction

● Example: kagome lattice bond percolation

Monte Carlo:

Transfer Matrix:

Critical Polynomials:

● Method can be applied on any periodic lattice 
and for any q



2D Exact Solutions

● In two dimensions, problems with unit cells 
contained between three vertices can be solved 
exactly

A B

C

● The critical manifolds are always given by zeros 
of polynomials in v and q



Critical Polynomials

● Percolation critical criterion

A B

C

● Grey triangle can be essentially any network of 
vertices and edges (CS 2006, Ziff 2006, Bollobás and Riordan 2010)



Critical Polynomials

● Examples:

p
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r

Hexagonal lattice:

Square lattice:
p

r



Critical Polynomials
● All critical surfaces are multi-linear functions in 

the probabilities
● Setting all probabilities equal gives critical 

polynomial
Hexagonal lattice:

● So all exact thresholds are algebraic numbers
● Critical surfaces satisfy deletion-contraction 

identity



Deletion-Contraction
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Deletion-Contraction

Deletion-contraction formula for the A lattice:

Expand and set all probabilities equal

Consistent with using criticality condition directly



Deletion-Contraction
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● Definition of critical polynomial can be extended 
to any periodic lattice using D-C

● Example: the unit cell of the kagome lattice is 
contained between four vertices and thus it is 
not exactly solvable 
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Deletion-Contraction

Delete and contract on p
4
  bond:Delete and contract on p

4
  bond:

Unknown: kagome latticeUnknown: kagome lattice

Transfer Matrix:
Not exact, but close!

(Feng, Deng and Blӧte, 2008)
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(CS and R.M. Ziff 2006)
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Critical Polynomials: Properties

● Can be defined on any periodic lattice
● Polynomial depends on the subgraph used to 

calculate it, called the basis
● Simplest case: basis is a unit cell
● By appropriately choosing larger bases, we can 

get better approximations
● Can be computed by a recursive computer 

algorithm

(CS and R.M. Ziff 2008,2010)



Critical Polynomials: Properties

 

2x2 3x2

2x3

base polynomial error

1x1 0.52442971... 2.5 x 10-5

2x2 0.52440672... 1.7 x 10-6

3x2 0.52440607... 1.1 x 10-6

2x3 0.52440572... 6.9 x 10-7

base polynomial error

1x1 0.52442971... 2.5 x 10-5

2x2 0.52440672... 1.7 x 10-6

3x2 0.52440607... 1.1 x 10-6

2x3 0.52440572... 6.9 x 10-7

Kagome lattice
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Critical Polynomials: Properties

● Polynomial is unique for a given basis (i.e., it 
does not depend on bond order in DC algorithm) 
(CS 2012)

● Central Conjecture: An m x n basis will approach 
the exact solution as m and n go to infinity

● If a threshold is exactly solved, a basis of any 
number of unit cells will give the exact answer

● If the unit cell polynomial does not give the exact 
answer, then no finite basis will either



Archimedean
Lattices

11 lattices for which
all vertices are
equivalent

Only 3 of these have
exactly known
bond thresholds

Grunbaum-Shepard
naming convention;
e) (4,82), f) (33,42),
etc.



Lattices Polynomial Numerical Difference

kagome 0.52440572... 0.52440499(2) 6.9 x 10-7

(4,82) 0.67680215... 0.67680232(63) --

(33,42) 0.41964531... 0.41964191(43) 3.6 x 10-7

(3,122) 0.74042099... 0.74042077(2) 2.2 x 10-7

(4,6,12) 0.69375829... 0.69373383(72) 1.6 x 10-5

(32,4,3,4) 0.41412438... 0.41413743(46) 1.3 x 10-5

(34,6) 0.43435240... 0.4343282(2) 2.4 x 10-5

(3,4,6,4) 0.52483166... 0.52483258(53) 9.1 x 10-7

Polynomials: CS, J Stat Mech 2012 

Numerics: kagome: Feng, Deng and Blӧte PRE 78 031136 2008,
                                      (3,12^2): Ding et. al PRE 81 061111 (2010),
                                      (3^4,6): R. M. Ziff, 
                                      the rest: Parviainen JPA 40 (2007) 9253   



Part 2
(work with Jesper Jacobsen)



Critical Polynomials

● Critical polynomial easily generalized to the 
Potts model

● Deletion-contraction in random cluster 
representation (Sokal 2005)

● Computer implementation requires minor 
modifications (J.L. Jacobsen and CS, 2012)

● Deletion-contraction still limited to ~ 36 edges



Polynomial Redefinition

● Random cluster representation has another 
advantage

● Gives a clear picture of the actual events 
underlying the polynomial

● By inspection of a few cases, we can easily 
infer an alternate definition of the critical 
polynomial:



P(2D)=P(0D)

● Three global events on a basis
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P(2D)=P(0D)

● Equivalent with the exact criticality condition for 
solved lattices

● We can easily prove that the new definition is 
equivalent with the old

● Both satisfy deletion-contraction and both have 
the same solved cases

● Potts generalization:



P(2D)=q P(0D)

● New definition allows the use of the transfer 
matrix

● The strategy is to compute the weight of every 
boundary connectivity state, then pick out the 
2D and 0D states and set their weights equal 
(and multiply by q)

boundary connectivity:
planar partitions



Transfer Matrix

● Build complete basis edge by edge
● Compute the weight (restricted partition 

function) for each planar partition
● Put weights into a vector
● Addition of an edge corresponds to the action 

of a sparse matrix on the weight vector
● Transfer matrix gives weights of completed 

basis
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Transfer Matrix

● When we have vector of weights, we pick out 
those corresponding to 0D and 2D and set their 
weights equal

● Far more efficient than deletion-contraction
● With “naïve” method we can compute 

polynomials on 4x4 bases 

● Improved method reduces states and allows 
much larger calculations 

(J.L. Jacobsen, J Phys A 47 (2014) 135001)

(CS and J. L. Jacobsen J Phys A 45 (2012) 494004)
(J.L. Jacobsen and CS, JPA 46 (2013) 075001)



Results

Kagome Lattice

n threshold

1 0.524429717521274793546880

2 0.524406723188231819143234

3 0.524405172713769972706130

4 0.524405027427414720699076

5 0.524405005980616347838693

6 0.524405001306581048813495

(J. L. Jacobsen 2014)

(CS and J. L. Jacobsen 2012)



Results

Kagome Lattice

Conventional numerical result: 0.52440499(2)

Bulirsch-Stoer extrapolation: 0.52440499919(4) 
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2 0.524406723188231819143234

3 0.524405172713769972706130

4 0.524405027427414720699076

5 0.524405005980616347838693

6 0.524405001306581048813495

(J. L. Jacobsen 2014)

(CS and J. L. Jacobsen 2012)



Results

Kagome Lattice

Conventional numerical result: 0.52440499(2)

Bulirsch-Stoer extrapolation: 0.524404999174(7) 

n threshold

1 0.524429717521274793546880

2 0.524406723188231819143234

3 0.524405172713769972706130

4 0.524405027427414720699076

5 0.524405005980616347838693

6 0.524405001306581048813495

7 0.524404999973208900495364 (J. L. Jacobsen 2014)

(CS and J. L. Jacobsen 2012)
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Z    =



Parallel Implementation

● Transfer matrix algorithm can be made to run in 
parallel for a large-scale computation

● Strategy is to distribute weight vector among 
processors

● Allows us to compute thresholds for bases of 
size 8x8



Results

n threshold

1 0.524429717521274793546880

2 0.524406723188231819143234

3 0.524405172713769972706130

4 0.524405027427414720699076

5 0.524405005980616347838693

6 0.524405001306581048813495

7 0.524404999973208900495364

8 0.524404999514141085177182

Kagome Lattice

Conventional numerical result: 0.52440499(2)

Bulirsch-Stoer extrapolation: 0.524404999170(2) 

(J. L. Jacobsen 2014)

(Jacobsen and CS 2014)

(CS and J. L. Jacobsen 2012)



Results

Kagome Lattice

Conventional:

Polynomial: (Jacobsen 2014)

(Ding, Fu, Guo, Wu 2010)

Conventional:

Polynomial: (Jacobsen 2014)

(Ding, Fu, Guo, Wu 2010)



Phase Diagrams

● Method allows us to find phase diagrams in the 
(q,v) plane

● Maximum basis size of 6x6 using 
supercomputer

● Phase diagrams reveal many new and 
mysterious features in the antiferromagnetic 
regime



Jacobsen 2014:

Saleur 1991:

Clearly visible Berker-Kadanoff phase

Vertical rays occur at Beraha numbers:

Polynomial: only

Square Lattice



Kagome Lattice



Questions

● Why does it work? (Universality)
● Why is the critical polynomial better than other 

polynomials?
● What is the exponent w?
● What is going on the phase diagrams?
● Can it be extended to 3D?
● What other models can be handled with this 

approach?



Conclusion

● We introduced the critical polynomial
● The zeros of the critical polynomial make 

accurate predictions of the critical points for the 
Potts model

● Early days for the method: we hope many 
discoveries await!
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