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Basic setup

The basic setup

Goal: To study systems of objects constrained only by a
“non-overlapping” condition

Countable family P of objects: polymers, animals, . . . ,
characterized by

I An incompatibility constraint:

γ � γ′

γ ∼ γ′ if γ, γ′ ∈ P incompatible
compatible

For simplicity: each polymer incompatible with itself
(γ � γ, ∀γ ∈ P)

I A family of activities z = {zγ}γ∈P ∈ CP .
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Basic setup

The basic (“finite-volume”) measures

Defined, for each finite family PΛ ⊂ P, by weights

WΛ

(
{γ1, γ2, . . . , γn}

)
=

1

ΞΛ(z)
zγ1zγ2 · · · zγn

∏
j<k

11{γj∼γk}

for n ≥ 1 γ1, γ2, . . . , γn ∈ PΛ, and WΛ(∅) = 1/ΞΛ, where

ΞΛ(z) = 1 +
∑
n≥1

1

n!

∑
(γ1,...,γn)∈PnΛ

zγ1zγ2 . . . zγn
∏
j<k

11{γj∼γk}

Λ = some label, often finite subset of a countable set
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Correlation functions

Polymer correlation functions

For γ1, . . . , γk mutually compatible polymers in PΛ

ProbΛ

(
{γ1, . . . , γk are present}

)
= zγ1 · · · zγk

ΞΛ\{γ1,...,γk}∗

ΞΛ

where

{γ1, . . . , γk}∗ = polymers incompatible with γ1, . . . , γk
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Questions

The questions:

I Existence of the limit PΛ → P (“thermodynamic limit”)

I Properties of the resulting measure (mixing properties,
dependency on parameters,. . . )

I Asymptotic behavior of ΞΛ (analyticity!)

I Control of correlation functions
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Questions

Motivation

Immediate:

I Physics: Grand-canonical ensemble of polymer gas with
activities zγ and hard-core interaction

I Statistics: Invariant measure of point processes with
not-overlapping grains and birth rates zγ

Less immediate:

I Statistical mechanical models at high and low temperatures
are mapped into such systems

I More generally: most perturbative arguments in physics
involve maps of this type (choice of the “right” variables)

I Zeros of the partition functions ΞΛ (phase transitions,
sphere packing, chromatic polynomials, Lovász lemma)
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Hard-core examples

Example zero: Hard-core lattice gases

Measures on configurations ω ∈ LE with

I L =vertices of a graph (eg. Zd),
I E = {0, 1} (“1”=occupied)

I No occupied neighbors are allowed

I Allowed configurations have weights ∼ exp(µβ |Γ|)
(µ=Gibbs chemical potential, β=inverse temperature)

This is a polymer model with

I P = {vertices of L}
I x 6∼ y iff x and y are graph neighbors

I zx = eβu

(For Sokal-like people all polymer models are of this type)
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Hard-core examples

Single-call loss networks

Defined through the following dynamics:

I P = finite subsets of Zd —the calls

I A call γ is attempted with Poissonian rates zγ

I Call succeeds if it does not intercept existing calls

I Once established, calls have an exp(1) life span

Invariant measures correspond to the polymer expansion:

I P = finite connected families of links of a graph —the calls

I zγ = Poissonian rate for the call γ

I Compatibility = use of disjoint links (disjoint calls)
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Expansions from stat-mech

Low-T expansions

Ising model at low T :

I Polymers = connected closed surfaces (contours)

I Compatibility = no intersection

I zγ = exp{−2βJ |γ|}

LTE for Ising ferromagnets:

I P = connected families of (excited) bonds (contours)

I zγ = exp
{
−2β

∑
B∈γ JB

}
I γ ∼ γ′ iff γ ∩ γ′ = ∅ (disjoint bases); (γ = ∪{B : B ∈ γ})
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Expansions from stat-mech

High-T expansions

General HTE:

I P = {connected finite subsets of bonds}
I

zB =

∫
B

∏
A∈B

(e−β φA(ω) − 1)
⊗
x∈B

µE(dωx)

I B ∼ B′ iff B ∩B′ = ∅ (B = ∪{B : B ∈ B})

HTE for Ising ferromagnets:

I P =
{
B ∈ BΛ : B connected ,

∑
B∈B B = ∅

}
(cycles)

I zB =
∏
B∈B tanh(βJB)

I B ∼ B′ iff B ∩B′ = ∅



Setup Examples CE Classic Inductive KS-equations Series-revisited

Expansions from stat-mech

High-T expansions

General HTE:

I P = {connected finite subsets of bonds}
I

zB =

∫
B

∏
A∈B

(e−β φA(ω) − 1)
⊗
x∈B

µE(dωx)

I B ∼ B′ iff B ∩B′ = ∅ (B = ∪{B : B ∈ B})

HTE for Ising ferromagnets:

I P =
{
B ∈ BΛ : B connected ,

∑
B∈B B = ∅

}
(cycles)

I zB =
∏
B∈B tanh(βJB)

I B ∼ B′ iff B ∩B′ = ∅



Setup Examples CE Classic Inductive KS-equations Series-revisited

FK models

Random geometrical models

FK representation of Potts models:

I P = {γ ⊂⊂ L}
I

zγ = q−(|γ|−1)
∑

B⊂Bγ
(γ,B) connected

∏
{x,y}∈B

vx y

with vx y = eβJx y − 1

I Compatibility = non-intersection

I If v{x, y} = −1 → chromatic polynomial

(β →∞ with Jx y < 0, i.e. zero-temperature
antiferromagnetic Potts)

I General vxy: multivariate version of Tutte polynomial.
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Geometrical polymer models

Geometrical polymer models

Previous examples: polymers formed by points of a set

These are the original polymer models of Gruber and Kunz:

I A set V (sites)

I A family P of finite subsets of V (grains, connected sets)

I Activity values (zγ)γ∈P
I The relation γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅

More generally: γ = (γ,decoration), γ ⊂ V
I γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅
I PΛ = {γ ∈ P : γ ⊂ Λ}, Λ ⊂⊂ V
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Continuous systems

Generalization : Continuous polymer systems
More generally,

1

n!

∑
(γ1,...,γn)∈PnΛ

−→ 1

n!

∫
PnΛ
dγ1 · · · dγn

where dγ1 · · · dγn is an appropriate product measure

Also, for book-keeping purposes: zγ = z ξγ

That is, we consider measures on
∑

n PnΛ with projections on PnΛ
1

ΞΛ

zn

n!
ξγ1ξγ2 · · · ξγn

∏
j<k

11{γj∼γk} dγ1 · · · dγn

where

ΞΛ(z, ξ) = 1 +
∑
n≥1

zn

n!

∫
PnΛ
ξγ1 . . . ξγn

∏
j<k

11{γj∼γk} dγ1 · · · dγn
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The expansion

Cluster expansions

Write ΞΛ(z) as formal exponentials of a formal series

ΞΛ(z)
F
= exp

{ ∞∑
n=1

1

n!

∑
(γ1,...,γn)∈PnΛ

φT (γ1, . . . , γn) zγ1 . . . zγn

}
or

ΞΛ
F
= exp

{ ∞∑
n=1

zn

n!

∫
PnΛ
φT (γ1, . . . , γn) ξγ1 . . . ξγn dγ1 · · · dγn

}

I The series between curly brackets is the cluster expansion

I φT (γ1, . . . , γn): Ursell or truncated functions (symmetric)

I Clusters: Families {γ1, . . . , γn} s.t. φT (γ1, . . . , γn) 6= 0

I Clusters are connected w.r.t. “�”
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Strategy

Pinned expansions

Telescoping, it is enough to consider one-polymer ratios[
log

ΞΛ

ΞΛ\{γ0}

]
(z)

F
=

∞∑
n=1

1

n!

∑
(γ1,...,γn)∈Pn

Λ
∃i: γi=γ0

φT (γ1, . . . , γn) zγ1 . . . zγn

Algebraically simpler alternative:[ ∂

∂zγ0

log ΞΛ

]
(z)

F
=

1 +

∞∑
n=1

1

n!

∑
(γ1,...,γn)∈PnΛ

φT (γ0, γ1, . . . , γn) zγ1 . . . zγn

For continuous systems
∑
γ∈Pn zγ → zn

∫
Pn dγ
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Strategy

Classical cluster-expansion strategy
Find a Λ-independent polydisc

R =
{
z : |zγ | ≤ ργ , γ ∈ P

}
where cluster expansions converge absolutely

Equivalently, find ργ > 0 independent of Λ such that

Θγ0(ρ) :=

∞∑
n=1

1

n!

∑
(γ1,...,γn)∈Pn
∃i: γi=γ0

∣∣φT (γ1, . . . , γn)
∣∣ ργ1 . . . ργn

or

Πγ0(ρ) := 1 +

∞∑
n=1

1

n!

∑
(γ1,...,γn)∈Pn

∣∣φT (γ0, γ1, . . . , γn)
∣∣ ργ1 . . . ργn

are finite
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Strategy

Consequences

Within R
I No ΞΛ has a zero (no phase transitions!)

I Explicit series expressions for free energy and correlations

I Explicit mixing∣∣∣∣ Prob({γ0 , γx})
Prob({γ0}) Prob({γx})

− 1

∣∣∣∣ =
∣∣∣eF [d(γ0,γx)] − 1

∣∣∣
with F (d)→ 0 as d→∞

I Central limit theorem
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Strategy

Observations

Due to an alternating-sign property

ΘΛ
γ0

(ρ) = −
[
log

ΞΛ

ΞΛ\{γ0}

]
(−ρ)

ΠΛ
γ0

(ρ) =
[ ∂

∂zγ0

log ΞΛ

]
(−ρ)

Hence,

I No loss in absolute convergence

I Only loss: insisting on convergence on polydiscs

I In particular, unphysical singularity
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I In particular, unphysical singularity
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Approaches

Catalogue of approaches

Kirkwood-Salzburg equations (1971):

I System of linear coupled equations for the correlations

I Method used by Gruber and Kunz

Classical (1982–4):

I Based on tree-graph bound

I Seiler → Cammarota → Brydges

No-cluster-expansion (1986, 1994):

I Inductive argument (no mention of expansion)

I Kotecký-Preiss → Dobrushin

Classical revisited (2007):

I Based on tree-graph identities due to Penrose

I Different summation and fixed-point arguments



Setup Examples CE Classic Inductive KS-equations Series-revisited

Approaches

Catalogue of approaches

Kirkwood-Salzburg equations (1971):

I System of linear coupled equations for the correlations

I Method used by Gruber and Kunz

Classical (1982–4):

I Based on tree-graph bound

I Seiler → Cammarota → Brydges

No-cluster-expansion (1986, 1994):

I Inductive argument (no mention of expansion)
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1st ingredient

Tree-graph bound
Classical approach valid only for

geometrical translation-invariant polymers
Basic inequality∣∣φT (γ0, γ1, . . . , γn)

∣∣ ≤ ∣∣∣TG(γ0,γ1,...,γn)

∣∣∣
where TG = {connected spanning trees of G}

Hence:

Πγ0(ρ) ≤
∑
n≥0

1

n!
Tn(γ0)

where T 0 = 1 and

Tn(γ0) =
∑

(γ1,...,γn)

∑
τ∈TG(γ0,γ1,...,γn)

ργ1 · · · ργn
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1st ingredient

Interchanging sum over polymers with sum over trees:

Tn(γ0) =
∑

τ∈T 0
n+1

∑
(γ1,...,γn) s.t.

τ⊂G(γ0,γ1,...,γn)

ργ1 · · · ργn

=
∑

τ∈T 0
n+1

T τ (γ0)

where

T 0
n+1 = {trees of vertices 0, 1, . . . n, rooted in 0}
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2nd ingredient

Summing “from leaves down”

To compute T τ start summing over γ’s at leaves:

si∏
j=1

∑
γ(i,j)�γi

ργ(i,j)
=
[∑
γ�γi

ργ

]si
For translation-invariant geometrical polymers,∑

γ�γi

ργ ≤ |γi|
∑
γ30

ργ

Then, for each γi that is ancestor of leaves

ργi −→ ργi |γi|
si
[∑
γ30

ργ

]si
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2nd ingredient

Iterate! The sum over successive ancestors yields

T τ (γ0) ≤ |γ0|
n∏
i=0

[∑
γ30

ργ |γ|si
]

I This bound depends only on s0, s1, . . . , sn

I The sum over trees τ brings a factor

# trees with coord. nbers
s0, s1 + 1, . . . , sn + 1

=

(
n

s0 + 1 s1 . . . sn

)
(Cayley formula)
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Criterion

Classical criterion

In consequence

Tn(γ0) ≤ |γ0| n!
∑

s0,s1,...,sn∑
si=n−1

n∏
i=0

[∑
γ30

ργ
|γ|si

si!

]

Hence
Πγ0(ρ) ≤ |γ0|

∑
n≥0

[∑
γ30

ργ e|γ|
]n

which converges if ∑
γ30

ργ e|γ| < 1

[Cammarota (1982), Brydges (1984)]
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Ingredients

The two stages of the inductive approach

1) The addition identity:

ΞΓ∪{γ} = ΞΓ + zγ ΞΓ\{γ}∗ (1)

for γ 6∈ Γ

2) The right inductive hypothesis:

There exist a(γ) > 0 and ργ > 0 such that

ργ exp
[∑
γ̃ 6∼γ

a(γ̃)
]
≤ ea(γ) − 1

for all γ
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Theorem

The main result

Theorem
If there exist a(γ) > 0 and ργ > 0 such that

ργ exp
[∑
γ̃ 6∼γ

a(γ̃)
]
≤ ea(γ) − 1 (2)

for all γ, then
ΘΛ
γ (−ρ) ≤ a(γ) (3)

uniformly in Λ for all γ
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Proof of the main result

Proof
Must show

ΞΛ∪{γ}(−ρ)

ΞΛ(−ρ)
≥ e−a(γ) (4)

By the addition identity

ΞΛ∪{γ}(−ρ)

ΞΛ(−ρ)
= 1− ργ

ΞΛ\{γ}∗(−ρ)

ΞΛ(−ρ)

Induction plus telescoping implies

ΞΛ∪{γ}(−ρ)

ΞΛ(−ρ)
≥ 1− ργ exp

[∑
γ̃ 6∼γ
γ̃ 6=γ

a(γ̃)
]

≥ 1− ργ e−a(γ) exp
[∑
γ̃ 6∼γ

a(γ̃)
]

And the inductive hypothesis (2) yields (4)
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Kotecký-Preiss

Kotecký-Preiss criterion

Most popular: If ∃ b(γ) > 0 such that∑
γ̃ 6∼γ

ργ eb(γ̃) ≤ b(γ)

then convergence for |zγ | ≤ ργ
I Can be proven

I By “defoliation” of Π (Procacci-Scoppola)
I By an inductive argument (Kotecký-Preiss)

I Particular case of Dobrushin: If a(γ) = ργ e
b(γ), then

ργ exp
[∑
γ̃ 6∼γ

a(γ̃)
]
≤ ργ exp

[
log

a(γ)

ργ

]
= a(γ) ≤ ea(γ) − 1
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Strategy

Kirkwood-Salzburg approach

Strategy: Set up systems of linear equations for the functions

ΦΛ(z, X) =
ΞΛ\X(z)

ΞΛ(z)

involving a basically Λ-independent operator K.

I Search for solutions in a suitable Banach space

I Solutions = fixed points

I K contraction uniform in Λ yields
I Convergence with Λ
I Analyticity of ratios and its limits
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Equations

Derivation of the equations

I For each X ⊂⊂ PΛ choose some (first) γ ∈ X
I Write addition identity as deletion identity, with Λ→ Λ \X

ΞΛ\X = ΞΛ\(X\{γ}) − zγ ΞΛ\(X∪{γ}∗)

I Dividing by ΞΛ

ΦΛ(X) = ΦΛ(X \ {γ})− zγ ΦΛ(X ∪ {γ}∗)

I The identity ΦΛ(∅) = 1 is considered as inhomogenity

I The condition X ⊂ PΛ is introduced as a factor
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Equations

Kirkwood-Salzburg equations

The equations are:

ΦΛ = χΛα+ χΛKzΦΛ

with

χΛ(X) =

{
1 if X ⊂ Λ
0 otherwise

, α(X) =

{
1 if |X| = 1
0 otherwise

and Kz the operator on C{non−empty fin parts of P}

(Kzf)(X) = 11{|X|≥2} f(X \ {γ})− zγ f(X ∪ {γ}∗Λ)
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Functional analytical set-up

Standard treatment
Aiming at factorized weights, introduce norms

‖f‖a = sup
X⊂⊂P

|f(X)|
exp
[∑

γ̃∈X a(γ̃)
]

for a(γ̃) > 0. Then

|(Kzf)(X)| ≤ ‖f‖a exp
[∑
γ̃∈X
γ̃ 6=γ

a(γ̃)
]

+ |zγ | ‖f‖a exp
[ ∑
γ̃∈(X\{γ})∪{γ}∗Λ

γ̃∈Λ

a(γ̃)
]

and

‖Kz‖a ≤
1

ea(γ)

[
1 + |zγ | exp

(∑
γ̃ 6∼γ

a(γ̃)
)]
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Convergence criterion

Gruber-Kunz condition
If for some ργ > 0

1

ea(γ)

[
1 + ργ exp

(∑
γ̃ 6∼γ

a(γ̃)
)]

< 1 (5)

then, for |zγ | ≤ ργ , the operators 1− ξΛKz are invertible and

ΦΛ =
[
1− ξΛKz

]−1
χΛα (6)

is the only solution of the Λ-KS-equation.

Furthermore, as (5) is Λ-independent,

I The ratios converge

ΦΛ(X) −−−→
Λ→V

(
[1−Kz]−1α

)
(X)

I The ratios, and their limits have analytic dependence on z
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Convergence criterion

Comparison with the inductive result

GK-condition (5) is identical to Dobrushin’s

ργ exp
[∑
γ̃ 6∼γ

a(γ̃)
]
< ea(γ) − 1

except that the inequality is strict

To fix it: alternative treatment of the KS equations



Setup Examples CE Classic Inductive KS-equations Series-revisited

Convergence criterion

Comparison with the inductive result

GK-condition (5) is identical to Dobrushin’s

ργ exp
[∑
γ̃ 6∼γ

a(γ̃)
]
< ea(γ) − 1

except that the inequality is strict

To fix it: alternative treatment of the KS equations



Setup Examples CE Classic Inductive KS-equations Series-revisited

Alternative strategy

Alternative strategy

Find another way of making sense of the formula

ΦΛ =
[
1− χΛKz

]−1
χΛα = χΛ

∑
n≥0

Kn
zχΛα (7)

This series is term-by-term dominated by

Φρ =
∑
n≥0

Kn
−ρ α

as long as |zγ | ≤ ργ .

(As in cluster expansions: singularities at negative fugacities)
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Alternative strategy

Inductive-like bound

Find functions ξ(X) such that(
α+K−ρ ξ

)
(X) ≤ ξ(X) (8)

Recursively this implies that

N∑
n=0

Kn
−ρ α ≤ ξ

and hence Φρ converges.

Reciprocally, if Φρ is finite, (8) holds with ξ = Φρ

Conclusion:

(8) is necessary and sufficient for the convergence of Φρ
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Alternative strategy

Why factorization

If X1 and X2 are disjoint,

ΦΛ(X1 ∪X2) =
ΞΛ\(X1∪X2)

ΞΛ\X2

ΞΛ\X2

ΞΛ
= ΦΛ\X2

(X1) ΦΛ(X2) .

In the limit Λ→ V we should obtain

Φ(X1 ∪X2) = Φ(X1) Φ(X2) .

It is natural, to look for factorized majorizing functions.



Setup Examples CE Classic Inductive KS-equations Series-revisited

Alternative strategy

Why factorization

If X1 and X2 are disjoint,

ΦΛ(X1 ∪X2) =
ΞΛ\(X1∪X2)

ΞΛ\X2

ΞΛ\X2

ΞΛ
= ΦΛ\X2

(X1) ΦΛ(X2) .

In the limit Λ→ V we should obtain

Φ(X1 ∪X2) = Φ(X1) Φ(X2) .

It is natural, to look for factorized majorizing functions.



Setup Examples CE Classic Inductive KS-equations Series-revisited

Alternative strategy

Why factorization

If X1 and X2 are disjoint,

ΦΛ(X1 ∪X2) =
ΞΛ\(X1∪X2)

ΞΛ\X2

ΞΛ\X2

ΞΛ
= ΦΛ\X2

(X1) ΦΛ(X2) .

In the limit Λ→ V we should obtain

Φ(X1 ∪X2) = Φ(X1) Φ(X2) .

It is natural, to look for factorized majorizing functions.



Setup Examples CE Classic Inductive KS-equations Series-revisited

Alternative strategy

GK alla Dobrushin recovered

Postulating

ξ(X) =
∏
γ∈X

ξ(γ)

(8) holds for all X iff it holds for a single-site:(
α+K−ρ ξ

)
({γ}) ≤ ξ({γ})

Writing ξ({γ}) = ea(γ), this condition is

1 + ργ exp
[∑
γ̃ 6∼γ

a(γ̃)
]
≤ ea(γ)

as obtained via the inductive argument
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Comparison

Comparison so far

Classical < KP < Inductive = KS (GK)

However, alternative KS leads to a sequence of bounds:∣∣∣∣ΞΛ\X(z)

ΞΛ(z)

∣∣∣∣ ≤ ΞΛ\X(−ρ)

ΞΛ(−ρ)
≤
(
Tρ
)m
ξX ≤

(
Tρ
)n
ξX ≤ ξX

for all m ≤ n
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Comparison

“Standard form” of the criteria

If we substitute

µγ = ργ eaγ (Kotecký-Preiss)

µγ = eaγ − 1 (Dobrushin)

We obtain convergence if there exists µ ∈ [0,∞)P such that

ργ0 exp
[∑
γ�γ0

µγ

]
≤ µγ0 (Kotecký-Preiss)

ργ0

∏
γ�γ0

(
1 + µγ

)
≤ µγ0 (Dobrushin)
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Comparison

Comparison D ↔ KP

D improves KP because∏
γ�γ0

(
1 + µγ

)
≤ exp

[∑
γ�γ0

µγ

]
Differences:

I D lacks powers µ`γ
I D exact for polymers with only self-exclusion
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Comparison

Observations

I It looks as a hierarchy of approximations

I Why induction better than control of explicit series?

I Dobrushin extracts extra information Which one?

I Why the form
ργ0 ϕγ0(µ) ≤ µγ0 ?

As for KS, is there some fix point of positive series?
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1st ingredient

Classical revisited: 1st ingredient
Penrose identity∣∣φT (γ0, γ1, . . . , γn)

∣∣ =
∣∣∣T Pen
G(γ0,γ1,...,γn)

∣∣∣
A Penrose tree for G(γ0,...,γn) is a spanning tree s.t.

(P1) Brothers are compatible

(P2) Cousins are compatible

(P3) Nephews compatible with uncles with smaller index

Hence, now

Πγ0(ρ) =
∑
n≥0

1

n!
Tn(γ0)

with
Tn(γ0) =

∑
(γ1,...,γn)

∑
τ∈TG(γ0,γ1,...,γn)

ργ1 · · · ργn



Setup Examples CE Classic Inductive KS-equations Series-revisited

1st ingredient

Classical revisited: 1st ingredient
Penrose identity∣∣φT (γ0, γ1, . . . , γn)

∣∣ =
∣∣∣T Pen
G(γ0,γ1,...,γn)

∣∣∣
A Penrose tree for G(γ0,...,γn) is a spanning tree s.t.

(P1) Brothers are compatible

(P2) Cousins are compatible

(P3) Nephews compatible with uncles with smaller index

Hence, now

Πγ0(ρ) =
∑
n≥0

1

n!
Tn(γ0)

with
Tn(γ0) =

∑
(γ1,...,γn)

∑
τ∈TG(γ0,γ1,...,γn)

ργ1 · · · ργn



Setup Examples CE Classic Inductive KS-equations Series-revisited

1st ingredient

Classical revisited: 1st ingredient
Penrose identity∣∣φT (γ0, γ1, . . . , γn)

∣∣ =
∣∣∣T Pen
G(γ0,γ1,...,γn)

∣∣∣
A Penrose tree for G(γ0,...,γn) is a spanning tree s.t.

(P1) Brothers are compatible

(P2) Cousins are compatible

(P3) Nephews compatible with uncles with smaller index

Hence, now

Πγ0(ρ) =
∑
n≥0

1

n!
Tn(γ0)

with
Tn(γ0) =

∑
(γ1,...,γn)

∑
τ∈TG(γ0,γ1,...,γn)

ργ1 · · · ργn



Setup Examples CE Classic Inductive KS-equations Series-revisited

1st ingredient

Classical revisited: 1st ingredient
Penrose identity∣∣φT (γ0, γ1, . . . , γn)

∣∣ =
∣∣∣T Pen
G(γ0,γ1,...,γn)

∣∣∣
A Penrose tree for G(γ0,...,γn) is a spanning tree s.t.

(P1) Brothers are compatible

(P2) Cousins are compatible

(P3) Nephews compatible with uncles with smaller index

Hence, now

Πγ0(ρ) =
∑
n≥0

1

n!
Tn(γ0)

with
Tn(γ0) =

∑
(γ1,...,γn)

∑
τ∈TG(γ0,γ1,...,γn)

ργ1 · · · ργn



Setup Examples CE Classic Inductive KS-equations Series-revisited

1st ingredient

Approximation

Retain only (P1): Brothers may not be linked in G

If {i, i1} and {i, i2} are edges of τ , then γi1 ∼ γi2

In this way ρΠ(ρ) ≤ ρ∗, with

ρ∗γ0
:=

ργ0

[
1 +

∞∑
n=1

1

n!

∑
(γ1,...,γn)∈Pn

∑
τ∈T 0

n

n∏
i=0

csi(γi, γi1 , . . . , γisi )ργi1 . . . ργisi

]

where i1, . . . , isi = descendants of i and

cn(γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi∼γj}



Setup Examples CE Classic Inductive KS-equations Series-revisited

1st ingredient

Approximation

Retain only (P1): Brothers may not be linked in G

If {i, i1} and {i, i2} are edges of τ , then γi1 ∼ γi2

In this way ρΠ(ρ) ≤ ρ∗, with

ρ∗γ0
:=

ργ0

[
1 +

∞∑
n=1

1

n!

∑
(γ1,...,γn)∈Pn

∑
τ∈T 0

n

n∏
i=0

csi(γi, γi1 , . . . , γisi )ργi1 . . . ργisi

]

where i1, . . . , isi = descendants of i and

cn(γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi∼γj}



Setup Examples CE Classic Inductive KS-equations Series-revisited

2nd ingredient

2nd ingredient: Iterative generation of trees
Consider the function Tρ : [0,∞)P → [0,∞]P defined by(
Tρ(µ)

)
γ0

= ργ0

[
1+
∑
n≥1

1

n!

∑
(γ1,...,γn)∈Pn

cn(γ0, γ1, . . . , γn)µγ1 . . . µγn

]
or

Tρ(µ) = ρϕ(µ)

Diagrammatically:

(
Tρ(µ)

)
γ0

= ◦
γ0

+ ◦
γ0

•1 + ◦
γ0

��
�•1

H
HH•2

+ · · · + ◦
γ0

�
�
•1

��
�•2

...@
@•n

+ · · ·
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2nd ingredient

Summing “from the roots up”
The diagrams of the series

Tρ(Tρ(µ)) = T 2
ρ (µ)

have black dots replaced by each of the preceding diagrams.

T 2
ρ (µ) = sums over trees of up to two generations

with • in 2nd generation
...

T nρ (µ) = sums over trees of up to n generations

with • in n-th generation
and

T nρ (ρ) ↗
n→∞

ρ∗

Alternatively, ρ∗ generated by replacing • → ρ∗:

ρ∗ = ρϕ(ρ∗) or ρ∗ = Tρ(ρ∗)
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3rd ingredient

Convergence of a positive series

T nρ (ρ) converges if, and only if, exists µ s.t.

Tρ(µ) ≤ µ (9)

Indeed, (9) + positiveness ⇒ T nρ (µ) decreasing and bdd below

0 ≤ (ρ∗ ≤) T nρ (µ) ≤ · · · ≤ T 2
ρ (µ) ≤ µ

Reciprocally, if there is convergence (9) holds for µ = ρ∗
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Revisited classical criterion

New criterion
For

cn(γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi∼γj}

(
Tρ(µ)

)
γ0

= ργ0

[
1 +

∑
n≥1

1

n!

∑
(γ1,...,γn)∈Pn

γ0�γi , γi∼γj , 1≤i,j≤n

µγ1 . . . µγn

]

= ργ0 Ξ{γ0}∗(µ)

Hence, convergence if

ργ0 Ξ{γ0}∗(µ) ≤ µγ0

Furthermore,

ρΠ ≤ ρ∗ ≤ T n+1
ρ (µ) ≤ T nρ (µ) ≤ µ

Same for continuous polymers with
∑
γ∈Pn zγ → zn

∫
Pn dγ
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Explanation and comparison

Explanation of the different criteria

If we replace γi ∼ γj by the weaker requirement γi 6= γj :

cDob
n (γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

n∏
j=1

11{γi 6=γj}

(
TDob
ρ (µ)

)
γ0

= ργ0

∏
γ�γ0

(1 + µγ)

If requirement γi � γj is ignored altogether,

cKP
n (γ0, γ1, . . . , γn) =

n∏
i=1

11{γ0�γi}

(
TKP
ρ (µ)

)
γ0

= ργ0 exp
[∑
γ�γ0

µγ

]
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Explanation and comparison

Comparison classical revisited ↔ inductive

The improvement is expressed by the inequality

ΞN ∗γ0
(µ) ≤

∏
γ�γ0

(
1 + µγ

)
LHS contains only monomials of mutually compatible polymers

Sources of improvement:

(I1) Ξ{γ0}∗ has no triangle diagram (i.e. pairs of neighbors of γ0

that are themselves neighbors)

(I2) In Ξ{γ0}∗ , the only monomial containing µγ0 is µγ0 itself,
(γ0 is incompatible with all other polymers in {γ0}∗)
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Explanation and comparison

Directions for further research

I Incorporation of additional constraints in Penrose trees

I Use of other partition schemes

I Inductive proof?

I Extension to polymers with soft interactions (in progress)

I Uncountably many polymers (eg. quantum contours)

I Revisit “classical” results based on cluster expansions



Process Perfect simulation

Part II

Alternative probabilistic scheme

The alternative treatment has the following features:

I It is probabilistic, hence only positive activities

I Basic measures = invariant measures for point processes

I Larger region of validity, but no analyticity

I Yields a “universal” perfect simulation scheme



Process Perfect simulation

Probabilistic approach
(with P. Ferrari and N. Garcia)

Basic measures are invariant for the following dynamics:

I Attach to each polymer γ a poissonian clock with rate zγ

I When the clock rings, γ tries to be born

I It succeeds if no other γ′ present with γ � γ′

I Once born, the polymer has an exp(1) lifespan
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Process Perfect simulation

Basic process

Alternative scheme

1st step: free process

I Generate first a free process where all birth are succesful

I Associate to each born polymer γ a space-time cylinder

Cγ =
(
γ, [BirthCγ , DeathCγ ]

)
2nd step: cleaning

To decide whether a given cylinder Cγ remains alive, determine
its clan of ancestors

A1(Cγ) =
{
C ′ : BaseC′ � γ,BirthCγ ∈ [BirthC′ , DeathC′ ]

}
An+1(Cγ) = A1

(
An(Cγ)

)
A(Cγ) = ∪nAn(Cγ)
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Process Perfect simulation

Forward-forward and forward-backwards schemes

Forward-forward scheme

If A(Cγ) is finite. do the cleaning starting from the “mother
cylinder”

I Keep mother

I Erase first children

I Keep new mothers

I
...

This is a forward-forward scheme



Process Perfect simulation

Forward-forward and forward-backwards schemes

Backward-forward scheme

Ancestors clan can be constructed backwards
(Poisson and exponential distributions are reversible)

To construct the clan of ancestors of a finite window Λ:

I Generate, backwards, marks at rate zγ e−s for each γ � Λ

I These are cylinders born at −s and surviving up to 0

I Take the first mark; ignore the rest. If its basis is γ1

I Repeat with

Λ → Λ ∪ {γ1}

s → s−
{

Birthγ1 if γ � γ′

0 if γ � Λ, γ ∼ γ1

I · · · −→ AΛ
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Process Perfect simulation

Perfect simulation

If
P({AΛ finite}) = 1 (10)

cleaning leads exactly to a sample of the basic measure

Sufficient conditions for (10)?

I Clan of ancestors defines an oriented percolation model

I Lack of percolation =⇒ (10)

I Can dominate by a branching process:
I branches = ancestors
I branching rate = mean surface-area of cylinders:

1

|γ|
∑
θ�γ

|θ| zθ × 1

(geometrical case)



Process Perfect simulation

Extinction condition
Extinction of the branching process implies (10)

Hence, perfect simulation if

1

|γ|
∑
θ�γ

|θ| zθ ≤ 1

Under this condition
I Prob = limΛ ProbΛ exists
I Mixing properties∣∣∣Prob({γ0, γ1})− Prob({γ0}) Prob({γ1})

∣∣∣ ≤ e−M dist(γ0,γ1)

I CLT: If A depends on a finite # of polymers

1√
Λ

∑
x∈Λ

11{A+x} −→Λ N (0, D)

with D =
∑

x Prob(A ∪A+ x)
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Process Perfect simulation

Comments

I Perfect simulation of a finite window of the infinite Prob

I Universal perfect simulation algorithm

I Scheme = alternative definition of Prob

I Hence, new way to prove its properties in a larger region

I No analyticity, no info on zeros of partition functions
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