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Antiferromagnetic Potts models

Let G = (V ,E ) be a locally finite graph with vertex set V and
edge set E .
For each spin configuration σ : V → {1, . . . , q}, define a
Hamiltonian

H(σ) :=
∑
{x ,y}∈E

1{σ(x) = σ(y)}.

If V is finite, define finite volume Gibbs measures

µβ(σ) :=
1

Zβ
e−βH(σ),

where Zβ :=
∑

σ e−βH(σ) is the partition sum.
If V is infinite, then define infinite-volume Gibbs measures through
the DLR conditions.

In the zero temperature limit β →∞, the measure µβ converges to
the uniform distribution on q-colourings of G (if there exist any).
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A critical number of colours

‘Facts’ believed to be true.

For each infinite quasi-transitive graph G , there is a qc such that:

I For q < qc, the model has a phase transition at some
0 < βc <∞ between disorder and long-range order.

I For q > qc, the model is disordered even at zero temperature.

I For q = qc, the zero-temperature model is critical (?).

On Zd with nearest-neighbour bounds, it is believed that qc = 3 in
dimension d = 2 and qc →∞ as d →∞.
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Bipartite lattices

Recall that a graph G = (V ,E ) is bipartite if the vertices can be
partitioned into two subsets V = V0 ∪ V1 such that each edge has
one endvertex in V0 and the other in V1.

It is often useful to view the sublattices G0 = (V0,E0) and
G1 = (V1,E1) as graphs in their own right by connecting vertices
that are at distance 2 in G .

On bipartite graphs (like Zd), boundary conditions where one
sublattice (G0, say) is uniformly coloured in a single colour (k , say)
may lead to long-range order, in particular, the percolation of
colour k on G0.

Effectively, the second sublattice G1 induces a ferromagnetic
interaction on the first sublattice G0.
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An external forcing

It is instructive to add an extra interaction

H ′(σ) :=
∑

{x ,y}∈E0

1{σ(x) = σ(y)} −
∑

{x ,y}∈E1

1{σ(x) = σ(y)}.

And define Gibbs measures

µβ,h(σ) :=
1

Zβ,h
e−βH(σ) + hH ′(σ).

If h > 0 (resp. h < 0), this favours uniform colourings of the
sublattice G0 (resp. G1). In particular, for G = Zd , this breaks the
symmetry between the sublattices G0 and G1.
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Phase diagram - speculative!

My guess for Z2 with q = 3.

G0 orderedG1 ordered

T = 1/β

h(0, 0)
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Phase diagram

My guess for Z2 with q = 2, 3, 4, . . ..

T = 1/β

h(0, 0)

q = 2

q = 3
q = 4
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Phase diagram

My guess for Zd with d ≥ 3 and q = 3.

G0 orderedG1 ordered

T = 1/β

h(0, 0)
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Height mapping 15

At zero temperature, the case q = 3 is special:

Let h : Zd → Z satisfy

|h(x)− h(y)| = 1 if |x − y | = 1.

Then
σ(x) := h(x) mod(3)

is a 3-colouring.

Fact: If we fix h(x0) in one reference point x0, then the mapping
h 7→ σ is a bijection, i.e., we can recover h from σ.
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Height mapping

1 2

3

1

2

1

3

1

2

1

2

3

The red path can be deformed into the blue path so that the
height difference between the endpoints stays the same.
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Height mapping
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Simulations by Ron Peled of a random height mapping on a
100×100 square and the middle layer of a 100×100×100 cube.
Simulated using Propp-Wilson’s coupling from the past.
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High dimension versus dimension two

Ron Peled (preprint 2010) has proved that for sufficiently high d , a
typical height-configuration is flat.
This implies (some form of) long-range order for the
zero-temperature, 3-state antiferromagnetic Potts model on Zd .

On the other hand, on Z2, the fluctuations of the height model are
believed to be of order log(system size). This is similar to wat is
known for dimer models (R. Kenyon).

Is this behavior universal in two-dimensional
AF 3-state Potts models?
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Quadrangulations 25

(a) (b)

(c) (d)

Four examples of quasi-transitive quadrangulations of the plane.
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The diced lattice

Theorem (R. Kotecký, J. Salas & A.D. Sokal, 2008): The 3-state
antiferromagnetic Potts model on the diced lattice has long-range
order for β sufficiently large.
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The diced lattice

The diced lattice:

I Is bipartite.

I Is a quadrangulation.

I Admits a height
representation.

So why is it different from Z2?
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Explanation 1: broken symmetry

My guess for the phase diagram on the diced lattice.

T = 1/β

h(0, 0)

G0 orderedG1 ordered
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Explanation 1: broken symmetry

On Z2, the sublattices G0 and G1 play a symmetric role, but on
the diced lattice, this symmetry is broken.

For the diced lattice, the spatial density of points of G1 is twice as
high as for G0. Therefore, it is entropically favourable to paint G0

in one colour and reserve the other two colours to G1. (Certainly
compared to doing things the other way around!)

Effectively, this is like applying an external forcing that favours
ferromagnetic order on G0 and disfavours it on G1.

Is it possible to counter this with an external forcing
of exactly the right strength h?
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More general lattices 35

Theorem [Kotecký, Sokal, S.] Let G = (V ,E ) be a
quadrangulation of the plane, and let G0 = (V0,E0) and
G1 = (V1,E1) be its sublattices, connected through bonds along
the diagonals of quadrilaterals. Assume that G0 is a locally finite,
3-connected, quasi-transitive triangulation with one end. Then
there exist β0,C <∞ and ε > 0 such that for each inverse
temperature β ∈ [β0,∞] and each k ∈ {1, 2, 3}, there exists an
infinite-volume Gibbs measure µk,β for the 3-state Potts
antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 1
3 + ε.

(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 1
3 − ε.

(c) For all {u, v} ∈ E , we have µk,β(σu = σv ) ≤ Ce−β.

In particular, for each inverse temperature β ∈ [β0,∞], the 3-state
Potts antiferromagnet on G has at least three distinct extremal
infinite-volume Gibbs measures.
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The diced lattice

Connecting vertices in the sublattices at distance 2 in the original
lattice. . .
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The diced lattice

. . . yields two graphs G0 and G1 that are dual in the sense of planar
graph duality. By assumption, G0 is a triangulation.
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Examples

(a) (b)

(c) (d)

Our theorem applies to the lattices (b)–(d), but not to (a).
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Contour model

Recall the dual planar graphs G0 and G1

By assumption, G0 is a triangulation.
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Contour model
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We separate vertices with different
colours in G0 by contours in G1.

Jan M. Swart (Prague) Antiferromagnetic Potts models and random colourings



Contour model

?

1

2

3

At zero temperature, contours are collections of simple cycles, since
vertices in G1 cannot be surrounded by three different types in G0.
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Peierls argument

For vertices on a contour, only one type is available, while for
vertices that are not on a contour, 2 types are available. As a
result, for each configuration in which a given cycle is present, we
can find 2|γ| configurations where this contour has been removed,
with |γ| = the length of γ. Thus, the probability of a given cycle γ
being present is less or equal than 2−|γ| and the expected number
of cycles surrounding a given vertex can be estimated by

∞∑
L=6

N(L)2−L,

where N(L) denotes the number of cycles of length L surrounding
a given vertex.
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Peierls argument

Let Ñ(L) denotes the number of self-avoiding paths of length L in
the honeycomb lattice. Duminil-Copin and Smirnov (2010) have
proved that

lim
L→∞

Ñ(L)1/L =

√
2 +
√

2,

i.e., the connective constant of the honeycomb lattice is
√

2 +
√

2.
Since N(L) ≤ LÑ(L), it follows that

N(L) ≤ constant× L×
(√

2 +
√

2
)L
.

Note that
√

2 +
√

2 < 2 and hence the expected number of cycles
surrounding a given vertex is bounded by

constant×
∞∑
L=6

2−LL
(√

2 +
√

2
)L

<∞.
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Peierls argument

Using moreover explicit counting of cycles up to length 140 due to
Jensen (2006), Kotecký, Salas & Sokal (2008) were able to prove
that for any vertex v0 in G0

P[v0 is surrounded by a cycle] <
2

3
.

Using 1-boundary conditions on G0 and letting the box size to
infinity, it follows that there exists a zero-temperature
infinite-volume Gibbs measure µ∞ such that

µ∞
(
σ(v0) = 1

)
>

1

3
.

In particular, this ‘positive magnetization’ proves Gibbs state
multiplicity and long range order.
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Improved Peierls argument

For our general class of lattices:

G0 triangulation ⇒ every vertex in G1 has degree 3

⇒ connective constant of G1 is < 2,

which implies that the Peierls sum is finite, though possibly large.
It follows that for every ε > 0 there exists a finite ∆0 such that

P
[
∆0 is surrounded by a cycle

∣∣ no contour intersects ∆0

]
< ε.

and hence

µ∞
(
∆0 has colour 1

∣∣∆0 is uniformly coloured
)
> 1− ε,

uniformly in the system size, which implies Gibbs state multiplicity.
With some extra work, we can even prove positive magnetization.
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Proof of positive magnetization 45

(Inspired by Wang-Swendsen-Kotecký algorithm)

Condition on the position of the 3’s. Then the 1’s and 2’s on the
remaining sublattice form an antiferromagnetic Ising model.
Flipping one sublattice, we can make this ferromagnetic and
construct it with the usual random-cluster representation. Then,
under the conditional law:

P[∆0 uniformly 1]− P[∆0 uniformly 2]

= P[∆0 connected to the boundary].

A finite energy argument shows that if this is positive for some
finite ∆0, then it is positive for all such ∆0, in particular,
singletons.
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Positive temperature
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The argument can be extended to small positive temperatures
by a careful counting of nonsimple contours.
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Low temperature stability

Our Gibbs measures satisfy, for all β ∈ [β0,∞]:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 1
3 + ε.

(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 1
3 − ε.

(c) For all {u, v} ∈ E , we have µk,β(σu = σv ) ≤ Ce−β.

Letting β →∞, we can find a (sub-) sequence of positive
temperature Gibbs measures converging to a zero-temperature
limit that also has these properties.

In particular, by (c), such a zero-temperature Gibbs measure is
concentrated on proper 3-colourings.

Low temperature stability.
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Low temperature stability

Why is this important?

There are trivial counterexamples of zero-temperature Gibbs
measures that are not stable, in the sense that they are not the

limit of any positive-temperature Gibbs measures.
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Low temperature stability
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Stiff boundary conditions for the height model. . .
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Low temperature stability
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. . . translate into b.c. for the Potts model that correspond to a
unique 3-colouring of the interior.
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Low temperature stability

These Gibbs measures are not the limit of any positive temperature
Gibbs measures as the temperature is sent to zero.

The reason is that at any β <∞, we pay an energetic price of
order L (surface effect) to change to more advantageous boundary
conditions that lead to an entropic advantage of order L2 (bulk
effect).
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Long-range order with many colours 55

Theorem
[Huang, Chen, Deng, Jacobsen, Koteck, Salas, Sokal & S.]

There exist quadrangulations of the plane with
arbitrary high values of qc.
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Long-range order with many colours

The essential feature seems to be a strong
asymmetry between the sublattices.

T = 1/β

h(0, 0)

q = 2

q = 3

q = 4 5 6
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