000000 00000 0000

[Setup](#page-1-0) [Examples](#page-13-0) [CE](#page-29-0) [Classic](#page-46-0) [Inductive](#page-58-0) [KS-equations](#page-67-0) [Series-revisited](#page-102-0)

000000000

4 ロ > 4 何 > 4 ヨ > 4 ヨ > ニヨ → 9 Q Q

Convergence of cluster expansions: A review of the main strategies and their relations

Collaborators: R. Bissacot (São Paulo), A. Procacci (Minas Gérais), B. Scoppola (Roma "La Sapienza")

Contributors: R. Koteck´y, S. Ramawadh, A.D. Sokal, C. Temmel, D. Ueltschi

Warwick, April 9, 2014

The basic setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition

 \blacktriangleright An *incompatibility* constraint:

$$
\begin{array}{ccc}\n\gamma \nsim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \text{incompat} \\
\gamma \sim \gamma' & \text{if } \gamma, \gamma' \in \mathcal{P} & \text{compatil}\n\end{array}
$$

KOR & KERKER ADA KON

A family of *activities* $z = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

The basic setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family P of objects: polymers, animals, ..., characterized by

 \blacktriangleright An *incompatibility* constraint:

 $\gamma \nsim \gamma'$ $\begin{array}{ll}\gamma \nsim \gamma'\\ \gamma \sim \gamma' \end{array} \quad \text{if } \gamma, \gamma' \in \mathcal{P} \qquad \begin{array}{ll}\text{incompatible}\\ \text{compatible}\end{array}$ compatible

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

A family of *activities* $z = \{z_{\gamma}\}_{\gamma \in \mathcal{P}} \in \mathbb{C}^{\mathcal{P}}$.

The basic setup

Goal: To study systems of objects constrained only by a "non-overlapping" condition

Countable family P of objects: polymers, animals, ..., characterized by

 \blacktriangleright An *incompatibility* constraint:

$$
\begin{array}{c}\n\gamma \nsim \gamma' \\
\gamma \sim \gamma' \qquad \text{if } \gamma, \gamma' \in \mathcal{P} \qquad \text{incompatible} \\
\text{compatible}\n\end{array}
$$

A DIA K A B A B A B A A A A A B A A A A A A

For simplicity: each polymer incompatible with itself $(\gamma \nsim \gamma, \forall \gamma \in \mathcal{P})$

A family of *activities* $z = \{z_{\gamma}\}_{{\gamma \in \mathcal{P}}} \in \mathbb{C}^{\mathcal{P}}$.

The basic ("finite-volume") measures

Defined, for each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$
W_{\Lambda}(\{\gamma_1,\gamma_2,\ldots,\gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} 1\!\!1_{\{\gamma_j \sim \gamma_k\}}
$$

for $n \geq 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \mathcal{P}_\Lambda$, and $W_\Lambda(\emptyset) = 1/\Xi_\Lambda$, where

$$
\Xi_{\Lambda}(z)=1+\sum_{n\geq 1}\frac{1}{n!}\sum_{(\gamma_1,...,\gamma_n)\in\mathcal{P}^n_{\Lambda}}z_{\gamma_1}z_{\gamma_2}\ldots z_{\gamma_n}\prod_{j
$$

K □ ▶ K ● K K X B X X B X B X Y Q Q Q

The basic ("finite-volume") measures

Defined, for each *finite* family $\mathcal{P}_{\Lambda} \subset \mathcal{P}$, by weights

$$
W_{\Lambda}(\{\gamma_1,\gamma_2,\ldots,\gamma_n\}) = \frac{1}{\Xi_{\Lambda}(z)} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_n} \prod_{j < k} 1\!\!1_{\{\gamma_j \sim \gamma_k\}}
$$

for $n \geq 1$ $\gamma_1, \gamma_2, \ldots, \gamma_n \in \mathcal{P}_\Lambda$, and $W_\Lambda(\emptyset) = 1/\Xi_\Lambda$, where

$$
\Xi_{\Lambda}(z) = 1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}_{\Lambda}^n} z_{\gamma_1} z_{\gamma_2} \dots z_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}}
$$

KOR & KERKER ADA KON

 Λ = some label, often finite subset of a countable set

Polymer correlation functions

For $\gamma_1, \ldots, \gamma_k$ mutually compatible polymers in \mathcal{P}_{Λ}

$$
\mathrm{Prob}_{\Lambda}(\{\gamma_1,\ldots,\gamma_k \text{ are present}\}) = z_{\gamma_1}\cdots z_{\gamma_k} \frac{\Xi_{\Lambda \setminus \{\gamma_1,\ldots,\gamma_k\}^*}}{\Xi_{\Lambda}}
$$

where

 $\{\gamma_1,\ldots,\gamma_k\}^* = \text{polymers incomparable with } \gamma_1,\ldots,\gamma_k$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q OK

- Existence of the limit $\mathcal{P}_{\Lambda} \to \mathcal{P}$ ("thermodynamic limit")
- \triangleright Properties of the resulting measure (mixing properties, dependency on parameters,. . .)

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

- **•** Asymptotic behavior of Ξ_{Λ} (analyticity!)
- \triangleright Control of correlation functions

Immediate:

 \triangleright Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction

 \triangleright *Statistics:* Invariant measure of point processes with

- \triangleright Statistical mechanical models at high and low temperatures
-
-

지수는 지금 사람을 지르는 것이다.

 299

Immediate:

- \blacktriangleright Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- \triangleright *Statistics:* Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

- \triangleright Statistical mechanical models at high and low temperatures
- \triangleright More generally: most perturbative arguments in physics
-

 299

Immediate:

- \triangleright Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- \triangleright *Statistics:* Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- \triangleright Statistical mechanical models at high and low temperatures are mapped into such systems
- \triangleright More generally: most perturbative arguments in physics
- \blacktriangleright Zeros of the partition functions Ξ_{Λ} (phase transitions,

KOR & KERKER ADA KON

Immediate:

- \triangleright Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- \triangleright *Statistics:* Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- \triangleright Statistical mechanical models at high and low temperatures are mapped into such systems
- \triangleright More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- \triangleright Zeros of the partition functions Ξ_{Λ} (phase transitions,

KOR & KERKER ADA KON

Immediate:

- \triangleright Physics: Grand-canonical ensemble of polymer gas with activities z_{γ} and hard-core interaction
- \triangleright *Statistics:* Invariant measure of point processes with not-overlapping grains and birth rates z_{γ}

Less immediate:

- \triangleright Statistical mechanical models at high and low temperatures are mapped into such systems
- \triangleright More generally: most perturbative arguments in physics involve maps of this type (choice of the "right" variables)
- \triangleright Zeros of the partition functions Ξ_{Λ} (phase transitions, sphere packing, chromatic polynomials, Lovász lemma)

Example zero: Hard-core lattice gases

Measures on configurations $\omega \in \mathbb{L}^E$ with

- \blacktriangleright L =vertices of a graph (eg. \mathbb{Z}^d),
- $E = \{0, 1\}$ ("1"=occupied)
- No occupied neighbors are allowed
- \triangleright Allowed configurations have weights $\sim \exp(\mu \beta |\Gamma|)$ $(\mu = \text{Gibbs chemical potential}, \beta = \text{inverse temperature})$

 \triangleright P = {vertices of L}

 $\triangleright x \not\sim y$ iff x and y are graph neighbors

 \triangleright $z_{\infty} = e^{\beta u}$

Example zero: Hard-core lattice gases

Measures on configurations $\omega \in \mathbb{L}^E$ with

- \blacktriangleright L =vertices of a graph (eg. \mathbb{Z}^d),
- $E = \{0, 1\}$ ("1"=occupied)
- No occupied neighbors are allowed
- \triangleright Allowed configurations have weights $\sim \exp(\mu \beta |\Gamma|)$ $(\mu = \text{Gibbs chemical potential}, \beta = \text{inverse temperature})$

This is a polymer model with

- \triangleright P = {vertices of L}
- $\triangleright x \not\sim y$ iff x and y are graph neighbors

$$
\blacktriangleright z_x = e^{\beta u}
$$

Example zero: Hard-core lattice gases

Measures on configurations $\omega \in \mathbb{L}^E$ with

- \blacktriangleright L =vertices of a graph (eg. \mathbb{Z}^d),
- $E = \{0, 1\}$ ("1"=occupied)
- No occupied neighbors are allowed
- \triangleright Allowed configurations have weights $\sim \exp(\mu \beta |\Gamma|)$ $(\mu = \text{Gibbs chemical potential}, \beta = \text{inverse temperature})$

This is a polymer model with

- \triangleright P = {vertices of L}
- \triangleright x \sim y iff x and y are graph neighbors

$$
\blacktriangleright z_x = e^{\beta u}
$$

(For Sokal-like people all polymer models are of this type)

Single-call loss networks

Defined through the following dynamics:

- \blacktriangleright \mathcal{P} = finite subsets of \mathbb{Z}^d —the calls
- \triangleright A call γ is attempted with Poissonian rates z_{γ}
- \triangleright Call succeeds if it does not intercept existing calls
- \triangleright Once established, calls have an exp(1) life span

 \triangleright P = finite connected families of links of a graph —the calls

KOR & KERKER ADA KON

- \triangleright z_{γ} = Poissonian rate for the call γ
- \triangleright Compatibility = use of disjoint links (disjoint calls)

Single-call loss networks

Defined through the following dynamics:

- \blacktriangleright \mathcal{P} = finite subsets of \mathbb{Z}^d —the calls
- \triangleright A call γ is attempted with Poissonian rates z_{γ}
- \triangleright Call succeeds if it does not intercept existing calls
- \triangleright Once established, calls have an exp(1) life span

Invariant measures correspond to the polymer expansion:

 \triangleright P = finite connected families of links of a graph —the *calls*

- \triangleright z_{γ} = Poissonian rate for the call γ
- \triangleright Compatibility = use of disjoint links (disjoint calls)

Low-T expansions

Ising model at low T:

- \triangleright Polymers = connected closed surfaces (contours)
- \triangleright Compatibility = no intersection
- $\triangleright z_{\gamma} = \exp\{-2\beta J |\gamma|\}$

- \triangleright P = connected families of (excited) bonds (contours)
- \blacktriangleright z_{γ} = $\exp \{-2 \beta \sum_{B \in \gamma} J_B \}$
- $\blacktriangleright \gamma \sim \gamma'$ iff $\gamma \cap \gamma' = \emptyset$ (disjoint bases); $(\gamma = \bigcup \{B : B \in \gamma\})$

Low-T expansions

Ising model at low T:

- \triangleright Polymers = connected closed surfaces (contours)
- \triangleright Compatibility = no intersection
- $\triangleright z_{\gamma} = \exp\{-2\beta J |\gamma|\}$

LTE for Ising ferromagnets:

 \triangleright P = connected families of (excited) bonds (contours)

$$
\triangleright z_{\gamma} = \exp\{-2\beta \sum_{B \in \gamma} J_B\}
$$

 $\triangleright \gamma \sim \gamma'$ iff $\gamma \cap \gamma' = \emptyset$ (disjoint bases); $(\gamma = \cup \{B : B \in \gamma\})$

$High-T$ expansions

General HTE:

I

 \triangleright P = {connected finite subsets of bonds}

 $z_B =$ B Π $A \in \mathbf{B}$ $(e^{-\beta \phi_A(\omega)} - 1)$ $x \in \underline{B}$ $\mu_{E}(d\omega_{x})$

$$
\blacktriangleright \boldsymbol{B} \sim \boldsymbol{B}' \text{ iff } \underline{\boldsymbol{B}} \cap \underline{\boldsymbol{B}}' = \emptyset \ (\underline{\boldsymbol{B}} = \cup \{B : B \in \boldsymbol{B}\})
$$

 $\mathcal{P} = \big\{ \bm{B} \in \mathcal{B}_{\Lambda} : \underline{\bm{B}} \text{ connected } \ , \sum_{B \in \bm{B}} B = \emptyset \big\} \text{ (cycles)}$

KOR & KERKER ADA KON

- \blacktriangleright $z_B = \prod_{B \in \mathcal{B}} \tanh(\beta J_B)$
- \blacktriangleright $\bm{B} \sim \bm{B}'$ iff $\underline{\bm{B}} \cap \underline{\bm{B}}' = \emptyset$

[Expansions from stat-mech](#page-21-0)

$High-T$ expansions

General HTE:

I

 \triangleright P = {connected finite subsets of bonds}

 $z_B =$ B Π $A \in \mathbf{B}$ $(e^{-\beta \phi_A(\omega)} - 1)$ $x \in \underline{B}$ $\mu_{E}(d\omega_{x})$

 \blacktriangleright $B \sim B'$ iff $\underline{B} \cap \underline{B'} = \emptyset$ $(\underline{B} = \cup \{B : B \in B\})$

HTE for Ising ferromagnets:

$$
\blacktriangleright \mathcal{P} = \{ \boldsymbol{B} \in \mathcal{B}_{\Lambda} : \underline{\boldsymbol{B}} \text{ connected } , \sum_{B \in \boldsymbol{B}} B = \emptyset \} \text{ (cycles)}
$$

A DIA K A B A B A B A A A A A B A A A A A A

$$
\blacktriangleright z_{\boldsymbol{B}} = \prod_{B \in \boldsymbol{B}} \tanh(\beta J_B)
$$

 \blacktriangleright $\bm{B} \sim \bm{B}'$ iff $\underline{\bm{B}} \cap \underline{\bm{B}}' = \emptyset$

Random geometrical models

FK representation of Potts models:

 \triangleright $\mathcal{P} = \{ \gamma \subset \square \}$ I $z_\gamma \; = \; q^{-(|\gamma|-1)} \qquad \sum$ $\begin{array}{c} B{\subset} \mathcal{B}_\gamma\ (\gamma,B) \text{ connected} \end{array}$ Π ${x,y} \in B$ $v_{x,y}$

with $v_{x,y} = e^{\beta J_{x,y}} - 1$

- \triangleright Compatibility = non-intersection
- If $v\{x, y\} = -1 \rightarrow$ chromatic polynomial $(\beta \to \infty$ with $J_{xy} < 0$, i.e. zero-temperature antiferromagnetic Potts)
- General v_{xy} : multivariate version of Tutte polynomial.

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

Geometrical polymer models

Previous examples: polymers formed by points of a set These are the original polymer models of Gruber and Kunz:

- \blacktriangleright A set $\mathbb V$ (sites)
- \triangleright A family $\mathcal P$ of finite subsets of $\mathbb V$ (grains, connected sets)

A DIA K RIA K E A K RIA K L A SA K A L A SA CA

- Activity values $(z_{\gamma})_{\gamma \in \mathcal{P}}$
- \triangleright The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

 $\blacktriangleright \gamma \sim \gamma' \Longleftrightarrow \gamma \cap \gamma' = \emptyset$ \triangleright $\mathcal{P}_{\Lambda} = \{ \gamma \in \mathcal{P} : \gamma \subset \Lambda \}, \Lambda \subset \subset \mathbb{V}$

Geometrical polymer models

Previous examples: polymers formed by points of a set These are the original polymer models of Gruber and Kunz:

- \blacktriangleright A set V (sites)
- \triangleright A family $\mathcal P$ of finite subsets of $\mathbb V$ (grains, connected sets)

A DIA K A B A B A B A A A A A B A A A A A A

- Activity values $(z_{\gamma})_{\gamma \in \mathcal{P}}$
- ► The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

 $\blacktriangleright \gamma \sim \gamma' \Longleftrightarrow \gamma \cap \gamma' = \emptyset$ \triangleright $\mathcal{P}_{\Lambda} = \{ \gamma \in \mathcal{P} : \gamma \subset \Lambda \}, \Lambda \subset \subset \mathbb{V}$

Geometrical polymer models

Previous examples: polymers formed by points of a set These are the original polymer models of Gruber and Kunz:

- \blacktriangleright A set V (sites)
- \triangleright A family $\mathcal P$ of finite subsets of $\mathbb V$ (grains, connected sets)

A DIA K A B A B A B A A A A A B A A A A A A

- Activity values $(z_{\gamma})_{\gamma \in \mathcal{P}}$
- ► The relation $\gamma \sim \gamma' \iff \gamma \cap \gamma' = \emptyset$

More generally: $\gamma = (\underline{\gamma}, \text{decoration}),\, \underline{\gamma} \subset \mathbb{V}$

$$
\begin{aligned}\n &\rightarrow \gamma \sim \gamma' \Longleftrightarrow \underline{\gamma} \cap \underline{\gamma}' = \emptyset \\
 &\rightarrow \mathcal{P}_{\Lambda} = \{ \gamma \in \mathcal{P} : \underline{\gamma} \subset \Lambda \}, \, \Lambda \subset\subset \mathbb{V}\n\end{aligned}
$$

Generalization : Continuous polymer systems More generally,

$$
\frac{1}{n!} \sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n} \longrightarrow \frac{1}{n!} \int_{\mathcal{P}_{\Lambda}^n} d\gamma_1\cdots d\gamma_n
$$

where $d\gamma_1 \cdots d\gamma_n$ is an appropriate product measure Also, for book-keeping purposes: $z_{\gamma} = z \xi_{\gamma}$

$$
\frac{1}{\Xi_{\Lambda}} \frac{z^n}{n!} \xi_{\gamma_1} \xi_{\gamma_2} \cdots \xi_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} d\gamma_1 \cdots d\gamma_n
$$

$$
\Xi_{\Lambda}(z,\xi) = 1 + \sum_{n\geq 1} \frac{z^n}{n!} \int_{\mathcal{P}_{\Lambda}^n} \xi_{\gamma_1} \dots \xi_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} d\gamma_1 \dots d\gamma_n
$$

Generalization : Continuous polymer systems More generally,

$$
\frac{1}{n!} \sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n} \longrightarrow \frac{1}{n!} \int_{\mathcal{P}_{\Lambda}^n} d\gamma_1\cdots d\gamma_n
$$

where $d\gamma_1 \cdots d\gamma_n$ is an appropriate product measure Also, for book-keeping purposes: $z_{\gamma} = z \xi_{\gamma}$ That is, we consider measures on $\sum_{n} \mathcal{P}_{\Lambda}^{n}$ with projections on $\mathcal{P}_{\Lambda}^{n}$

$$
\frac{1}{\Xi_{\Lambda}} \frac{z^n}{n!} \xi_{\gamma_1} \xi_{\gamma_2} \cdots \xi_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} d\gamma_1 \cdots d\gamma_n
$$

$$
\Xi_{\Lambda}(z,\xi) = 1 + \sum_{n\geq 1} \frac{z^n}{n!} \int_{\mathcal{P}_{\Lambda}^n} \xi_{\gamma_1} \dots \xi_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} d\gamma_1 \dots d\gamma_n
$$

Generalization : Continuous polymer systems More generally,

$$
\frac{1}{n!} \sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n} \longrightarrow \frac{1}{n!} \int_{\mathcal{P}_{\Lambda}^n} d\gamma_1\cdots d\gamma_n
$$

where $d\gamma_1 \cdots d\gamma_n$ is an appropriate product measure Also, for book-keeping purposes: $z_{\gamma} = z \xi_{\gamma}$ That is, we consider measures on $\sum_{n} \mathcal{P}_{\Lambda}^{n}$ with projections on $\mathcal{P}_{\Lambda}^{n}$

$$
\frac{1}{\Xi_{\Lambda}} \frac{z^n}{n!} \xi_{\gamma_1} \xi_{\gamma_2} \cdots \xi_{\gamma_n} \prod_{j < k} \mathbb{1}_{\{\gamma_j \sim \gamma_k\}} d\gamma_1 \cdots d\gamma_n
$$

where

$$
\Xi_{\Lambda}(z,\boldsymbol{\xi})=1+\sum_{n\geq 1}\frac{z^n}{n!}\int_{\mathcal{P}_{\Lambda}^n}\xi_{\gamma_1}\ldots\xi_{\gamma_n}\prod_{j
$$

Cluster expansions

Write $\Xi_{\Lambda}(z)$ as *formal* exponentials of a *formal* series

$$
\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp\Bigl\{\sum_{n=1}^{\infty}\frac{1}{n!}\sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n}\phi^T(\gamma_1,\ldots,\gamma_n)\,z_{\gamma_1}\ldots z_{\gamma_n}\Bigr\}
$$

or

$$
\Xi_{\Lambda} \stackrel{\mathrm{F}}{=} \exp \left\{ \sum_{n=1}^{\infty} \frac{z^n}{n!} \int_{\mathcal{P}_{\Lambda}^n} \phi^T(\gamma_1, \dots, \gamma_n) \, \xi_{\gamma_1} \dots \xi_{\gamma_n} \, d\gamma_1 \dots d\gamma_n \right\}
$$

 \blacktriangleright The series between curly brackets is the *cluster expansion* $\blacktriangleright \phi^T(\gamma_1, \ldots, \gamma_n)$: Ursell or truncated functions (symmetric)

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

- \blacktriangleright *Clusters*: Families { $γ_1, ..., γ_n$ } s.t. $φ^T(γ_1, ..., γ_n) ≠ 0$
- \blacktriangleright Clusters are connected w.r.t. " \approx "

Cluster expansions

Write $\Xi_{\Lambda}(z)$ as *formal* exponentials of a *formal* series

$$
\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp\Bigl\{\sum_{n=1}^{\infty}\frac{1}{n!}\sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n}\phi^T(\gamma_1,\ldots,\gamma_n)\,z_{\gamma_1}\ldots z_{\gamma_n}\Bigr\}
$$

or

$$
\Xi_{\Lambda} \stackrel{\mathrm{F}}{=} \exp \left\{ \sum_{n=1}^{\infty} \frac{z^n}{n!} \int_{\mathcal{P}_{\Lambda}^n} \phi^T(\gamma_1, \ldots, \gamma_n) \, \xi_{\gamma_1} \ldots \xi_{\gamma_n} \, d\gamma_1 \cdots d\gamma_n \right\}
$$

 \triangleright The series between curly brackets is the *cluster expansion* $\blacktriangleright \phi^T(\gamma_1, \ldots, \gamma_n)$: Ursell or truncated functions (symmetric) \blacktriangleright *Clusters*: Families { $γ_1, ..., γ_n$ } s.t. $φ^T(γ_1, ..., γ_n) ≠ 0$

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

 \blacktriangleright Clusters are connected w.r.t. " \approx "

Cluster expansions

Write $\Xi_{\Lambda}(z)$ as *formal* exponentials of a *formal* series

$$
\Xi_{\Lambda}(z) \stackrel{\mathrm{F}}{=} \exp\Bigl\{\sum_{n=1}^{\infty}\frac{1}{n!}\sum_{(\gamma_1,\ldots,\gamma_n)\in\mathcal{P}_{\Lambda}^n}\phi^T(\gamma_1,\ldots,\gamma_n)\,z_{\gamma_1}\ldots z_{\gamma_n}\Bigr\}
$$

or

$$
\Xi_{\Lambda} \stackrel{\mathrm{F}}{=} \exp \left\{ \sum_{n=1}^{\infty} \frac{z^n}{n!} \int_{\mathcal{P}_{\Lambda}^n} \phi^T(\gamma_1, \ldots, \gamma_n) \, \xi_{\gamma_1} \ldots \xi_{\gamma_n} \, d\gamma_1 \cdots d\gamma_n \right\}
$$

 \triangleright The series between curly brackets is the *cluster expansion* $\blacktriangleright \phi^T(\gamma_1,\ldots,\gamma_n)$: Ursell or truncated functions (symmetric)

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

- ► Clusters: Families $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $\phi^T(\gamma_1, \ldots, \gamma_n) \neq 0$
- \blacktriangleright Clusters are *connected* w.r.t. " \approx "

Pinned expansions

Telescoping, it is enough to consider one-polymer ratios

$$
\left[\log \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}\right](z) \stackrel{\text{F}}{=} \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \ldots, \gamma_n) \in \mathcal{P}_{\Lambda}^n \\ \exists i: \gamma_i = \gamma_0}} \phi^T(\gamma_1, \ldots, \gamma_n) z_{\gamma_1} \ldots z_{\gamma_n}
$$

$$
\begin{aligned} &\left[\frac{\partial}{\partial z_{\gamma_0}}\log \Xi_\Lambda\right](z) \stackrel{\text{F}}{=} \\ &\qquad 1 + \sum_{n=1}^\infty \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n_\Lambda} \phi^T(\gamma_0, \gamma_1, \dots, \gamma_n) \, z_{\gamma_1} \dots z_{\gamma_n} \end{aligned}
$$

Pinned expansions

Telescoping, it is enough to consider one-polymer ratios

$$
\left[\log \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}\right](z) \stackrel{\text{F}}{=} \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \ldots, \gamma_n) \in \mathcal{P}_{\Lambda}^n \\ \exists i: \gamma_i = \gamma_0}} \phi^T(\gamma_1, \ldots, \gamma_n) z_{\gamma_1} \ldots z_{\gamma_n}
$$

Algebraically simpler alternative:

$$
\left[\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda}\right](z) \stackrel{\text{F}}{=} \n1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, ..., \gamma_n) \in \mathcal{P}_{\Lambda}^n} \phi^T(\gamma_0, \gamma_1, ..., \gamma_n) z_{\gamma_1} ... z_{\gamma_n}
$$

Pinned expansions

Telescoping, it is enough to consider one-polymer ratios

$$
\left[\log \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}\right](z) \stackrel{\text{F}}{=} \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1, \ldots, \gamma_n) \in \mathcal{P}_{\Lambda}^n \\ \exists i: \gamma_i = \gamma_0}} \phi^T(\gamma_1, \ldots, \gamma_n) z_{\gamma_1} \ldots z_{\gamma_n}
$$

Algebraically simpler alternative:

$$
\left[\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda}\right](z) \stackrel{\text{F}}{=} \n1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, ..., \gamma_n) \in \mathcal{P}_{\Lambda}^n} \phi^T(\gamma_0, \gamma_1, ..., \gamma_n) z_{\gamma_1} ... z_{\gamma_n}
$$

For continuous systems $\sum_{\gamma \in \mathcal{P}_n} z_{\gamma} \to z^n \int_{\mathcal{P}_n} d\gamma$

Classical cluster-expansion strategy

Find a Λ-independent polydisc

$$
\mathcal{R} \ = \ \Big\{\boldsymbol{z}: |z_{\gamma}| \leq \rho_{\gamma} \, , \, \gamma \in \mathcal{P} \Big\}
$$

where cluster expansions converge *absolutely*

Equivalently, find $\rho_{\gamma} > 0$ independent of Λ such that

$$
\Theta_{\gamma_0}(\boldsymbol{\rho}) \; := \; \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{\substack{(\gamma_1,\ldots,\gamma_n) \in \mathcal{P}^n \\ \exists i:\, \gamma_i = \gamma_0}} \left| \phi^T(\gamma_1,\ldots,\gamma_n) \right| \, \rho_{\gamma_1} \ldots \rho_{\gamma_n}
$$

or

$$
\Pi_{\gamma_0}(\boldsymbol{\rho}) \; := \; 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1,\ldots,\gamma_n) \in \mathcal{P}^n} \left| \phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n) \right| \, \rho_{\gamma_1} \ldots \rho_{\gamma_n}
$$

KOR & KERKER ADA KON

are finite

 \triangleright No Ξ_{Λ} has a zero (no phase transitions!)

 \triangleright Explicit series expressions for free energy and correlations

 \blacktriangleright Explicit mixing

$$
\left| \frac{\mathrm{Prob}(\{\gamma_0, \gamma_x\})}{\mathrm{Prob}(\{\gamma_0\}) \mathrm{Prob}(\{\gamma_x\})} - 1 \right| = \left| e^{F[d(\gamma_0, \gamma_x)]} - 1 \right|
$$

K ロ X K 御 X K 할 X K 할 X (할 X)

 299

- \triangleright No Ξ_{Λ} has a zero (no phase transitions!)
- \triangleright Explicit series expressions for free energy and correlations

\blacktriangleright Explicit mixing

KOR & KERKER ADA KON

 \blacktriangleright Central limit theorem

- \triangleright No Ξ_{Λ} has a zero (no phase transitions!)
- \triangleright Explicit series expressions for free energy and correlations
- \blacktriangleright Explicit mixing

$$
\left| \frac{\text{Prob}(\{\gamma_0, \gamma_x\})}{\text{Prob}(\{\gamma_0\}) \text{Prob}(\{\gamma_x\})} - 1 \right| = \left| e^{F[d(\gamma_0, \gamma_x)]} - 1 \right|
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

with $F(d) \to 0$ as $d \to \infty$

 \triangleright Central limit theorem

- \triangleright No Ξ_{Λ} has a zero (no phase transitions!)
- \triangleright Explicit series expressions for free energy and correlations
- \blacktriangleright Explicit mixing

$$
\left|\frac{\text{Prob}(\{\gamma_0, \gamma_x\})}{\text{Prob}(\{\gamma_0\})\text{Prob}(\{\gamma_x\})} - 1\right| = \left|e^{F[d(\gamma_0, \gamma_x)]} - 1\right|
$$

KOR & KERKER ADA KON

with $F(d) \to 0$ as $d \to \infty$

 \blacktriangleright Central limit theorem

Observations

Due to an alternating-sign property

$$
\Theta_{\gamma_0}^{\Lambda}(\boldsymbol{\rho}) = -\Big[\log \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}\Big](-\boldsymbol{\rho})
$$

$$
\Pi_{\gamma_0}^{\Lambda}(\boldsymbol{\rho}) = \Big[\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda}\Big](-\boldsymbol{\rho})
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

- \triangleright No loss in absolute convergence
- \triangleright Only loss: insisting on convergence on polydiscs
- \triangleright In particular, unphysical singularity

Observations

Due to an alternating-sign property

$$
\Theta_{\gamma_0}^{\Lambda}(\boldsymbol{\rho}) = -\Big[\log \frac{\Xi_{\Lambda}}{\Xi_{\Lambda \setminus \{\gamma_0\}}}\Big](-\boldsymbol{\rho})
$$

$$
\Pi_{\gamma_0}^{\Lambda}(\boldsymbol{\rho}) = \Big[\frac{\partial}{\partial z_{\gamma_0}} \log \Xi_{\Lambda}\Big](-\boldsymbol{\rho})
$$

KOR & KERKER ADA KON

Hence,

- \triangleright No loss in absolute convergence
- \triangleright Only loss: insisting on convergence on polydiscs
- \blacktriangleright In particular, unphysical singularity

Kirkwood-Salzburg equations (1971):

- \triangleright System of linear coupled equations for the correlations
- ► Method used by Gruber and Kunz

Classical (1982–4):

- \blacktriangleright Based on tree-graph bound
- \triangleright Seiler \rightarrow Cammarota \rightarrow Brydges

- \triangleright Inductive argument (no mention of expansion)
- \triangleright Kotecký-Preiss \rightarrow Dobrushin

-
-

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Kirkwood-Salzburg equations (1971):

- \triangleright System of linear coupled equations for the correlations
- ► Method used by Gruber and Kunz

Classical (1982–4):

- \blacktriangleright Based on tree-graph bound
- \triangleright Seiler \rightarrow Cammarota \rightarrow Brydges

- \triangleright Inductive argument (no mention of expansion)
- \triangleright Kotecký-Preiss \rightarrow Dobrushin

Classical revisited (2007):

- \triangleright Based on tree-graph identities due to Penrose
- \triangleright Different summation and fixed-point arguments

Kirkwood-Salzburg equations (1971):

- \triangleright System of linear coupled equations for the correlations
- ► Method used by Gruber and Kunz

Classical (1982–4):

- \blacktriangleright Based on tree-graph bound
- \triangleright Seiler \rightarrow Cammarota \rightarrow Brydges

No-cluster-expansion (1986, 1994):

- Inductive argument (no mention of expansion)
- \triangleright Kotecký-Preiss \rightarrow Dobrushin

Classical revisited (2007):

- \triangleright Based on tree-graph identities due to Penrose
- \triangleright Different summation and fixed-point arguments

A DIA 4 B A DIA A B A DIA 4 DIA A DIA B

Kirkwood-Salzburg equations (1971):

- \triangleright System of linear coupled equations for the correlations
- ► Method used by Gruber and Kunz

Classical (1982–4):

- \blacktriangleright Based on tree-graph bound
- \triangleright Seiler \rightarrow Cammarota \rightarrow Brydges

No-cluster-expansion (1986, 1994):

- Inductive argument (no mention of expansion)
- \triangleright Kotecký-Preiss \rightarrow Dobrushin

Classical revisited (2007):

- ► Based on tree-graph identities due to Penrose
- ▶ Different summation and fixed-point arguments

Tree-graph bound

Classical approach valid only for geometrical translation-invariant polymers

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| \leq \left|\mathcal{T}_{\mathcal{G}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}}
$$

$$
\Pi_{\gamma_0}(\rho) \ \leq \ \sum_{n\geq 0} \frac{1}{n!} \, \overline{T}_n(\gamma_0)
$$

$$
\overline{T}_n(\gamma_0) = \sum_{(\gamma_1,\ldots,\gamma_n) \ \tau \in \mathcal{T}_{\mathcal{G}}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Tree-graph bound

Classical approach valid only for

geometrical translation-invariant polymers Basic inequality

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| \leq \left|\mathcal{T}_{\mathcal{G}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}}\right|
$$

where $\mathcal{T}_G = \{\text{connected spanning trees of } \mathcal{G}\}\$

$$
\Pi_{\gamma_0}(\boldsymbol{\rho}) \ \leq \ \sum_{n\geq 0} \frac{1}{n!} \, \overline{T}_n(\gamma_0)
$$

$$
\overline{T}_n(\gamma_0) = \sum_{(\gamma_1,\ldots,\gamma_n) \ \tau \in \mathcal{T}_{\mathcal{G}}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Tree-graph bound

Classical approach valid only for

geometrical translation-invariant polymers Basic inequality

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| \leq \left|\mathcal{T}_{\mathcal{G}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}}\right|
$$

where $\mathcal{T}_G = \{\text{connected spanning trees of } \mathcal{G}\}\$ Hence:

$$
\Pi_{\gamma_0}(\boldsymbol{\rho}) \ \leq \ \sum_{n\geq 0} \frac{1}{n!} \, \overline{T}_n(\gamma_0)
$$

where $\overline{T}_0 = 1$ and

$$
\overline{T}_n(\gamma_0) = \sum_{(\gamma_1,\ldots,\gamma_n)} \sum_{\tau \in \mathcal{T}_{\mathcal{G}}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}
$$

Interchanging sum over polymers with sum over trees:

$$
\overline{T}_n(\gamma_0) = \sum_{\tau \in \mathcal{T}_{n+1}^0} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \text{ s.t.} \\ \tau \subset \mathcal{G}_{(\gamma_0, \gamma_1, \dots, \gamma_n)}}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}
$$
\n
$$
= \sum_{\tau \in \mathcal{T}_{n+1}^0} \overline{T}_\tau(\gamma_0)
$$

where

$$
\mathcal{T}_{n+1}^0 = \{ \text{trees of vertices } 0, 1, \dots n, \text{rooted in } 0 \}
$$

Summing "from leaves down"

To compute \overline{T}_{τ} start summing over γ 's at leaves:

$$
\prod_{j=1}^{s_i} \sum_{\gamma_{(i,j)} \sim \gamma_i} \rho_{\gamma_{(i,j)}} = \left[\sum_{\gamma \nsim \gamma_i} \rho_{\gamma} \right]^{s_i}
$$

$$
\sum_{\gamma \nsim \gamma_i} \rho_\gamma \ \leq \ |\gamma_i| \ \sum_{\gamma \ni 0} \rho_\gamma
$$

$$
\rho_{\gamma_i} \quad \longrightarrow \quad \rho_{\gamma_i} \, \left| \gamma_i \right|^{s_i} \left[\sum_{\gamma \ni 0} \rho_\gamma \right]^{s_i}
$$

Summing "from leaves down"

To compute \overline{T}_{τ} start summing over γ 's at leaves:

$$
\prod_{j=1}^{s_i} \sum_{\gamma_{(i,j)} \sim \gamma_i} \rho_{\gamma_{(i,j)}} = \left[\sum_{\gamma \nsim \gamma_i} \rho_{\gamma} \right]^{s_i}
$$

For translation-invariant geometrical polymers,

$$
\sum_{\gamma \nsim \gamma_i} \rho_\gamma \ \leq \ |\gamma_i| \sum_{\gamma \ni 0} \rho_\gamma
$$

$$
\rho_{\gamma_i} \quad \longrightarrow \quad \rho_{\gamma_i} \, \left| \gamma_i \right|^{s_i} \left[\sum_{\gamma \ni 0} \rho_\gamma \right]^{s_i}
$$

Summing "from leaves down"

To compute \overline{T}_{τ} start summing over γ 's at leaves:

$$
\prod_{j=1}^{s_i} \sum_{\gamma_{(i,j)} \sim \gamma_i} \rho_{\gamma_{(i,j)}} = \left[\sum_{\gamma \nsim \gamma_i} \rho_{\gamma} \right]^{s_i}
$$

For translation-invariant geometrical polymers,

$$
\sum_{\gamma \nsim \gamma_i} \rho_\gamma \ \leq \ |\gamma_i| \ \sum_{\gamma \ni 0} \rho_\gamma
$$

Then, for each γ_i that is ancestor of leaves

$$
\rho_{\gamma_i} \quad \longrightarrow \quad \rho_{\gamma_i} \, \left| \gamma_i \right|^{s_i} \left[\sum_{\gamma \ni 0} \rho_\gamma \right]^{s_i}
$$

Iterate! The sum over successive ancestors yields

$$
\overline{T}_{\tau}(\gamma_0) \leq |\gamma_0| \prod_{i=0}^n \Bigl[\sum_{\gamma \ni 0} \rho_{\gamma} |\gamma|^{s_i} \Bigr]
$$

 \blacktriangleright This bound depends only on s_0, s_1, \ldots, s_n

 \blacktriangleright The sum over trees τ brings a factor

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Iterate! The sum over successive ancestors yields

$$
\overline{T}_{\tau}(\gamma_0) \leq |\gamma_0| \prod_{i=0}^n \Bigl[\sum_{\gamma \ni 0} \rho_{\gamma} |\gamma|^{s_i} \Bigr]
$$

- \blacktriangleright This bound depends only on s_0, s_1, \ldots, s_n
- \blacktriangleright The sum over trees τ brings a factor

trees with coord. nbers

$$
s_0, s_1 + 1, \ldots, s_n + 1 = \begin{pmatrix} n \\ s_0 + 1 & s_1 \ldots & s_n \end{pmatrix}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

(Cayley formula)

Classical criterion

In consequence

$$
\overline{T}_n(\gamma_0) \leq |\gamma_0| \; n! \sum_{\substack{s_0, s_1, \dots, s_n \\ \sum s_i = n-1}} \prod_{i=0}^n \Bigl[\sum_{\gamma \ni 0} \rho_\gamma \; \frac{|\gamma|^{s_i}}{s_i!} \Bigr]
$$

$$
\Pi_{\gamma_0}(\boldsymbol{\rho}) \ \leq \ |\gamma_0| \, \sum_{n \geq 0} \Bigl[\sum_{\gamma \ni 0} \rho_\gamma \, \mathrm{e}^{|\gamma|} \Bigr]^n
$$

$$
\sum_{\gamma\ni 0}\rho_\gamma\,{\rm e}^{|\gamma|}\;<\;1
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Classical criterion

In consequence

$$
\overline{T}_n(\gamma_0) \leq |\gamma_0| \; n! \sum_{\substack{s_0, s_1, \dots, s_n \\ \sum s_i = n-1}} \prod_{i=0}^n \Bigl[\sum_{\gamma \ni 0} \rho_\gamma \; \frac{|\gamma|^{s_i}}{s_i!} \Bigr]
$$

Hence

$$
\Pi_{\gamma_0}(\boldsymbol{\rho}) \ \leq \ |\gamma_0| \, \sum_{n \geq 0} \Bigl[\sum_{\gamma \ni 0} \rho_\gamma \, \mathrm{e}^{|\gamma|} \Bigr]^n
$$

$$
\sum_{\gamma\ni0}\rho_\gamma\,{\rm e}^{|\gamma|}\;<\;1
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Classical criterion

In consequence

$$
\overline{T}_n(\gamma_0) \leq |\gamma_0| \; n! \sum_{\substack{s_0, s_1, \dots, s_n \\ \sum s_i = n-1}} \prod_{i=0}^n \Bigl[\sum_{\gamma \ni 0} \rho_\gamma \; \frac{|\gamma|^{s_i}}{s_i!} \Bigr]
$$

Hence

$$
\Pi_{\gamma_0}(\boldsymbol{\rho}) \ \leq \ |\gamma_0| \, \sum_{n \geq 0} \Bigl[\sum_{\gamma \ni 0} \rho_\gamma \, \mathrm{e}^{|\gamma|} \Bigr]^n
$$

which converges if

$$
\sum_{\gamma \ni 0} \rho_\gamma \, \mathrm{e}^{|\gamma|} \; < \; 1
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

[Cammarota (1982), Brydges (1984)]

The two stages of the inductive approach

1) The addition identity:

$$
\Xi_{\Gamma \cup \{\gamma\}} = \Xi_{\Gamma} + z_{\gamma} \Xi_{\Gamma \setminus \{\gamma\}^*}
$$
 (1)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

for $\gamma \notin \Gamma$

$$
\rho_\gamma\,\exp\Bigl[\sum_{\widetilde\gamma\neq\gamma}a(\widetilde\gamma)\Bigr]\,\,\leq\,\,{\rm e}^{a(\gamma)}-1
$$

The two stages of the inductive approach

1) The addition identity:

$$
\Xi_{\Gamma \cup \{\gamma\}} = \Xi_{\Gamma} + z_{\gamma} \Xi_{\Gamma \setminus \{\gamma\}^*}
$$
 (1)

KOR & KERKER ADA KON

for $\gamma \notin \Gamma$

2) The right inductive hypothesis: There exist $a(\gamma) > 0$ and $\rho_{\gamma} > 0$ such that

$$
\rho_\gamma\,\exp\Bigl[\sum_{\widetilde\gamma\neq\gamma}a(\widetilde\gamma)\Bigr]\,\,\leq\,\,{\rm e}^{a(\gamma)}-1
$$

for all γ

The main result

Theorem

If there exist $a(\gamma) > 0$ and $\rho_{\gamma} > 0$ such that

$$
\rho_{\gamma} \exp\Bigl[\sum_{\widetilde{\gamma}\not\sim\gamma} a(\widetilde{\gamma})\Bigr] \le e^{a(\gamma)} - 1 \tag{2}
$$

for all γ , then

$$
\Theta_{\gamma}^{\Lambda}(-\rho) \leq a(\gamma) \tag{3}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

uniformly in Λ for all γ

Proof

Must show

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} \geq e^{-a(\gamma)} \tag{4}
$$

By the addition identity

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} = 1 - \rho_{\gamma} \frac{\Xi_{\Lambda \backslash \{\gamma\}^*}(-\rho)}{\Xi_{\Lambda}(-\rho)}
$$

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} \geq 1 - \rho_{\gamma} \exp \Bigl[\sum_{\substack{\widetilde{\gamma} \neq \gamma \\ \widetilde{\gamma} \neq \gamma}} a(\widetilde{\gamma}) \Bigr]
$$

$$
\geq 1 - \rho_{\gamma} e^{-a(\gamma)} \exp \Bigl[\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma}) \Bigr]
$$

And the inductive hypothesis [\(2\)](#page-60-1) yields [\(4](#page-61-1)[\)](#page-60-0) 2990

Proof

Must show

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} \geq e^{-a(\gamma)} \tag{4}
$$

By the addition identity

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} = 1 - \rho_{\gamma} \frac{\Xi_{\Lambda \setminus \{\gamma\}^*}(-\rho)}{\Xi_{\Lambda}(-\rho)}
$$

Induction plus telescoping implies

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} \geq 1 - \rho_{\gamma} \exp \Bigl[\sum_{\substack{\widetilde{\gamma} \neq \gamma \\ \widetilde{\gamma} \neq \gamma}} a(\widetilde{\gamma}) \Bigr]
$$

$$
\geq 1 - \rho_{\gamma} e^{-a(\gamma)} \exp \Bigl[\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma}) \Bigr]
$$

And the inductive hypothesis [\(2\)](#page-60-1) yields [\(4](#page-61-1)[\)](#page-61-0)이 결과 2990

Proof

Must show

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} \geq e^{-a(\gamma)} \tag{4}
$$

By the addition identity

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} = 1 - \rho_{\gamma} \frac{\Xi_{\Lambda \setminus \{\gamma\}^*}(-\rho)}{\Xi_{\Lambda}(-\rho)}
$$

Induction plus telescoping implies

$$
\frac{\Xi_{\Lambda \cup \{\gamma\}}(-\rho)}{\Xi_{\Lambda}(-\rho)} \geq 1 - \rho_{\gamma} \exp \Bigl[\sum_{\substack{\widetilde{\gamma} \neq \gamma \\ \widetilde{\gamma} \neq \gamma}} a(\widetilde{\gamma}) \Bigr]
$$

$$
\geq 1 - \rho_{\gamma} e^{-a(\gamma)} \exp \Bigl[\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma}) \Bigr]
$$

And the inductive hypothesis [\(2\)](#page-60-1) yields [\(4](#page-61-1)[\)](#page-62-0) \equiv 940

Koteck´y-Preiss criterion

Most popular: If $\exists b(\gamma) > 0$ such that

$$
\sum_{\widetilde{\gamma}\not\sim\gamma}\rho_\gamma\,\mathrm{e}^{b(\widetilde{\gamma})}\,\,\leq\,\,b(\gamma)
$$

then convergence for $|z_{\gamma}| \leq \rho_{\gamma}$

 \triangleright Can be proven

 \triangleright By "defoliation" of Π (Procacci-Scoppola)

 \triangleright By an inductive argument (Kotecký-Preiss)

Particular case of Dobrushin: If $a(\gamma) = \rho_{\gamma} e^{b(\gamma)}$, then

$$
\rho_{\gamma} \exp \Bigl[\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma}) \Bigr] \leq \rho_{\gamma} \exp \Bigl[\log \frac{a(\gamma)}{\rho_{\gamma}} \Bigr] = a(\gamma) \leq e^{a(\gamma)} - 1
$$

Koteck´y-Preiss criterion

Most popular: If $\exists b(\gamma) > 0$ such that

$$
\sum_{\widetilde{\gamma}\not\sim\gamma}\rho_\gamma\,\mathrm{e}^{b(\widetilde{\gamma})}\,\,\leq\,\,b(\gamma)
$$

then convergence for $|z_{\gamma}| \leq \rho_{\gamma}$

- \triangleright Can be proven
	- \triangleright By "defoliation" of Π (Procacci-Scoppola)
	- \triangleright By an inductive argument (Kotecký-Preiss)

Particular case of Dobrushin: If $a(\gamma) = \rho_{\gamma} e^{b(\gamma)}$, then

$$
\rho_{\gamma} \exp \Bigl[\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma}) \Bigr] \leq \rho_{\gamma} \exp \Bigl[\log \frac{a(\gamma)}{\rho_{\gamma}} \Bigr] = a(\gamma) \leq e^{a(\gamma)} - 1
$$

Koteck´y-Preiss criterion

Most popular: If $\exists b(\gamma) > 0$ such that

$$
\sum_{\widetilde{\gamma}\not\sim\gamma}\rho_\gamma\,\mathrm{e}^{b(\widetilde{\gamma})}\,\,\leq\,\,b(\gamma)
$$

then convergence for $|z_{\gamma}| \leq \rho_{\gamma}$

- \triangleright Can be proven
	- \triangleright By "defoliation" of Π (Procacci-Scoppola)
	- \triangleright By an inductive argument (Kotecký-Preiss)
- ► Particular case of Dobrushin: If $a(\gamma) = \rho_{\gamma} e^{b(\gamma)}$, then

$$
\rho_{\gamma} \exp \Bigl[\sum_{\widetilde{\gamma} \not\sim \gamma} a(\widetilde{\gamma}) \Bigr] \le \rho_{\gamma} \exp \Bigl[\log \frac{a(\gamma)}{\rho_{\gamma}} \Bigr] = a(\gamma) \le e^{a(\gamma)} - 1
$$

Kirkwood-Salzburg approach

Strategy: Set up systems of linear equations for the functions

$$
\Phi_{\Lambda}(\boldsymbol{z},X)\;=\;\frac{\Xi_{\Lambda\setminus X}(\boldsymbol{z})}{\Xi_{\Lambda}(\boldsymbol{z})}
$$

KOR & KERKER ADA KON

involving a *basically* Λ *-independent* operator K.

- \triangleright Search for solutions in a suitable Banach space
- \triangleright Solutions = fixed points
- \triangleright K contraction uniform in Λ yields
	- \triangleright Convergence with Λ
	- \blacktriangleright Analyticity of ratios and its limits

Kirkwood-Salzburg approach

Strategy: Set up systems of linear equations for the functions

$$
\Phi_{\Lambda}(\boldsymbol{z},X)\;=\;\frac{\Xi_{\Lambda\setminus X}(\boldsymbol{z})}{\Xi_{\Lambda}(\boldsymbol{z})}
$$

KOR & KERKER ADA KON

involving a *basically* Λ *-independent* operator K.

- \triangleright Search for solutions in a suitable Banach space
- \triangleright Solutions = fixed points
- \triangleright K contraction uniform in Λ yields
	- \triangleright Convergence with Λ
	- \blacktriangleright Analyticity of ratios and its limits

Kirkwood-Salzburg approach

Strategy: Set up systems of linear equations for the functions

$$
\Phi_{\Lambda}(\boldsymbol{z},X)\;=\;\frac{\Xi_{\Lambda\backslash X}(\boldsymbol{z})}{\Xi_{\Lambda}(\boldsymbol{z})}
$$

KOR & KERKER ADA KON

involving a *basically* Λ *-independent* operator K.

- \triangleright Search for solutions in a suitable Banach space
- \triangleright Solutions = fixed points
- \triangleright K contraction uniform in Λ yields
	- \triangleright Convergence with Λ
	- \blacktriangleright Analyticity of ratios and its limits

Derivation of the equations

- \triangleright For each $X \subset\subset \mathcal{P}_\Lambda$ choose some (first) $\gamma \in X$
- In Write addition identity as *deletion identity*, with $\Lambda \to \Lambda \setminus X$

$$
\Xi_{\Lambda \setminus X} = \Xi_{\Lambda \setminus (X \setminus \{\gamma\})} - z_{\gamma} \Xi_{\Lambda \setminus (X \cup \{\gamma\}^*)}
$$

 \blacktriangleright Dividing by Ξ_Λ

KOR & KERKER ADA KON

If The identity $\Phi_{\Lambda}(\emptyset) = 1$ is considered as inhomogenity \triangleright The condition $X \subset \mathcal{P}_\Lambda$ is introduced as a factor

Derivation of the equations

- \triangleright For each $X \subset\subset \mathcal{P}_\Lambda$ choose some (first) $\gamma \in X$
- In Write addition identity as *deletion identity*, with $\Lambda \to \Lambda \setminus X$

$$
\Xi_{\Lambda \setminus X} = \Xi_{\Lambda \setminus (X \setminus \{\gamma\})} - z_{\gamma} \Xi_{\Lambda \setminus (X \cup \{\gamma\}^*)}
$$

 \blacktriangleright Dividing by Ξ_Λ

$$
\Phi_{\Lambda}(X) = \Phi_{\Lambda}(X \setminus {\{\gamma\}}) - z_{\gamma} \Phi_{\Lambda}(X \cup {\{\gamma\}}^*)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

I The identity $\Phi_{\Lambda}(\emptyset) = 1$ is considered as inhomogenity \triangleright The condition $X \subset \mathcal{P}_\Lambda$ is introduced as a factor

Derivation of the equations

- \triangleright For each $X \subset\subset \mathcal{P}_\Lambda$ choose some (first) $\gamma \in X$
- In Write addition identity as deletion identity, with $\Lambda \to \Lambda \setminus X$

$$
\Xi_{\Lambda \setminus X} = \Xi_{\Lambda \setminus (X \setminus \{\gamma\})} - z_{\gamma} \Xi_{\Lambda \setminus (X \cup \{\gamma\}^*)}
$$

 \blacktriangleright Dividing by Ξ_Λ

$$
\Phi_{\Lambda}(X) = \Phi_{\Lambda}(X \setminus {\{\gamma\}}) - z_{\gamma} \Phi_{\Lambda}(X \cup {\{\gamma\}}^*)
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

- \blacktriangleright The identity $\Phi_{\Lambda}(\emptyset) = 1$ is considered as inhomogenity
- ► The condition $X \subset \mathcal{P}_\Lambda$ is introduced as a factor

Kirkwood-Salzburg equations

The equations are:

$$
\Phi_{\Lambda} = \chi_{\Lambda}\alpha + \chi_{\Lambda}K_{\boldsymbol{z}}\Phi_{\Lambda}
$$

with

$$
\chi_{\Lambda}(X) = \begin{cases} 1 & \text{if } X \subset \Lambda \\ 0 & \text{otherwise} \end{cases}, \quad \alpha(X) = \begin{cases} 1 & \text{if } |X| = 1 \\ 0 & \text{otherwise} \end{cases}
$$

and $K_{\mathbf{z}}$ the operator on $\mathbb{C}^{\{\text{non-empty fin parts of }\mathcal{P}\}}$

$$
(K_{\mathbf{z}}f)(X) = 1_{\{|X| \ge 2\}} f(X \setminus {\{\gamma\}}) - z_{\gamma} f(X \cup {\{\gamma\}}_{\Lambda}^*)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

[Setup](#page-1-0) [Examples](#page-13-0) [CE](#page-29-0) [Classic](#page-46-0) [Inductive](#page-58-0) [KS-equations](#page-67-0) [Series-revisited](#page-102-0) 000000000

[Functional analytical set-up](#page-74-0)

Standard treatment

Aiming at factorized weights, introduce norms

$$
||f||_{a} = \sup_{X \subset \subset \mathcal{P}} \frac{|f(X)|}{\exp\left[\sum_{\widetilde{\gamma} \in X} a(\widetilde{\gamma})\right]}
$$

for $a(\tilde{\gamma}) > 0$. Then

$$
\begin{array}{rcl} \displaystyle |(K_{\boldsymbol{z}}f)(X)|&\displaystyle\leq&\displaystyle \|f\|_{\boldsymbol{a}}\,\exp\Bigl[\sum_{\substack{\widetilde{\gamma}\in X\\ \widetilde{\gamma}\neq\gamma}}a(\widetilde{\gamma})\Bigr] \\ & &\displaystyle +\left|z_{\gamma}\right|\,\|f\|_{\boldsymbol{a}}\,\exp\Bigl[\sum_{\substack{\widetilde{\gamma}\in (X\backslash\{\gamma\})\cup\{\gamma\}_\Lambda^*\\ \widetilde{\gamma}\in\Lambda}}a(\widetilde{\gamma})\Bigr] \end{array}
$$

 $\left[1+|z_\gamma|\exp\left(\sum_{\widetilde{\gamma}$

^γ[e](#page-73-0)6∼^γ

 2990

[Series-revisited](#page-102-0)
00 000000000 000000000

[Functional analytical set-up](#page-75-0)

Standard treatment

Aiming at factorized weights, introduce norms

$$
||f||_{a} = \sup_{X \subset \subset \mathcal{P}} \frac{|f(X)|}{\exp\left[\sum_{\widetilde{\gamma} \in X} a(\widetilde{\gamma})\right]}
$$

for $a(\tilde{\gamma}) > 0$. Then

$$
\begin{array}{rcl} \displaystyle |(K_{\pmb z}f)(X)| & \leq & \displaystyle \|f\|_{\pmb a} \, \exp \Bigl[\sum_{\substack{ \widetilde{\gamma} \in X \\ \widetilde{\gamma} \neq \gamma} } a(\widetilde{\gamma}) \Bigr] \\ & & \displaystyle + \|z_\gamma\| \, \|f\|_{\pmb a} \, \exp \Bigl[\sum_{\substack{ \widetilde{\gamma} \in (X \backslash \{\gamma\}) \cup \{\gamma\}_\Lambda^* \\ \widetilde{\gamma} \in \Lambda} } a(\widetilde{\gamma}) \Bigr] \end{array}
$$

 $\left[1+|z_\gamma|\exp\left(\sum_{\widetilde{\gamma}$

^γ[e](#page-74-0)6∼^γ

 2990

s
 [Series-revisited](#page-102-0)

COO COOCCOOO 000000000

 299

[Functional analytical set-up](#page-76-0)

Standard treatment

Aiming at factorized weights, introduce norms

$$
||f||_{a} = \sup_{X \subset \subset \mathcal{P}} \frac{|f(X)|}{\exp\left[\sum_{\widetilde{\gamma} \in X} a(\widetilde{\gamma})\right]}
$$

for $a(\tilde{\gamma}) > 0$. Then

$$
\begin{array}{rcl} \displaystyle |(K_{\pmb z}f)(X)| & \leq & \displaystyle \|f\|_{\pmb a} \, \exp \Bigl[\sum_{\substack{ \widetilde{\gamma} \in X \\ \widetilde{\gamma} \neq \gamma} } a(\widetilde{\gamma}) \Bigr] \\ & & \displaystyle + \|z_\gamma\| \, \|f\|_{\pmb a} \, \exp \Bigl[\sum_{\substack{ \widetilde{\gamma} \in (X \backslash \{\gamma\}) \cup \{\gamma\}_\Lambda^* \\ \widetilde{\gamma} \in \Lambda} } a(\widetilde{\gamma}) \Bigr] \end{array}
$$

and

$$
\|K_{\boldsymbol{z}}\|_{\boldsymbol{a}} \ \leq \ \frac{1}{e^{a(\gamma)}} \Big[1 + |z_{\gamma}| \exp \Bigl(\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma})\Bigr)\Big]
$$

[Series-revisited](#page-102-0) 000000000

[Convergence criterion](#page-77-0)

Gruber-Kunz condition

If for some $\rho_{\gamma} > 0$

$$
\frac{1}{e^{a(\gamma)}} \Big[1 + \rho_\gamma \exp\Big(\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma})\Big) \Big] < 1 \tag{5}
$$

$$
\Phi_{\Lambda} = \left[1 - \xi_{\Lambda} K_z\right]^{-1} \chi_{\Lambda} \alpha \tag{6}
$$

 \blacktriangleright The ratios converge

$$
\Phi_{\Lambda}(X) \xrightarrow[\Lambda \to \mathbb{V}]} ([1 - K_{\mathbf{z}}]^{-1} \alpha)(X)
$$

In The ratios, and their limits have ana[lyt](#page-76-0)i[c](#page-66-0) [d](#page-76-0)[e](#page-67-0)[p](#page-79-0)e[n](#page-82-0)[d](#page-77-0)ence [on](#page-102-0) z

[Convergence criterion](#page-78-0)

Gruber-Kunz condition

If for some $\rho_{\gamma} > 0$

$$
\frac{1}{e^{a(\gamma)}} \Big[1 + \rho_\gamma \exp\Big(\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma})\Big) \Big] < 1 \tag{5}
$$

then, for $|z_{\gamma}| \leq \rho_{\gamma}$, the operators $1 - \xi_{\Lambda} K_{z}$ are invertible and

$$
\Phi_{\Lambda} = \left[1 - \xi_{\Lambda} K_z\right]^{-1} \chi_{\Lambda} \alpha \tag{6}
$$

is the only solution of the Λ -KS-equation.

 \blacktriangleright The ratios converge

$$
\Phi_{\Lambda}(X) \xrightarrow[\Lambda \to \mathbb{V}]} ([1 - K_{\mathbf{z}}]^{-1} \alpha)(X)
$$

In The ratios, and their limits have ana[lyt](#page-77-0)i[c](#page-66-0) [d](#page-76-0)[e](#page-67-0)[p](#page-79-0)e[n](#page-82-0)[d](#page-77-0)ence [on](#page-102-0) z

[Convergence criterion](#page-79-0)

Gruber-Kunz condition

If for some $\rho_{\gamma} > 0$

$$
\frac{1}{e^{a(\gamma)}} \Big[1 + \rho_\gamma \exp\Big(\sum_{\widetilde{\gamma} \neq \gamma} a(\widetilde{\gamma})\Big) \Big] < 1 \tag{5}
$$

then, for $|z_{\gamma}| \leq \rho_{\gamma}$, the operators $1 - \xi_{\Lambda} K_{z}$ are invertible and

$$
\Phi_{\Lambda} = \left[1 - \xi_{\Lambda} K_z\right]^{-1} \chi_{\Lambda} \alpha \tag{6}
$$

is the only solution of the Λ -KS-equation.

Furthermore, as (5) is Λ -independent,

 \blacktriangleright The ratios converge

$$
\Phi_{\Lambda}(X) \xrightarrow[\Lambda \to \mathbb{V}]} ([1 - K_{\mathbf{z}}]^{-1} \alpha)(X)
$$

In The ratios, and their limits have ana[lyt](#page-78-0)i[c](#page-66-0) [d](#page-76-0)[e](#page-67-0)[p](#page-79-0)e[n](#page-82-0)[d](#page-77-0)ence [on](#page-102-0) z

Comparison with the inductive result

GK-condition [\(5\)](#page-77-1) is identical to Dobrushin's

$$
\rho_{\gamma} \exp \Bigl[\sum_{\widetilde{\gamma} \not\sim \gamma} a(\widetilde{\gamma}) \Bigr] \ < \ e^{a(\gamma)} - 1
$$

KOR & KERKER ADA KON

except that the inequality is strict

Comparison with the inductive result

GK-condition [\(5\)](#page-77-1) is identical to Dobrushin's

$$
\rho_{\gamma} \exp \Bigl[\sum_{\widetilde{\gamma} \not\sim \gamma} a(\widetilde{\gamma}) \Bigr] \ < \ e^{a(\gamma)} - 1
$$

KOR & KERKER ADA KON

except that the inequality is strict

To fix it: alternative treatment of the KS equations

Alternative strategy

Find another way of making sense of the formula

$$
\Phi_{\Lambda} = \left[1 - \chi_{\Lambda} K_{\boldsymbol{z}}\right]^{-1} \chi_{\Lambda} \alpha = \chi_{\Lambda} \sum_{n \ge 0} K_{\boldsymbol{z}}^n \chi_{\Lambda} \alpha \tag{7}
$$

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ ○ 결 ○

 2990

$$
\Phi_{\boldsymbol{\rho}} \, = \, \sum_{n \geq 0} K_{-\boldsymbol{\rho}}^n \, \, \alpha
$$

Alternative strategy

Find another way of making sense of the formula

$$
\Phi_{\Lambda} = \left[1 - \chi_{\Lambda} K_{\boldsymbol{z}}\right]^{-1} \chi_{\Lambda} \alpha = \chi_{\Lambda} \sum_{n \ge 0} K_{\boldsymbol{z}}^n \chi_{\Lambda} \alpha \tag{7}
$$

K □ ▶ K ● K K X B X X B X B X Y Q Q Q

This series is term-by-term dominated by

$$
\Phi_{\rho} = \sum_{n\geq 0} K_{-\rho}^n \alpha
$$

as long as $|z_{\gamma}| \leq \rho_{\gamma}$.

Alternative strategy

Find another way of making sense of the formula

$$
\Phi_{\Lambda} = \left[1 - \chi_{\Lambda} K_{\boldsymbol{z}}\right]^{-1} \chi_{\Lambda} \alpha = \chi_{\Lambda} \sum_{n \ge 0} K_{\boldsymbol{z}}^n \chi_{\Lambda} \alpha \tag{7}
$$

K □ ▶ K ● K K X B X X B X B X Y Q Q Q

This series is term-by-term dominated by

$$
\Phi_{\rho} = \sum_{n\geq 0} K_{-\rho}^n \alpha
$$

as long as $|z_{\gamma}| \leq \rho_{\gamma}$. (As in cluster expansions: singularities at negative fugacities)

Inductive-like bound

Find functions $\xi(X)$ such that

$$
\left(\alpha + K_{-\rho}\xi\right)(X) \le \xi(X) \tag{8}
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Recursively this implies that

$$
\sum_{n=0}^{N} K_{-\rho}^{n} \alpha \leq \xi
$$

and hence Φ_{ρ} converges.

Conclusion:

Inductive-like bound

Find functions $\xi(X)$ such that

$$
\left(\alpha + K_{-\rho}\xi\right)(X) \le \xi(X) \tag{8}
$$

KOR & KERKER ADA KON

Recursively this implies that

$$
\sum_{n=0}^{N} K_{-\rho}^{n} \alpha \leq \xi
$$

and hence Φ_{ρ} converges. Reciprocally, if $\Phi_{\boldsymbol{\alpha}}$ is finite, [\(8\)](#page-85-1) holds with $\xi = \Phi_{\boldsymbol{\alpha}}$ Conclusion:

Inductive-like bound

Find functions $\xi(X)$ such that

$$
\left(\alpha + K_{-\rho} \xi\right)(X) \le \xi(X) \tag{8}
$$

KOR & KERKER ADA KON

Recursively this implies that

$$
\sum_{n=0}^{N} K_{-\rho}^{n} \alpha \leq \xi
$$

and hence Φ_{ρ} converges. Reciprocally, if $\Phi_{\boldsymbol{\alpha}}$ is finite, [\(8\)](#page-85-1) holds with $\xi = \Phi_{\boldsymbol{\alpha}}$ Conclusion:

[\(8\)](#page-85-1) is necessary and sufficient for the convergence of $\Phi_{\boldsymbol{\alpha}}$

Why factorization

If X_1 and X_2 are disjoint,

$$
\Phi_{\Lambda}(X_1 \cup X_2) = \frac{\Xi_{\Lambda \setminus (X_1 \cup X_2)}}{\Xi_{\Lambda \setminus X_2}} \frac{\Xi_{\Lambda \setminus X_2}}{\Xi_{\Lambda}} = \Phi_{\Lambda \setminus X_2}(X_1) \Phi_{\Lambda}(X_2).
$$

$$
\Phi(X_1 \cup X_2) = \Phi(X_1) \Phi(X_2) .
$$

K □ ▶ K ● K K X B X X B X B X Y Q Q Q

Why factorization

If X_1 and X_2 are disjoint,

$$
\Phi_{\Lambda}(X_1 \cup X_2) = \frac{\Xi_{\Lambda \setminus (X_1 \cup X_2)}}{\Xi_{\Lambda \setminus X_2}} \frac{\Xi_{\Lambda \setminus X_2}}{\Xi_{\Lambda}} = \Phi_{\Lambda \setminus X_2}(X_1) \Phi_{\Lambda}(X_2).
$$

In the limit $\Lambda \to \mathbb{V}$ we should obtain

$$
\Phi(X_1 \cup X_2) = \Phi(X_1) \Phi(X_2) .
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Why factorization

If X_1 and X_2 are disjoint,

$$
\Phi_{\Lambda}(X_1 \cup X_2) = \frac{\Xi_{\Lambda \setminus (X_1 \cup X_2)}}{\Xi_{\Lambda \setminus X_2}} \frac{\Xi_{\Lambda \setminus X_2}}{\Xi_{\Lambda}} = \Phi_{\Lambda \setminus X_2}(X_1) \Phi_{\Lambda}(X_2).
$$

In the limit $\Lambda \to \mathbb{V}$ we should obtain

$$
\Phi(X_1 \cup X_2) = \Phi(X_1) \Phi(X_2) .
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q ⊙

It is natural, to look for factorized majorizing functions.

GK alla Dobrushin recovered

Postulating

$$
\xi(X) = \prod_{\gamma \in X} \xi(\gamma)
$$

 (8) holds for all X iff it holds for a single-site:

 $(\alpha + K_{-\rho} \xi)(\{\gamma\}) \leq \xi(\{\gamma\})$

$$
1+\rho_\gamma\,\exp\Bigl[\sum_{\widetilde\gamma\neq\gamma}a(\widetilde\gamma)\Bigr]\,\,\leq\,\,{\rm e}^{a(\gamma)}
$$

GK alla Dobrushin recovered

Postulating

$$
\xi(X) = \prod_{\gamma \in X} \xi(\gamma)
$$

 (8) holds for all X iff it holds for a single-site:

$$
\left(\alpha + K_{-\rho} \xi\right) (\{\gamma\}) \leq \xi(\{\gamma\})
$$

Writing $\xi(\{\gamma\}) = e^{a(\gamma)}$, this condition is

$$
1+\rho_\gamma\,\exp\Bigl[\sum_{\widetilde\gamma\not\sim\gamma}a(\widetilde\gamma)\Bigr]\,\,\leq\,\,{\rm e}^{a(\gamma)}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

as obtained via the inductive argument

Comparison so far

$Classical < KP < Inductive = KS (GK)$

$$
\left|\frac{\Xi_{\Lambda\setminus X}(z)}{\Xi_\Lambda(z)}\right| ~\leq ~ \frac{\Xi_{\Lambda\setminus X}(-\rho)}{\Xi_\Lambda(-\rho)} ~\leq ~ \left(\mathbb{T}_\rho\right)^m \bm{\xi}^X ~\leq ~ \left(\mathbb{T}_\rho\right)^n \bm{\xi}^X ~\leq ~ \bm{\xi}^X
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Comparison so far

$$
Classical < KP < Inductive = KS (GK)
$$

However, alternative KS leads to a sequence of bounds:

$$
\left|\frac{\Xi_{\Lambda\setminus X}(z)}{\Xi_{\Lambda}(z)}\right| \;\leq\; \frac{\Xi_{\Lambda\setminus X}(-\rho)}{\Xi_{\Lambda}(-\rho)} \;\leq\; \left(\mathbb{T}_{\rho}\right)^m \xi^X \;\leq\; \left(\mathbb{T}_{\rho}\right)^n \xi^X \;\leq\; \xi^X
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

for all $m \leq n$

"Standard form" of the criteria

If we substitute

$$
\mu_{\gamma} = \rho_{\gamma} e^{a_{\gamma}} \quad \text{(Kotecký-Preiss)}
$$

$$
\mu_{\gamma} = e^{a_{\gamma}} - 1 \quad \text{(Dobrushin)}
$$

We obtain convergence if there exists $\mu \in [0, \infty)^{\mathcal{P}}$ such that

$$
\rho_{\gamma_0} \exp\Bigl[\sum_{\gamma \nsim \gamma_0} \mu_{\gamma}\Bigr] \leq \mu_{\gamma_0} \quad \text{(Kotecký-Preiss)}
$$

$$
\rho_{\gamma_0} \prod_{\gamma \nsim \gamma_0} (1 + \mu_{\gamma}) \leq \mu_{\gamma_0} \quad \text{(Dobrushin)}
$$

K □ ▶ K @ ▶ K 할 X K 할 X 1 할 X 1 9 Q Q +

Comparison $D \leftrightarrow KP$

D improves KP because

$$
\prod_{\gamma \nsim \gamma_0} \left(1 + \mu_\gamma\right) \leq \exp\Bigl[\sum_{\gamma \nsim \gamma_0} \mu_\gamma\Bigr]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

- \blacktriangleright D lacks powers μ_{γ}^{ℓ}
- \triangleright D exact for polymers with only self-exclusion

Comparison $D \leftrightarrow KP$

D improves KP because

$$
\prod_{\gamma \nsim \gamma_0} \left(1 + \mu_\gamma\right) \leq \exp\Bigl[\sum_{\gamma \nsim \gamma_0} \mu_\gamma\Bigr]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Differences:

- ► D lacks powers μ_{γ}^{ℓ}
- \triangleright D exact for polymers with only self-exclusion

Comparison $D \leftrightarrow KP$

D improves KP because

$$
\prod_{\gamma \nsim \gamma_0} \left(1 + \mu_\gamma\right) \leq \exp\Bigl[\sum_{\gamma \nsim \gamma_0} \mu_\gamma\Bigr]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Differences:

- ► D lacks powers μ_{γ}^{ℓ}
- \triangleright D exact for polymers with only self-exclusion

- \triangleright It looks as a hierarchy of approximations
- In Why induction better than control of explicit series?
- \triangleright Dobrushin extracts extra information Which one?
- \blacktriangleright Why the form

 $\rho_{\gamma_0}\,\varphi_{\gamma_0}(\boldsymbol{\mu}) \ \leq \ \mu_{\gamma_0} \,\,?$

K □ ▶ K ● K K X B X X B X B X Y Q Q Q

- \triangleright It looks as a hierarchy of approximations
- In Why induction better than control of explicit series?
- \triangleright Dobrushin extracts extra information Which one?
- \blacktriangleright Why the form

 $\rho_{\gamma_0}\,\varphi_{\gamma_0}(\boldsymbol{\mu}) \ \leq \ \mu_{\gamma_0} \,\,?$

K □ ▶ K ● K K X B X X B X B X Y Q Q Q

- \triangleright It looks as a hierarchy of approximations
- In Why induction better than control of explicit series?
- \triangleright Dobrushin extracts extra information Which one?
- \blacktriangleright Why the form

$$
\rho_{\gamma_0} \varphi_{\gamma_0}(\mu) \leq \mu_{\gamma_0} ?
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

As for KS, is there some fix point of positive series?

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| = \left|\mathcal{T}^{\text{Pen}}_{\mathcal{G}(\gamma_0,\gamma_1,\ldots,\gamma_n)}\right|
$$

$$
\Pi_{\gamma_0}(\boldsymbol{\rho})\ =\ \sum_{n\geq 0}\frac{1}{n!}\,\overline{T}_n(\gamma_0)
$$

$$
T_n(\gamma_0) = \sum_{(\gamma_1,\ldots,\gamma_n) \ \tau \in \mathcal{T}_{\mathcal{G}}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}
$$

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| = \left|\mathcal{T}^{\text{Pen}}_{\mathcal{G}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}}\right|
$$

A Penrose tree for $\mathcal{G}_{(\gamma_0,\dots,\gamma_n)}$ is a spanning tree s.t. (P1) Brothers are compatible

$$
\Pi_{\gamma_0}(\boldsymbol{\rho})\ =\ \sum_{n\geq 0}\frac{1}{n!}\,\overline{T}_n(\gamma_0)
$$

$$
T_n(\gamma_0) = \sum_{(\gamma_1,\ldots,\gamma_n)} \sum_{\tau \in \mathcal{T}_{\mathcal{G}}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}} \rho_{\gamma_1} \cdots \rho_{\gamma_n}
$$

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| = \left|\mathcal{T}^{\text{Pen}}_{\mathcal{G}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}}\right|
$$

A Penrose tree for $\mathcal{G}_{(\gamma_0,\dots,\gamma_n)}$ is a spanning tree s.t.

(P1) Brothers are compatible

(P2) Cousins are compatible

(P3) Nephews compatible with uncles with smaller index

$$
\Pi_{\gamma_0}(\boldsymbol{\rho})\,=\,\sum_{n\geq 0}\frac{1}{n!}\,\overline{T}_n(\gamma_0)
$$

 $T_n(\gamma_0) \;=\; \quad \sum \hspace{0.5cm} \rho_{\gamma_1} \cdots \rho_{\gamma_n}$

$$
\left|\phi^T(\gamma_0,\gamma_1,\ldots,\gamma_n)\right| = \left|\mathcal{T}^{\text{Pen}}_{\mathcal{G}_{(\gamma_0,\gamma_1,\ldots,\gamma_n)}}\right|
$$

A Penrose tree for $\mathcal{G}_{(\gamma_0,\dots,\gamma_n)}$ is a spanning tree s.t.

(P1) Brothers are compatible

(P2) Cousins are compatible

(P3) Nephews compatible with uncles with smaller index Hence, now

$$
\Pi_{\gamma_0}(\boldsymbol{\rho})\ =\ \sum_{n\geq 0}\frac{1}{n!}\,\overline{T}_n(\gamma_0)
$$

with

$$
T_n(\gamma_0) \;=\; \sum\limits_{(\gamma_1,...,\gamma_n)}\;\sum\limits_{\tau\in\mathcal{T}_{\mathcal{G}}_{(\gamma_0,\gamma_1,...,\gamma_n)}}\rho_{\gamma_1}\cdots\rho_{\gamma_n}
$$

Approximation

Retain only (P1): Brothers may not be linked in $\mathcal G$

If $\{i, i_1\}$ and $\{i, i_2\}$ are edges of τ , then $\gamma_{i_1} \sim \gamma_{i_2}$

In this way $\rho\Pi(\rho) \leq \rho^*$, with

$$
\rho_{\gamma_0}^* := \newline \rho_{\gamma_0} \Big[1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, ..., \gamma_n) \in \mathcal{P}^n} \sum_{\tau \in \mathcal{T}_n^0} \prod_{i=0}^n c_{s_i}(\gamma_i, \gamma_{i_1}, \dots, \gamma_{i_{s_i}}) \rho_{\gamma_{i_1}} \dots \rho_{\gamma_{i_{s_i}}} \Big]
$$

$$
c_n(\gamma_0, \gamma_1, \ldots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Approximation

Retain only (P1): Brothers may not be linked in $\mathcal G$

If $\{i, i_1\}$ and $\{i, i_2\}$ are edges of τ , then $\gamma_{i_1} \sim \gamma_{i_2}$

In this way $\rho \Pi(\rho) \leq \rho^*$, with

$$
\rho_{\gamma_0}^* :=
$$
\n
$$
\rho_{\gamma_0} \left[1 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n} \sum_{\tau \in \mathcal{T}_n^0} \prod_{i=0}^n c_{s_i}(\gamma_i, \gamma_{i_1}, \dots, \gamma_{i_{s_i}}) \rho_{\gamma_{i_1}} \dots \rho_{\gamma_{i_{s_i}}} \right]
$$

where i_1, \ldots, i_{s_i} = descendants of i and

$$
c_n(\gamma_0, \gamma_1, \ldots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

2nd ingredient: Iterative generation of trees Consider the function $T_{\rho}: [0, \infty)^{\mathcal{P}} \to [0, \infty]^{\mathcal{P}}$ defined by

$$
\left(\boldsymbol{T_{\rho}}(\boldsymbol{\mu})\right)_{\gamma_{0}} = \rho_{\gamma_{0}} \bigg[1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_{1}, \ldots, \gamma_{n}) \in \mathcal{P}^{n}} c_{n}(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}) \mu_{\gamma_{1}} \ldots \mu_{\gamma_{n}}\bigg]
$$

or

$$
T_{\rho}(\mu) = \rho \varphi(\mu)
$$

A DIA K RIA K E A K RIA K L A SA K A L A SA CA

2nd ingredient: Iterative generation of trees Consider the function $T_{\rho}: [0, \infty)^{\mathcal{P}} \to [0, \infty]^{\mathcal{P}}$ defined by

$$
\left(\boldsymbol{T_{\rho}}(\boldsymbol{\mu})\right)_{\gamma_{0}} = \rho_{\gamma_{0}} \bigg[1 + \sum_{n \geq 1} \frac{1}{n!} \sum_{(\gamma_{1}, \ldots, \gamma_{n}) \in \mathcal{P}^{n}} c_{n}(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}) \mu_{\gamma_{1}} \ldots \mu_{\gamma_{n}}\bigg]
$$

or

$$
T_{\rho}(\mu) = \rho \varphi(\mu)
$$

Diagrammatically:

A DIA K RIA K E A K RIA K L A SA K A L A SA CA

The diagrams of the series

$$
T_{\!\rho}(T_{\!\rho}(\mu))\ =\ T_{\!\rho}^2(\mu)
$$

have black dots replaced by each of the preceding diagrams.

 $\bm{T^2_{\bm\rho}}(\bm\mu) \quad = \quad \text{sums over trees of up to two generations}$ with • in 2nd generation

 T^n_ρ with \bullet in n-th generation

$$
\left\langle T_{\boldsymbol{\rho}}^n(\boldsymbol{\rho}) \right\rangle_{n \to \infty} \boldsymbol{\rho}^*
$$

$$
\rho^* = \rho \varphi(\rho^*) \qquad \text{or} \qquad \rho^* = T_\rho(\rho^*)
$$

 $\mathbf{C} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{B} + \mathbf{A$

 2990

The diagrams of the series

. . .

$$
T_{\!\rho}(T_{\!\rho}(\mu))\ =\ T_{\!\rho}^2(\mu)
$$

have black dots replaced by each of the preceding diagrams.

 $T^n_{\!\rho}(\rho) \;\;\nearrow$

KOR & KERKER ADA KON

- $T^2_{\rho}(\mu)$ = sums over trees of up to two generations with \bullet in 2nd generation
- $T_{\rho}^{n}(\mu)$ = sums over trees of up to *n* generations with \bullet in n-th generation

Alternatively, ρ^* generated by replacing $\bullet \rightarrow \rho^*$:

The diagrams of the series

. . .

$$
T_{\!\rho}(T_{\!\rho}(\mu))\ =\ T_{\!\rho}^2(\mu)
$$

have black dots replaced by each of the preceding diagrams.

- $T^2_{\rho}(\mu)$ = sums over trees of up to two generations with \bullet in 2nd generation
- $T_{\rho}^{n}(\mu)$ = sums over trees of up to *n* generations with \bullet in n-th generation

and

$$
T^n_{\pmb\rho}(\pmb\rho)\underset{n\rightarrow\infty}{\nearrow}\rho^*
$$

Alternatively, ρ^* generated by replacing $\bullet \to \rho^*$:

 $\rho^* = \rho \varphi(\rho^*)$ or $\rho^* = T_\rho(\rho^*)$

The diagrams of the series

. . .

$$
T_{\!\rho}(T_{\!\rho}(\mu))\ =\ T_{\!\rho}^2(\mu)
$$

have black dots replaced by each of the preceding diagrams.

- $T^2_{\rho}(\mu)$ = sums over trees of up to two generations with \bullet in 2nd generation
- $T_{\rho}^{n}(\mu)$ = sums over trees of up to *n* generations with \bullet in n-th generation

and

$$
T^n_{\pmb\rho}(\pmb\rho)\underset{n\rightarrow\infty}{\nearrow}\rho^*
$$

Alternatively, ρ^* generated by replacing $\bullet \to \rho^*$:

 $\rho^* = \rho \varphi(\rho^*)$ or $\rho^* = T_\rho(\rho^*)$

The diagrams of the series

. . .

$$
T_{\!\rho}(T_{\!\rho}(\mu))\ =\ T_{\!\rho}^2(\mu)
$$

have black dots replaced by each of the preceding diagrams.

- $T^2_{\rho}(\mu)$ = sums over trees of up to two generations with \bullet in 2nd generation
- $T_{\rho}^{n}(\mu)$ = sums over trees of up to *n* generations with \bullet in n-th generation

and

$$
T^n_{\boldsymbol{\rho}}(\boldsymbol{\rho}) \underset{n\to\infty}{\nearrow} \boldsymbol{\rho}^*
$$

Alternatively, ρ^* generated by replacing $\bullet \to \rho^*$:

$$
\rho^* = \rho \varphi(\rho^*) \qquad \text{or} \qquad \rho^* = T_\rho(\rho^*)
$$

Convergence of a positive series

 $T_{\rho}^{n}(\rho)$ converges if, and only if, exists μ s.t.

$$
T_{\rho}(\mu) \leq \mu \tag{9}
$$

KOR & KERKER ADA KON

 $\text{Indeed, (9)} + \text{positiveness} \Rightarrow T_{\rho}^{n}(\mu) \text{ decreasing and bdd below}$ $\text{Indeed, (9)} + \text{positiveness} \Rightarrow T_{\rho}^{n}(\mu) \text{ decreasing and bdd below}$ $\text{Indeed, (9)} + \text{positiveness} \Rightarrow T_{\rho}^{n}(\mu) \text{ decreasing and bdd below}$

 $0\ \le\ (\rho^*\le)\,T^n_{\rho}(\mu)\ \le\ \cdots\ \le T^2_{\rho}(\mu)\ \le\ \mu$

Reciprocally, if there is convergence [\(9\)](#page-115-1) holds for $\mu = \rho^*$

Convergence of a positive series

 $T_{\rho}^{n}(\rho)$ converges if, and only if, exists μ s.t.

$$
T_{\rho}(\mu) \leq \mu \tag{9}
$$

KOR & KERKER ADA KON

Indeed, [\(9\)](#page-115-1) + positiveness $\Rightarrow T_{\rho}^{n}(\mu)$ decreasing and bdd below

$$
0\;\leq\;(\pmb{\rho}^*\leq)\;T^n_{\pmb{\rho}}(\pmb{\mu})\;\leq\;\cdots\;\leq T^2_{\pmb{\rho}}(\pmb{\mu})\;\leq\;\pmb{\mu}
$$

Reciprocally, if there is convergence [\(9\)](#page-115-1) holds for $\mu = \rho^*$

Convergence of a positive series

 $T_{\rho}^{n}(\rho)$ converges if, and only if, exists μ s.t.

$$
T_{\rho}(\mu) \leq \mu \tag{9}
$$

A DIA K A B A B A B A A A A A B A A A A A A

Indeed, [\(9\)](#page-115-1) + positiveness $\Rightarrow T_{\rho}^{n}(\mu)$ decreasing and bdd below

$$
0\;\leq\;(\pmb{\rho}^*\leq)\;T^n_{\pmb{\rho}}(\pmb{\mu})\;\leq\;\cdots\;\leq T^2_{\pmb{\rho}}(\pmb{\mu})\;\leq\;\pmb{\mu}
$$

Reciprocally, if there is convergence [\(9\)](#page-115-1) holds for $\mu = \rho^*$

New criterion

For

 $\sqrt{ }$

$$
c_n(\gamma_0, \gamma_1, \ldots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \nsim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}
$$

$$
T_{\rho}(\mu) \Big)_{\gamma_0} = \rho_{\gamma_0} \Big[1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{\substack{(\gamma_1, \ldots, \gamma_n) \in \mathcal{P}^n \\ \gamma_0 \nsim \gamma_i, \gamma_i \sim \gamma_j, 1 \le i, j \le n}} \mu_{\gamma_1} \ldots \mu_{\gamma_n} \Big]
$$

$$
= \rho_{\gamma_0} \Xi_{\{\gamma_0\}^*}(\mu)
$$

$$
\rho_{\gamma_0}\,\Xi_{\{\gamma_0\}^*}(\bm\mu)\;\leq\;\mu_{\gamma_0}
$$

$$
\rho \, \Pi \ \leq \ \rho^* \ \leq \ T^{n+1}_\rho(\mu) \ \leq \ T^n_\rho(\mu) \ \leq \ \mu
$$

 2980

Same for co[n](#page-101-0)tinuous polymers with $\sum_{\gamma \in \mathcal{P}_n} \mathbb{Z}^\gamma \to \mathbb{Z}^n$ $\sum_{\gamma \in \mathcal{P}_n} \mathbb{Z}^\gamma \to \mathbb{Z}^n$ $\sum_{\gamma \in \mathcal{P}_n} \mathbb{Z}^\gamma \to \mathbb{Z}^n$

New criterion

For

 $\sqrt{ }$

$$
c_n(\gamma_0, \gamma_1, \ldots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}
$$

$$
T_{\rho}(\mu) \Big)_{\gamma_0} = \rho_{\gamma_0} \Big[1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{\substack{(\gamma_1, \ldots, \gamma_n) \in \mathcal{P}^n \\ \gamma_0 \sim \gamma_i, \gamma_i \sim \gamma_j, 1 \le i, j \le n}} \mu_{\gamma_1} \ldots \mu_{\gamma_n} \Big]
$$

$$
= \rho_{\gamma_0} \Xi_{\{\gamma_0\}^*}(\mu)
$$

Hence, convergence if

$$
\rho_{\gamma_0} \, \Xi_{\{\gamma_0\}^*}(\boldsymbol{\mu}) \ \leq \ \mu_{\gamma_0}
$$

$$
\left\lvert \rho \, \Pi \right\rvert \leq \left\lvert \rho^* \right\rvert \leq \left\lvert T^{n+1}_\rho(\mu) \right\rvert \leq \left\lvert T^n_\rho(\mu) \right\rvert \leq \left\lvert \mu \right\rvert
$$

Same for co[n](#page-101-0)tinuous polymers with $\sum_{\gamma \in \mathcal{P}_n} \mathcal{Z}_{\gamma} \to \mathcal{Z}_{\gamma}^n$ $\sum_{\gamma \in \mathcal{P}_n} \mathcal{Z}_{\gamma} \to \mathcal{Z}_{\gamma}^n$ $\sum_{\gamma \in \mathcal{P}_n} \mathcal{Z}_{\gamma} \to \mathcal{Z}_{\gamma}^n$

New criterion

For

$$
c_n(\gamma_0, \gamma_1, \ldots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}
$$

$$
\left(T_\rho(\mu)\right)_{\gamma_0} = \rho_{\gamma_0} \left[1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{\substack{(\gamma_1, \ldots, \gamma_n) \in \mathcal{P}^n \\ \gamma_0 \sim \gamma_i, \gamma_i \sim \gamma_j, 1 \le i, j \le n}} \mu_{\gamma_1} \ldots \mu_{\gamma_n}\right]
$$

$$
= \rho_{\gamma_0} \Xi_{\{\gamma_0\}^*}(\mu)
$$

Hence, convergence if

$$
\rho_{\gamma_0} \, \Xi_{\{\gamma_0\}^*}(\boldsymbol{\mu}) \ \leq \ \mu_{\gamma_0}
$$

Furthermore,

$$
\rho \, \Pi \ \leq \ \rho^* \ \leq \ T^{n+1}_\rho(\mu) \ \leq \ T^n_\rho(\mu) \ \leq \ \mu
$$

Same for co[n](#page-101-0)tinuous polymers with $\sum_{\gamma \in \mathcal{P}_n} \mathcal{Z}_{\gamma} \to \mathcal{Z}_{\gamma}^n$ $\sum_{\gamma \in \mathcal{P}_n} \mathcal{Z}_{\gamma} \to \mathcal{Z}_{\gamma}^n$ $\sum_{\gamma \in \mathcal{P}_n} \mathcal{Z}_{\gamma} \to \mathcal{Z}_{\gamma}^n$

New criterion

For

$$
c_n(\gamma_0, \gamma_1, \dots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \sim \gamma_j\}}
$$

$$
\left(T_\rho(\mu)\right)_{\gamma_0} = \rho_{\gamma_0} \left[1 + \sum_{n \ge 1} \frac{1}{n!} \sum_{\substack{(\gamma_1, \dots, \gamma_n) \in \mathcal{P}^n \\ \gamma_0 \sim \gamma_i, \gamma_i \sim \gamma_j, 1 \le i, j \le n}} \mu_{\gamma_1} \dots \mu_{\gamma_n}\right]
$$

$$
= \rho_{\gamma_0} \Xi_{\{\gamma_0\}^*}(\mu)
$$

Hence, convergence if

$$
\rho_{\gamma_0} \, \Xi_{\{\gamma_0\}^*}(\boldsymbol{\mu}) \ \leq \ \mu_{\gamma_0}
$$

Furthermore,

$$
\rho \Pi \leq \rho^* \leq T_{\rho}^{n+1}(\mu) \leq T_{\rho}^{n}(\mu) \leq \mu
$$

Same for co[n](#page-101-0)tinuous polymers with $\sum_{\gamma \in \mathcal{P}_n} \zeta_{\gamma} \to \zeta_n^{\eta} \int_{\mathcal{P}_n} d\gamma$ $\sum_{\gamma \in \mathcal{P}_n} \zeta_{\gamma} \to \zeta_n^{\eta} \int_{\mathcal{P}_n} d\gamma$

Explanation of the different criteria

If we replace $\gamma_i \sim \gamma_j$ by the weaker requirement $\gamma_i \neq \gamma_j$:

$$
c_n^{\text{Dob}}(\gamma_0, \gamma_1, \dots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \neq \gamma_j\}}
$$

$$
\left(\mathcal{T}_{\rho}^{\text{Dob}}(\boldsymbol{\mu})\right)_{\gamma_0} = \rho_{\gamma_0} \prod_{\gamma \sim \gamma_0} (1 + \mu_{\gamma})
$$

$$
c_n^{\text{KP}}(\gamma_0, \gamma_1, \dots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}}
$$

$$
\left(T_{\rho}^{\text{KP}}(\mu)\right)_{\gamma_0} = \rho_{\gamma_0} \exp\Bigl[\sum_{\gamma \sim \gamma_0} \mu_{\gamma}\Bigr]
$$

Explanation of the different criteria

If we replace $\gamma_i \sim \gamma_i$ by the weaker requirement $\gamma_i \neq \gamma_i$:

$$
c_n^{\text{Dob}}(\gamma_0, \gamma_1, \dots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \sim \gamma_i\}} \prod_{j=1}^n \mathbb{1}_{\{\gamma_i \neq \gamma_j\}}
$$

$$
\left(\boldsymbol{T}_{\boldsymbol{\rho}}^{\text{Dob}}(\boldsymbol{\mu})\right)_{\gamma_0} = \rho_{\gamma_0} \prod_{\gamma \sim \gamma_0} (1 + \mu_\gamma)
$$

If requirement $\gamma_i \nsim \gamma_j$ is ignored altogether,

$$
c_n^{\text{KP}}(\gamma_0, \gamma_1, \dots, \gamma_n) = \prod_{i=1}^n \mathbb{1}_{\{\gamma_0 \nsim \gamma_i\}}
$$

$$
\left(\mathbf{T}_{\boldsymbol{\rho}}^{\text{KP}}(\boldsymbol{\mu})\right)_{\gamma_0} = \rho_{\gamma_0} \exp\Bigl[\sum_{\gamma \nsim \gamma_0} \mu_{\gamma}\Bigr]
$$

Comparison classical revisited \leftrightarrow inductive

The improvement is expressed by the inequality

$$
\Xi_{{\mathcal{N}}^*_{\gamma_0}}(\boldsymbol{\mu}) \ \leq \ \prod_{\gamma \nsim \gamma_0} \bigl(1 + \mu_\gamma \bigr)
$$

LHS contains only monomials of mutually compatible polymers

A DIA K RIA K E A K RIA K L A SA K A L A SA CA

Comparison classical revisited \leftrightarrow inductive

The improvement is expressed by the inequality

$$
\Xi_{{\mathcal{N}}^*_{\gamma_0}}(\bm\mu)\;\leq\; \prod_{\gamma\nsim\gamma_0} \bigl(1+\mu_\gamma\bigr)
$$

LHS contains only monomials of mutually compatible polymers Sources of improvement:

(I1) $\Xi_{\{\gamma_0\}^*}$ has no triangle diagram (i.e. pairs of neighbors of γ_0 that are themselves neighbors)

Comparison classical revisited \leftrightarrow inductive

The improvement is expressed by the inequality

$$
\Xi_{{\mathcal{N}}^*_{\gamma_0}}(\bm\mu)\;\leq\;\prod_{\gamma\nsim\gamma_0}(1+\mu_\gamma)
$$

LHS contains only monomials of mutually compatible polymers Sources of improvement:

(I1) $\Xi_{\{\gamma_0\}^*}$ has no triangle diagram (i.e. pairs of neighbors of γ_0 that are themselves neighbors)

A DIA K A B A B A B A A A A A B A A A A A A

(I2) In $\Xi_{\{\gamma_0\}^*}$, the only monomial containing μ_{γ_0} is μ_{γ_0} itself, $(\gamma_0$ is incompatible with all other polymers in $\{\gamma_0\}^*$)

 000000000

KOD START KED KEN EL VAN

[Explanation and comparison](#page-127-0)

Directions for further research

- \triangleright Incorporation of additional constraints in Penrose trees
- \triangleright Use of other partition schemes
- \blacktriangleright Inductive proof?
- \triangleright Extension to polymers with soft interactions (in progress)
- \triangleright Uncountably many polymers (eg. quantum contours)
- \triangleright Revisit "classical" results based on cluster expansions

KOR & KERKER ADA KON

Part II

[Alternative probabilistic scheme](#page-128-0)

The alternative treatment has the following features:

- \triangleright It is probabilistic, hence only positive activities
- \triangleright Basic measures = invariant measures for point processes
- \blacktriangleright Larger region of validity, but no analyticity
- ▶ Yields a "universal" perfect simulation scheme

nnn

[Process](#page-129-0) [Perfect simulation](#page-138-0)

KOR & KERKER ADA KON

Probabilistic approach (with P. Ferrari and N. Garcia)

Basic measures are invariant for the following dynamics:

- In Attach to each polymer γ a poissonian clock with rate z_{γ}
- \triangleright When the clock rings, γ tries to be born
- It succeeds if no other γ' present with $\gamma \nsim \gamma'$
- \triangleright Once born, the polymer has an exp(1) lifespan

ooo

[Process](#page-129-0) [Perfect simulation](#page-138-0)

KOR & KERKER ADA KON

Probabilistic approach (with P. Ferrari and N. Garcia)

Basic measures are invariant for the following dynamics:

- In Attach to each polymer γ a poissonian clock with rate z_{γ}
- \triangleright When the clock rings, γ tries to be born
- It succeeds if no other γ' present with $\gamma \nsim \gamma'$
- \triangleright Once born, the polymer has an exp(1) lifespan

[Basic process](#page-131-0)

Alternative scheme

1st step: free process

- \triangleright Generate first a *free process* where *all* birth are succesful
- \triangleright Associate to each born polymer γ a space-time *cylinder*

$$
C^{\gamma} = (\gamma, [\text{Birth}_{C^{\gamma}}, \text{Death}_{C^{\gamma}}])
$$

$$
A_1(C^{\gamma}) = \left\{ C' : \text{Base}_{C'} \sim \gamma, \text{Birth}_{C^{\gamma}} \in [\text{Birth}_{C'}, \text{ Death}_{C'}] \right\}
$$

\n
$$
A_{n+1}(C^{\gamma}) = A_1(A_n(C^{\gamma}))
$$

\n
$$
A(C^{\gamma}) = \cup_n A_n(C^{\gamma})
$$

[Basic process](#page-132-0)

Alternative scheme

1st step: free process

- \triangleright Generate first a *free process* where *all* birth are succesful
- \triangleright Associate to each born polymer γ a space-time *cylinder*

$$
C^{\gamma} = (\gamma, [\text{Birth}_{C^{\gamma}}, \text{ Death}_{C^{\gamma}}])
$$

2nd step: cleaning

To decide whether a given cylinder C^{γ} remains alive, determine its clan of ancestors

$$
\mathbf{A}_1(C^{\gamma}) = \left\{ C' : \text{Base}_{C'} \sim \gamma, \text{Birth}_{C^{\gamma}} \in [\text{Birth}_{C'}, \text{ Death}_{C'}] \right\}
$$

$$
A_{n+1}(C^{\gamma}) = \mathbf{A}_1(\mathbf{A}_n(C^{\gamma}))
$$

$$
A(C^{\gamma}) = \cup_n \mathbf{A}_n(C^{\gamma})
$$

[Basic process](#page-133-0)

Alternative scheme

1st step: free process

- \triangleright Generate first a *free process* where *all* birth are succesful
- \triangleright Associate to each born polymer γ a space-time *cylinder*

$$
C^{\gamma} = (\gamma, [\text{Birth}_{C^{\gamma}}, \text{ Death}_{C^{\gamma}}])
$$

2nd step: cleaning

To decide whether a given cylinder C^{γ} remains alive, determine its clan of ancestors

$$
\mathbf{A}_1(C^{\gamma}) = \left\{ C' : \text{Base}_{C'} \sim \gamma, \text{Birth}_{C^{\gamma}} \in [\text{Birth}_{C'}, \text{ Death}_{C'}] \right\}
$$

$$
\mathbf{A}_{n+1}(C^{\gamma}) = \mathbf{A}_1(\mathbf{A}_n(C^{\gamma}))
$$

$$
A(C^{\gamma}) = \cup_n \mathbf{A}_n(C^{\gamma})
$$

Alternative scheme

1st step: free process

- \triangleright Generate first a *free process* where *all* birth are succesful
- \triangleright Associate to each born polymer γ a space-time *cylinder*

$$
C^{\gamma} = (\gamma, [\text{Birth}_{C^{\gamma}}, \text{Death}_{C^{\gamma}}])
$$

2nd step: cleaning

To decide whether a given cylinder C^{γ} remains alive, determine its clan of ancestors

$$
A_1(C^{\gamma}) = \left\{C' : \text{Base}_{C'} \sim \gamma, \text{Birth}_{C^{\gamma}} \in [\text{Birth}_{C'}, \text{ Death}_{C'}] \right\}
$$

$$
A_{n+1}(C^{\gamma}) = A_1(A_n(C^{\gamma}))
$$

$$
A(C^{\gamma}) = \bigcup_n A_n(C^{\gamma})
$$

KOD START KED KEN EL VAN

Forward-forward scheme

If $A(C^{\gamma})$ is finite. do the cleaning starting from the "mother cylinder"

- \blacktriangleright Keep mother
- \blacktriangleright Erase first children
- \blacktriangleright Keep new mothers

 \blacktriangleright :

This is a forward-forward scheme

KOR & KERKER ADA KON

Backward-forward scheme

Ancestors clan can be constructed backwards (Poisson and exponential distributions are reversible)

To construct the clan of ancestors of a finite window Λ:

- ► Generate, backwards, marks at rate $z_{\gamma} e^{-s}$ for each $\gamma \nsim \Lambda$
- \triangleright These are cylinders born at $-s$ and surviving up to 0
- In Take the first mark; ignore the rest. If its basis is γ_1
- \blacktriangleright Repeat with

$$
\begin{array}{rcl}\n\Lambda & \to & \Lambda \cup \{\gamma_1\} \\
s & \to & s - \left\{ \begin{array}{cl}\n\text{Birth}_{\gamma_1} & \text{if } \gamma \nsim \gamma' \\
0 & \text{if } \gamma \nsim \Lambda, \gamma \sim \gamma\n\end{array} \right.\n\end{array}
$$

 \blacktriangleright $\ldots \longrightarrow A^{\Lambda}$

A DIA K A B A B A B A A A A A B A A A A A A

Backward-forward scheme

Ancestors clan can be constructed backwards (Poisson and exponential distributions are reversible)

To construct the clan of ancestors of a finite window Λ:

- ► Generate, backwards, marks at rate $z_{\gamma} e^{-s}$ for each $\gamma \nsim \Lambda$
- \triangleright These are cylinders born at $-s$ and surviving up to 0
- In Take the first mark; ignore the rest. If its basis is γ_1
- \blacktriangleright Repeat with

$$
\begin{array}{rcl}\n\Lambda & \to & \Lambda \cup \{\gamma_1\} \\
s & \to & s - \left\{ \begin{array}{cl}\n\text{Birth}_{\gamma_1} & \text{if } \gamma \nsim \gamma' \\
0 & \text{if } \gamma \nsim \Lambda, \gamma \sim \gamma_1\n\end{array} \right.\n\end{array}
$$

 \blacktriangleright $\ldots \implies \Delta^{\Lambda}$

KOR & KERKER ADA KON

Perfect simulation

If

$$
\mathbb{P}(\{\mathbf{A}^{\Lambda}\text{ finite}\}) = 1\tag{10}
$$

cleaning leads exactly to a sample of the basic measure

Sufficient conditions for [\(10\)](#page-138-1)?

- Clan of ancestors defines an *oriented percolation model*
- ► Lack of percolation \implies [\(10\)](#page-138-1)
- \triangleright Can dominate by a branching process:
	- \blacktriangleright branches $=$ ancestors
	- \triangleright branching rate = mean surface-area of cylinders:

$$
\frac{1}{|\gamma|} \sum_{\theta \nsim \gamma} |\theta| \ z_{\theta} \ \times \ 1
$$

(geometrical case)

Extinction condition

Extinction of the branching process implies [\(10\)](#page-138-1)

Hence, perfect simulation if

$$
\frac{1}{|\gamma|} \sum_{\theta \nsim \gamma} |\theta| \ z_{\theta} \ \leq \ 1
$$

- \triangleright Prob = \lim_{Δ} Prob_A exists
- \blacktriangleright Mixing properties

$$
\frac{1}{\sqrt{\Lambda}}\sum_{x\in\Lambda}\mathbb{1}_{\{A+x\}}\xrightarrow[\Lambda]{}\mathcal{N}(0,D)
$$

Extinction condition

Extinction of the branching process implies [\(10\)](#page-138-1)

Hence, perfect simulation if

$$
\frac{1}{|\gamma|} \sum_{\theta \nsim \gamma} |\theta| \ z_{\theta} \ \leq \ 1
$$

Under this condition

- \blacktriangleright Prob = \lim_{Δ} Prob_A exists
- \blacktriangleright Mixing properties

 \triangleright CLT: If A depends on a finite # of polymers

$$
\frac{1}{\sqrt{\Lambda}}\sum_{x\in\Lambda}\mathbb{1}_{\{A+x\}}\xrightarrow[\Lambda]{}\mathcal{N}(0,D)
$$

A DIA K A B A B A B A A A A A B A A A A A A

Extinction condition

Extinction of the branching process implies [\(10\)](#page-138-1)

Hence, perfect simulation if

$$
\frac{1}{|\gamma|} \sum_{\theta \nsim \gamma} |\theta| \ z_{\theta} \ \leq \ 1
$$

Under this condition

- \blacktriangleright Prob = \lim_{Δ} Prob_A exists
- \blacktriangleright Mixing properties

 $\left|\text{Prob}(\{\gamma_0, \gamma_1\}) - \text{Prob}(\{\gamma_0\}) \text{Prob}(\{\gamma_1\})\right| \leq e^{-M \text{ dist}(\gamma_0, \gamma_1)}$

 \triangleright CLT: If A depends on a finite # of polymers

$$
\frac{1}{\sqrt{\Lambda}}\sum_{x\in\Lambda}\mathbb{1}_{\{A+x\}}\xrightarrow[\Lambda]{}\mathcal{N}(0,D)
$$

K □ ▶ K @ ▶ K 할 X K 할 X _ 할 X 10 Q Q Q

Extinction condition

Extinction of the branching process implies [\(10\)](#page-138-1)

Hence, perfect simulation if

$$
\frac{1}{|\gamma|} \sum_{\theta \nsim \gamma} |\theta| \ z_{\theta} \ \leq \ 1
$$

Under this condition

- \blacktriangleright Prob = \lim_{Δ} Prob_A exists
- \blacktriangleright Mixing properties

$$
\left|\text{Prob}(\{\gamma_0, \gamma_1\}) - \text{Prob}(\{\gamma_0\}) \text{Prob}(\{\gamma_1\})\right| \le e^{-M \text{ dist}(\gamma_0, \gamma_1)}
$$

 \triangleright CLT: If A depends on a finite $\#$ of polymers

$$
\frac{1}{\sqrt{\Lambda}}\sum_{x\in\Lambda}\mathbb{1}_{\{A+x\}}\xrightarrow[\Lambda]{}\mathcal{N}(0,D)
$$

with $D = \sum_x \text{Prob}(A \cup A + x)$

KOR & KERKER ADA KON

Comments

- \blacktriangleright Perfect simulation of a *finite* window of the *infinite* Prob
- \triangleright Universal perfect simulation algorithm
- \triangleright Scheme = alternative definition of Prob
- \blacktriangleright Hence, new way to prove its properties in a larger region
- \triangleright No analyticity, no info on zeros of partition functions
KOD START KED KEN EL VAN

Comments

- \blacktriangleright Perfect simulation of a *finite* window of the *infinite* Prob
- \triangleright Universal perfect simulation algorithm
- \triangleright Scheme = alternative definition of Prob
- \blacktriangleright Hence, new way to prove its properties in a larger region
- \triangleright No analyticity, no info on zeros of partition functions