Rota's conjecture and the tropical Laplacian

June Huh

University of Michigan
April 8, 2014

A matroid on a finite set E is a collection of subsets of E, called independent sets, which satisfy axioms modeled on the relation of linear independence of vectors:

A matroid on a finite set E is a collection of subsets of E, called independent sets, which satisfy axioms modeled on the relation of linear independence of vectors:

1. Every subset of an independent set is an independent set.
2. If an independent set A has more elements than independent
set B, then there is an element in A which, when added to B, gives a larger independent set.

- Let V be a vector space over a field k, and E a finite set of vectors. Call a subset of E independent if it is linearly independent. This defines a matroid M realizable over k.
- Let V be a vector space over a field k, and E a finite set of vectors. Call a subset of E independent if it is linearly independent.

This defines a matroid M realizable over k.

- Let G be a finite graph, and E the set of edges.

Call a subset of E independent if it does not contain a circuit.
This defines a graphic matroid M.

- A sequnce a_{0}, \ldots, a_{r} is log-concave if for all i

$$
a_{i-1} a_{i+1} \leq a_{i}^{2}
$$

- If there are no internal zeroes, log-concavity implies unimodality:

$$
a_{0} \leq \cdots \leq a_{i-1} \leq a_{i} \geq a_{i+1} \geq \cdots \geq a_{r} \quad \text { for some } i
$$

- The chromatic polynomial of G is the function

$$
\chi_{G}(q)=\text { (number of proper colorings of } G \text { with } q \text { colors). }
$$

- $\chi_{G}(q)$ is a polynomial in q with integer coefficients.
- The chromatic polynomial of G is the function

$$
\chi_{G}(q)=\text { (number of proper colorings of } G \text { with } q \text { colors). }
$$

- $\chi_{G}(q)$ is a polynomial in q with integer coefficients.

Example

$$
\chi_{G}(q)=1 q^{4}-4 q^{3}+6 q^{2}-3 q
$$

Conjecture (Read '68, Hoggar '74)

The coefficients of the chromatic polynomial $\chi_{G}(q)$ form a unimodal (log-concave) sequence for any graph G.

- Let E be a finite subset of a vector space.
- Define the f-vector of E by

$$
f_{i}=(\text { number of independent subsets of } E \text { with size } i)
$$

- Let E be a finite subset of a vector space.
- Define the f-vector of E by

$$
f_{i}=(\text { number of independent subsets of } E \text { with size } i)
$$

Example (Fano plane)

For $E=\mathbb{F}_{2}^{3} \backslash\{\mathbf{0}\}$, we have

$$
f_{0}=1, \quad f_{1}=7, \quad f_{2}=21, \quad f_{3}=28
$$

Conjecture (Welsh '69, Mason '72)

The sequence $f_{0}, f_{1}, \ldots, f_{r}$ is unimodal (log-concave) for any finite subset of a vector space.

Theorem (н.)

The conjecture on the chromatic polynomial is true for all graphs.

Theorem (Lenz)

The conjecture on the sequence f_{i} is true for any set of vectors.

Theorem (н.)

The conjecture on the chromatic polynomial is true for all graphs.

Theorem (Lenz)

The conjecture on the sequence f_{i} is true for any set of vectors.

I will show how to prove these statements; but these are just a small part of a more general conjecture of Rota that is still open and more interesting.

Rota noted the significance of the characteristic polynomial $\chi_{M}(q)$ defined from the lattice of flats of a matroid M.

On the lattice of flats, the Möbius function is defined recursively by

$$
\mu(\hat{0}, \hat{0})=1 \quad \text { and } \quad \mu(\hat{0}, F)=-\sum_{G<F} \mu(\hat{0}, G) .
$$

The sum of the values of Möbius function determine the characteristic polynomial:

$$
\chi_{M}(q)=1 q^{3}-4 q^{2}+5 q-2 .
$$

The following conjecture specializes to the previous conjectures in the realizable case:

Conjecture (Rota, Heron, Welsh)

The coefficients of the characteristic polynomial $\chi_{M}(q)$ form a log-concave sequence for any matroid M.

Theorem (H.-Katz)

The coefficients of the characteristic polynomial $\chi_{M}(q)$ form a log-concave sequence if M is realizable over some field.

Does this gives a strong evidence for the general case?

An even dimensional homology group (with \mathbb{Z} coefficients) of a complex algebraic variety X is a finitely generated abelian group with additional structures.

An even dimensional homology group (with \mathbb{Z} coefficients) of a complex algebraic variety X is a finitely generated abelian group with additional structures.

1. A subvariety defines a homology class.

The homology class of a subvariety is called prime.

An even dimensional homology group (with \mathbb{Z} coefficients) of a complex algebraic variety X is a finitely generated abelian group with additional structures.

1. A subvariety defines a homology class.

The homology class of a subvariety is called prime.
2. An algebraic class is an integral linear combination of prime classes.

The Hodge conjecture characterizes algebraic classes (up to a multiple).

The homology group contains
(i) the set of prime classes, the classes of subvarieties,
(ii) the set of effective classes, the nonnegative linear combinations of prime classes.

Definition

A homology class $\xi \in H_{2 d}(X ; \mathbb{R})$ is said to be prime if some positive multiple of ξ is the class of a subvariety. Define

$$
P_{d}(X)=\left(\text { the closure of the set of prime classes in } H_{2 d}(X ; \mathbb{R})\right) .
$$

This closed subset shows the asymptotic distribution of primes in the homology of X.

Example

If $X=\mathbb{P}^{m} \times \mathbb{P}^{n}$, then

$$
H_{2 d}(X ; \mathbb{R})=\left\{\xi=\sum_{i} x_{i}\left[\mathbb{P}^{d-i} \times \mathbb{P}^{i}\right] \mid x_{i} \in \mathbb{R}\right\} .
$$

Example

If $X=\mathbb{P}^{m} \times \mathbb{P}^{n}$, then

$$
H_{2 d}(X ; \mathbb{R})=\left\{\xi=\sum_{i} x_{i}\left[\mathbb{P}^{d-i} \times \mathbb{P}^{i}\right] \mid x_{i} \in \mathbb{R}\right\} .
$$

Then $P_{d}(X)$ is the set
($\left\{x_{i}\right\}$ is a log-concave sequence of nonnegative integers with no internal zeros).

The orderly structure of primes is not visible if we work with integral homology classes.

For example, there is no subvariety of $\mathbb{P}^{5} \times \mathbb{P}^{5}$ with the homology class

$$
1\left[\mathbb{P}^{5} \times \mathbb{P}^{0}\right]+2\left[\mathbb{P}^{4} \times \mathbb{P}^{1}\right]+3\left[\mathbb{P}^{3} \times \mathbb{P}^{2}\right]+4\left[\mathbb{P}^{2} \times \mathbb{P}^{3}\right]+2\left[\mathbb{P}^{1} \times \mathbb{P}^{4}\right]+1\left[\mathbb{P}^{0} \times \mathbb{P}^{5}\right],
$$

although ($1,2,3,4,2,1$) is a log-concave sequence with no internal zeros.
(Recall Hodge conjecture, Steenrod's problem, etc.)

I claim that matroid theory is a study of the toric variety $X_{A_{n}}$ of the n-dimensional permutohedron:

- Let M be a (loopless) matroid on $E=\{0,1, \ldots, n\}$ of rank ($r+1$).
- Let \mathscr{R} be a set of (nonzero) vectors $\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ in an $(r+1)$-dimensional vector space over k.

If the matroid of \mathscr{R} is M, then we say that \mathscr{R} is a realization of M.

There is a 'natural' construction of

- an r-dimensional homology class of $X_{A_{n}}$ from M, denoted Δ_{M}, and
- an r-dimensional subvariety of $X_{A_{n}}$ from \mathscr{R}, denoted $Y_{\mathscr{R}}$.

The homology class Δ_{M} determines M, and the subvariety $Y_{\mathscr{R}}$ determines \mathscr{R}.

Theorem

Let k be a field, and M be a loopless matroid on E.
(i) The homology class Δ_{M} is effective.
(ii) The homology class Δ_{M} is prime if and only if M is realizable over k.

Theorem

More precisely,

(iii) If \mathscr{R} is a realization of M, then $\left[Y_{\mathscr{R}}\right]=\Delta_{M}$.
(iv) If Y is a subvariety with $[Y]=\Delta_{M}$, then $Y=Y_{\mathscr{R}}$ for some realization \mathscr{R} of M over k.

Theorem

Under the "anticanonical" map

$$
\pi: X_{A_{n}} \longrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n}
$$

the matroid homology class pushforwards

$$
\Delta_{M} \mapsto \text { (the coefficients of the characteristic polynomial of } M \text {). }
$$

Theorem

Under the "anticanonical" map

$$
\pi: X_{A_{n}} \longrightarrow \mathbb{P}^{n} \times \mathbb{P}^{n}
$$

the matroid homology class pushforwards

$$
\Delta_{M} \mapsto \text { (the coefficients of the characteristic polynomial of } M \text {). }
$$

Since prime classes map to prime classes, Rota's conjecture is true for all matroids which are realizable over some field.

In our language,

Conjecture (log-concavity conjecture)
For any matroid M and any field k,

$$
\pi_{*}\left(\Delta_{M}\right) \in P_{r}\left(\mathbb{P}^{n} \times \mathbb{P}^{n}\right)
$$

If Rota's conjecture is true, I believe it is because the same is true in $X_{A_{n}}$.

Conjecture (AG)

For any matroid M and any field k,

$$
\Delta_{M} \in P_{r}\left(X_{A_{n}}\right) .
$$

All except one statement in the proof of the log-concavity conjecture (in the realizable case) can be proved within pure combinatorics.

All except one statement in the proof of the log-concavity conjecture (in the realizable case) can be proved within pure combinatorics.

Conjecture (CO)

The tropical Laplacian of a matroid has exactly one negative eigenvalue.

All except one statement in the proof of the log-concavity conjecture (in the realizable case) can be proved within pure combinatorics.

Conjecture (CO)

The tropical Laplacian of a matroid has exactly one negative eigenvalue.
(i) Conjecture (CO) holds for all matroids which are realizable over some field.
(ii) Conjecture (CO) implies the log-concavity conjecture.

