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Notice µxPxy = Cxy = Cyx = µyPyx , so the chain is reversible.
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Ea(signed current x → y before absorbed in b)
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Star-Delta:

S
∗

R
∗Q∗

S∆

R
∆

Q
∆

R∗ =
Q∆S∆

R∆ + Q∆ + S∆
, R∆ =

R∗Q∗ + R∗S∗ + Q∗S∗

R∗

.
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Thomson, Dirichlet principles

Thomson principle:

R

Q

1 1

The physical unit current is the unit flow that minimizes the sum

of the ohmic power losses
∑

i2R.

Dirichlet principle:

R Q
1 V u 0 V

The physical voltage is the function that minimizes the ohmic

power losses
∑

(∇u)2/R.
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Monotonicity, transience, recurrence

The monotonicity property:

Between any disjoint sets of vertices, the effective resistance is

a non-decreasing function of the individual resistances.

 can be used to prove transience-recurrence by reducing the

graph to something manageable in terms of resistor networks.
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Dy
ny

ux =
∑

y

Dxyγxy

Dx
· uy

uxDx =
∑

y

Dxyγxy

Dy
· uyDy

 ûxDx = nx

in the reversed chain.

γxy =
√

λxy Dx =
∑

z

Dxzγzx =
∑

z

Dxzγxz Dxy = 2γxy Cxy/(λxy + 1)

Pxy = Dxyγxy/Dx



Reversible Irreversible Engineering The part Chain Network Effective Works...

From chain to network

Let nx = Ea(number of visits to x before absorbed in b). Then

 ûxDx = nx

in the reversed chain.

Ea(signed current x → y before absorbed in b)

= nxPxy −nyPyx = (ûxγxy −ûyγyx)Dxy = îxy . normalisation. . .

γxy =
√

λxy Dx =
∑

z

Dxzγzx =
∑

z

Dxzγxz Dxy = 2γxy Cxy/(λxy + 1)

Pxy = Dxyγxy/Dx
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Suppose ua, ub given, the solution is {ux}x∈Ω and {ixy}x∼y∈Ω.

Current

ia =
∑

x∼a

iax

flows in the network at a.
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flows in the network at a.

 The ”Markovity” property has another solution: constant ub

potentials with zero external currents.

 The difference of these two: {ux − ub}x∈Ω is a solution too,

with ia flowing in the network.

 Going backwards from ub − ub = 0 at b, all currents and

potentials are proportional to ua − ub at a.



Reversible Irreversible Engineering The part Chain Network Effective Works...

Effective resistance

Suppose ua, ub given, the solution is {ux}x∈Ω and {ixy}x∼y∈Ω.

Current

ia =
∑

x∼a

iax

flows in the network at a.

 The ”Markovity” property has another solution: constant ub

potentials with zero external currents.

 The difference of these two: {ux − ub}x∈Ω is a solution too,

with ia flowing in the network.

 Going backwards from ub − ub = 0 at b, all currents and

potentials are proportional to ua − ub at a.

 In particular, ia is proportional to ua − ub. We have effective

resistance.
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What works

... the analogy with P{τa < τb}.

Modulo normalisation. . .

Ea(signed current x → y before absorbed in b) = îxy .

in the reversed network!

Theorem
Commute time = Reff · all conductances.
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The electric network
Series:

R/2 R/2

∗λ

Q/2 Q/2

∗µ

Rpr

∗λ

Qse

∗µ

Rpr Qse

∗λµ

Rpr Q′pr

∗λµ

Spr

∗λµ

S/2 S/2

∗λµ

S = R
(λ+ 1)µ

λµ+ 1
+ Q

µ+ 1

λµ+ 1
.
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The electric network

Parallel:

R/2 R/2

∗λ

Q/2 Q/2

∗µ

Rse

∗λ

Qse

∗µ

Compare this with

Sse

∗ν

S =
RQ

R + Q

ν =
Qλ(µ+ 1) + Rµ(λ+ 1)

Q(µ+ 1) + R(λ+ 1)
.
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The electric network

Star-Delta:

Star to Delta works,

Delta to Star only works if Delta does not produce a circular

current by itself (λµν = 1).

S/2 S/2

∗νR
/2

R
/2

∗
λ

Q
/2

Q
/2

∗µ
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Nonmonotonicity

3/2 3/2

∗1/5

2/2 2/2

∗5/13

3/2 3/2

∗5

2/2 2/2

∗13/5

Reff =
27

14
.

3/2 3/2

∗1/5

2/2 2/2

∗5/13

3/2 3/2

∗5

2/2 2/2

∗13/5

Reff =
5

2
=

35

14
.
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Dirichlet principle
Classical case:

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y

(iu)
2
xy · Rxy .
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Dirichlet principle
Classical case:

Reff = EOhm(iu),

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y

(iu)
2
xy · Rxy .
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Dirichlet principle
Classical case:

Reff = min
u:u(a)=1, u(b)=0

EOhm(iu),

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y

(iu)
2
xy · Rxy .

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

(i∗u )xy=
2λxy

λxy + 1
Cxy u(x)−

2

λxy + 1
Cxy u(y),

EOhm(i
∗

u −Ψ)=
∑

x∼y

(

i∗u −Ψxy

)2
· Rxy .
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Dirichlet principle
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EOhm(iu),

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y
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2
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Dirichlet principle
Classical case:

Reff = min
u:u(a)=1, u(b)=0

EOhm(iu),

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y

(iu)
2
xy · Rxy .

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

Reff = min
Ψ: flow

EOhm(i
∗

u −Ψ),

(i∗u )xy=
2λxy

λxy + 1
Cxy u(x)−

2

λxy + 1
Cxy u(y),

EOhm(i
∗

u −Ψ)=
∑

x∼y

(

i∗u −Ψxy

)2
· Rxy .
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Dirichlet principle
Classical case:

Reff = min
u:u(a)=1, u(b)=0

EOhm(iu),

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y

(iu)
2
xy · Rxy .

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

Reff = min
u:u(a)=1, u(b)=0

min
Ψ: flow

EOhm(i
∗

u −Ψ),

(i∗u )xy=
2λxy

λxy + 1
Cxy u(x)−

2

λxy + 1
Cxy u(y),

EOhm(i
∗

u −Ψ)=
∑

x∼y

(

i∗u −Ψxy

)2
· Rxy .
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Dirichlet principle
Classical case:

Reff = min
u:u(a)=1, u(b)=0

EOhm(iu),

(iu)xy= Cxy ·
(

u(x)− u(y)
)

,

EOhm(iu)=
∑

x∼y

(iu)
2
xy · Rxy .

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

Reff = min
u:u(a)=1, u(b)=0

min
Ψ: flow

EOhm(i
∗

u −Ψ),

(i∗u )xy=
2λxy

λxy + 1
Cxy u(x)−

2

λxy + 1
Cxy u(y),

EOhm(i
∗

u −Ψ)=
∑

x∼y

(

i∗u −Ψxy

)2
· Rxy .

Thank you.
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