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Brief History of Cluster and Virial
Expansions

Generalise ideal gas Law PV = NkT with power series expansion
(1901 - Kamerlingh Onnes)

Mayer (40) - understood virial coefficients as (weighted)
two-connected graphs and cluster coefficients as (weighted)
connected graphs

60s - Groeneveld (62, 63) Lebowitz and Penrose (64) Ruelle (63, 64,
69) - Kirkwood Salsburg Equations

Gruber Kunz - Polymer Models (71)
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Brief History of Cluster and Virial
Expansions

Kotecký and Preiss Conditions (86) - also Dobrushin (96) - applied
by Poghosyan Ueltschi (09) Combinatorial fixed point equations
Faris (10) - further developed by Fernández and Procacci (07, +) -
tree operator framework - extended to depth k Temmel (12)

Graph Tree Identities/Inequalities - Brydges and Federbush (78)
Battle (84), Battle and Federbush (84)

Canonical Ensemble approach - Pulvirenti Tsagkarogiannis (12),
Morais Procacci (13)
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Brief History of Combinatorial Species of
Structure

Combinatorial Species - understand bounds better - quick way to
recognise virial expansion - Ducharme Labelle Leroux (07) - Faris
(10)

1981 André Joyal - original paper on Combinatorial Species of
Structure - giving a rigorous definition for labelled objects

Importance is relating generating function with combinatorial
structures

Bergeron Labelle Leroux Combinatorial Species and Tree-like
Structures - Useful Algebraic Identities (through combinatorics)

Flajolet and Sedgwick - Analytic Combinatorics

Leroux (04) and Faris (08, 10) - links to Statistical Mechanics
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The Combinatorial Identities

Theorem (Bernardi 08)

If cn,k := the number of connected graphs with n vertices and k edges,
then:

1
2 n(n−1)∑
k=n

(−1)kcn,k = (−1)n−1(n − 1)!

For the Polytope

Πg := {x[2,n] ∈ Rn−1| |xi − xj | < 1 ∀{i , j} ∈ g with x1 = 0}

We have the combinatorial equation:∑
g∈C[n]

(−1)e(g) Vol(Πg ) = (−1)n−1nn−1
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The Combinatorial Identities

Theorem (T. 14)

If bn,k := the number of two-connected graphs with n vertices and k
edges, then:

1
2 n(n−1)∑
k=n

(−1)kbn,k = −(n − 2)!

For the Polytope

Πg := {x[2,n] ∈ Rn−1| |xi − xj | < 1 ∀{i , j} ∈ g with x1 = 0}

We have the combinatorial equation:∑
g∈B[n]

(−1)e(g) Vol(Πg ) = −n(n − 2)!
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Motivation for studying Combinatorial
Aspects

The key paper of Ducharme Labelle and Leroux (07) explains
Mayer’s first and second theorems through combinatorial species and
observes that using the Tonks gas model, which can be solved
without using the graphical interpretation, gives the previous
theorems, when interpreting the coefficients as weighted graphs

The challenge is to prove this combinatorially

This was done for the connected graph case by Bernardi (08) -
covering also the one particle hardcore case

For cluster expansions, these two models represent extremes for the
values of the cluster coefficients with positive potentials - Groeneveld

The combinatorial understanding of the cancellations in the
connected graph case gives an alternative to the Penrose
construction (67)
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Penrose Construction and Bernardi’s
Involution

The Penrose construction gives a specific mapping R : T → C such
that the sets:

[τ,R(τ)] = {g ∈ C|E (τ) ⊂ E (g) ⊂ E (R(τ))}

form a partition of all connected graphs.

This can give an explanation in the one particle hardcore case

The approach of Bernardi is to define an involution Ψ : C → C -
effectively pairs all but a subset of graphs, differing by an edge to
give cancellations

There is a link between defining the involution and defining the
partition
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Penrose Construction and Bernardi’s
Involution

Take the lexicographical order on the edges

For the Penrose construction, we consider graph distance from the
vertex labelled 1, defined as function of vertex labels d1

For a graph g , a pair {i , j} (may not be an edge of graph) is called
g-active if d1(i) = d1(j) or d1(i) = d1(j) + 1 and there is a
neighbour i ′ of i with d1(i ′) = d1(j) and i ′ > j

The involution adds/removes the largest g -active edge for each
graph

Fixed graphs are the linear trees rooted at 1.
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Penrose Construction and Bernardi’s
Involution

We can form a partition from Bernardi’s involution by the map:

R(τ) = (V (τ),E (τ) ∪ {{{i , j} ⊂ V (τ)| {i , j} is τ -active }

In the case of Bernardi, an edge {i , j} is τ -active, if the subgraph of
τ consisting only of edges strictly larger than {i , j} contains a cycle
including the edge {i , j} if it is added.

Indeed we see this notion of being active links both to the involution
and the partition

If we find an involution for two-connected graphs, could it lead to an
analogue of the Penrose construction?
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Combinatorial Species of Structure -
Definition

Definition

A Combinatorial Species of Structure is a rule F , which

i for every finite set U gives a finite set of structures F [U]

ii for every bijection σ : U → V gives a bijection F [σ] : F [U]→ F [V ]

Furthermore, the bijections F [σ] are required to satisfy the functorial
properties:

i If σ : U → V and τ : V →W , then F [τ ◦ σ] = F [τ ] ◦ F [σ]

ii For the identity bijection: IdU : U → U, F [IdU ] = IdF [U]
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Interpretation of the Definition

The structures have labels (the elements of the set U)

The structures are characterised by sets {1, · · · , n} = [n], so
characterisation by size of set

Our collection of structures must be finite

Relabelling the elements in the structure must behave well
(functorial property)
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Examples of Species of Structure

Example

The important examples of this talk are (simple) graphs G, connected
graphs C two-connected graphs B and trees T

Example (An Example of a Graph and a Connected Graph)
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Two-connected Graphs

Articulation Points

An articulation point in a connected graph C is a vertex such that its
removal and the removal of all incident edges renders the graph
disconnected.

Two-connected Graph

A Two-connected graph is a connected graph with no articulation points.

Blocks in Connected Graphs

A maximal Two-connected subgraph of a connected graph is called a
Block.
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Exponential Generating Functions

We use the notation [n] for the set {1, · · · , n}

Exponential Generating Function

The (Exponential) Generating function of a species of structure F is:

F (z) =
∞∑
n=1

fn
zn

n!
(1)

where fn = #F [n]
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Weighted Exponential Generating Functions

We may also add weights to our objects and we have the corresponding
generating function: If each structure s ∈ F [U] is given a weight, w(s),
we have the weighted generating function:

Weighted Generating Function

If fn,w =
∑

s∈F [n]

w(s), then the weighted generating function is:

Fw (z) =
∞∑
n=0

fn,w
zn

n!
(2)
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Operations on Species of Structure

For (formal) power series we have useful operations such as:

Addition (F + G )(z) = F (z) + G (z)

Multiplication (F ? G )(z) = F (z)× G (z)

Substitution (F (G ))(z) = F ◦ G (z)

Differentiation F ′(z)

Euler Derivative (rooting) F •(z) = z d
dz F (z)

There is a corresponding operation on the level of species for each of the
above.
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Classical Gas Background

We have the Canonical Ensemble partition function:

ZN :=
∑

(pi ,qi )∈RN×V N

exp (−βHN({pi , qi}))

β is inverse temperature; HN is the N-particle Hamiltonian; qi are
generalised coordinates and pi are the conjugate momenta.

The Grand Canonical Partition Function:

Ξ(z) :=
∞∑

N=0

zN

N!
ZN

where z = eβµ is the fugacity parameter and µ is the chemical
potential.
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The Cluster Expansion and Virial Expansion

The Grand Canonical Partition function:

Ξ(z) =
∑
N≥0

zN

N!
ZN

In the thermodynamic limit |Λ| → ∞, we have the pressure
βP = lim

|Λ|→∞
1
|Λ| log Ξ(z)

We assume the existence of such a limit

Expansion for pressure P in terms of fugacity z is the cluster
expansion

We have ρ = z ∂
∂z βP, the density

We may invert this equation and substitute for z to obtain a power
series in ρ

The virial development of the Equation of State is the power series

βP =
∞∑
n=1

cnρ
n called the virial expansion.
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The Classical Gas

With pair potential interactions, we have the Hamiltonian

HN =
N∑
i=1

p2
i

2m +
∑
i<j

ϕ(xi , xj)

If we use Mayer’s trick of setting fi,j = exp(−βϕ(x1, xj))− 1, we may
express the interaction as:∏

i<j

exp(−βϕ(xi , xj)) =
∏
i<j

(fi,j + 1)

=
∑

g∈G[N]

∏
{i,j}∈E(g)

fi,j

It thus makes sense to define our weights on a graph as:

w(g) :=
∏

e∈E(g)

fe

which is edge multiplicative.
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The Classical Gas

If we define w̃(g) =
∫
V

· · ·
∫
V

w(g)dx1 · · · dxN , then we have that the

grand canonical partition function can be identified as the generating
function of weighted graphs in the parameter z .

Grand Canonical Partition Function as Graph Generating
Function

Ξ(z) = Gw̃ (z)
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Obtaining the Pressure

From the relationship G = E(C) and noting that the generating function
for E is the exponential function, we have that:

log Ξ(z) = Cw̃ (z)

We recognise that βP = log Ξ(z), so that:

The Pressure as Connected Graph Generating Function

βP = Cw̃ (z)
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The Density

We use the relationship for the density: ρ = z d
dz βP, to get the

combinatorial interpretation:

Generating Function for Density

ρ(z) = C•w̃ (z)
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The Dissymmetry Theorem

The Dissymmetry Theorem

If we let C represent the species of connected graphs and B the species of
two-connected graphs, then we have the combinatorial relationship:

C + B•(C•) = C• + B(C•)

Furthermore, the combinatorial relationship gives it as a generating
function relationship:

C (z) + B•(C•(z)) = C•(z) + B(C•(z))

We can also add appropriate weights to get a weighted identity:

Cw (z) + B•w (C•w (z)) = C•w (z) + Bw (C•w (z))
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The Dissymmetry Theorem and Virial
Expansion

We have the density ρ = C•w (z) and βP = Cw (z) and so, using the
dissymmetry theorem, we get:

βP = ρ+
∞∑
n=2

βn,w̃
n!

ρn −
∞∑
n=2

nβn,w̃
n!

ρn

= ρ−
∞∑
n=2

(n − 1)βn,w̃
n!

ρn

where βn,w̃ =
∑

g∈B[n]

w̃(g)

S. J. Tate Virial Expansion



Overview

1 Combinatorial Species of Structure - an
Overview

2 Mayer’s Theory of Cluster and Virial
Expansions

3 Graphical Involutions



Combinatorial Species of Structure - an Overview
Mayer’s Theory of Cluster and Virial Expansions

Graphical Involutions
Conclusions and Open Questions

The one particle hard-core model

For a one-particle hard-core model, we have that the potential is always
∞, that is the factor e−βϕ(xi ,xj ) = 0 and hence the edge factor is
fi,j = −1 for all i , j . This gives the grand canonical partition function as:

Ξ(z) = 1 + z

giving the pressure as:

βP = log(1 + z) =
∑
n≥1

(−1)n+1zn

n

upon comparison with the combinatorial version (in terms of weighted
connected graphs) we have:

1
2 n(n−1)∑
k=n−1

(−1)kcn,k = (−1)n−1(n − 1)!
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The one-particle hard-core model

Furthermore, we may take the Euler derivative and obtain density:

ρ =
z

1 + z

which may be inverted

z =
ρ

1− ρ
and then substituted to obtain pressure in terms of density:

βP = − log(1− ρ) =
∑
n≥1

ρn

n

Upon comparison with the combinatorial version (in terms of weighted
two-connected graphs) we have:

1
2 n(n−1)∑
k=n

(−1)kbn,k = −(n − 2)!
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Combinatorial Puzzle from Mayer’s Theory
of Cluster Integrals

Bernardi(08) proved the connected case through an involution
Φ : C → C
Involution involves adding or removing edges to a graph

Created a pairing of graphs G with Ψ(G ) for those which aren’t fixed

The fixed graphs (Ψ(G ) = G ) are increasing trees - only graphs
which are not cancelled

Generalised to the case of the Tonks Gas
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One Particle Hardcore Interaction

The cancellations for the one particle hardcore gas can also be
described through an involution Ψ : B → B
This time the fixed graphs are those formed from an increasing tree
on the indices [n− 1] with vertex n adjacent to all the other vertices.

All the fixed graphs have precisely 2n − 3 edges, giving the definite
sign for the coefficients.

This can be generalised towards the Tonks gas
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The Tonks Gas

For the Tonks gas which is the hardcore gas in one dimension, we have
that the pair potential is given by (for diameter 1)

ϕ(xi , xj) =

{
∞ if |xi − xj | < 1

0 otherwise

This gives the exponential and pair potential as

exp(−βϕ(xi , xj)) =

{
0 if |xi − xj | < 1

1 otherwise

fi,j =

{
−1 if |xi − xj | < 1

0 otherwise
= −1|xi−xj |<1
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The Tonks Gas

One can derive the expression of pressure in terms of density directly
from the Canonical Ensemble and achieve from this also the cluster
expansion. These are:

βP =
∞∑
n=1

ρn =
ρ

1− ρ

βP =
∞∑
n=1

nn−1

n!
(−1)n−1zn = W (z)

where W (z) is the Lambert W -function.
The weight is the product of the indicator functions and we understand
that we have one arbitrary xi , since they depend only on differences of
the variables, but we divide by volume and so we can fix x1 = 0 and
integrate over the other variables to achieve the weight.
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The Tonks Gas

The weight for this model is:

w(g) = (−1)e(g)Vol(Πg )

Where Πg is the polytope of the graph g , which is defined by:

Πg := {x[2,n] ∈ Rn−1||xi − xj | ≤ 1∀(i , j) ∈ g x1 = 0}

The identities arising from this are:∑
g∈C[n]

(−1)e(g) Vol(Πg ) = (−1)n−1(n)n−1

∑
g∈B[n]

(−1)e(g) Vol(Πg ) = −n(n − 2)!

The approach is to split each polytope into simplices of equal volume.
This first appeared in the paper by Ducharme, Labelle and Leroux (07)
and is attributed to Lass.
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Splitting Polytope into Simplices

Consider the pair (h, σ) comprising of an integer-valued vector
h ∈ Zn−1 and a permutation σ : [2, n]→ [2, n]

The permutation indicates order on the indices

The pair (h, σ) represents a unique n − 1-dimensional simplex with
origin at the integer point.

The simplices all have volume 1
(n−1)!

A simple relation on the pair (h, σ) indicates when it is contained in
the polytope Πg .

The important thing to realise is that either such a simplex is
contained in the polytope or it only intersects on the boundary.

One can reorder the sum over these graphs in a canonical way to
ensure that we represent the collection of simplices by h and have a
specific condition for it to be counted in the sum for Πg
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The Tonks Gas

Instead of the lexicographic order, we use the vector

h̄ = (hi + σ(i)−1
n )i∈[2,n] to give an order to the edges in the graph

For the two-connected version it is necessary to first order the edges
by the differences |h̄i − h̄j |
Within edges with the same difference, we take as an order, the
natural order on the h̄ entries
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The Tonks Gas

We achieve a suitable modification of the one particle hard-core
case, which gives a different involution for each h providing all
cancellations.

In the connected graph case, we end up with an identification with
the rooted connected graphs - Bernardi (08)

In the two-connected case, we actually obtain more cancellations
and have only fixed graphs for h = (0, · · · , 0,−1, · · · ,−1). We have
n such vectors and have the same interpretation for the fixed graphs,
except we have the ordering on the labelled vertices dictated by the
ordering of the entries of h̄.
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Difficulty in Obtaining the Penrose
Construction Analogue

The fixed graphs are no longer the minimal two-connected graphs -
more complex than a partition determined by a function R from a
set containing the fixed graphs to B
Matroid extension of tree graph inequality - Faris (12) - hasn’t been
modified to work in this case

Possibly useful are the notions of internally and externally active
edges used in Arithmetic Matroid structures present in Potts Model
- Sokal (01, 05)

Some useful generalisation of the Fundamental Theorem of Calculus
towards more general partially ordered sets ( developed from
Abdesselam Rivasseau(94) Faris (12) )
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Conclusions

The Main Conclusions are:

We have the combinatorial identities which provide us with a simple
way of recognising the virial coefficients

Statistical Mechanics provides motivation for combinatorial identities

There is an interpretation of the combinatorial identities provided by
simple models in statistical mechanics

These cancellations can be extended to an understanding of a
reorganisation of the sums in the connected case
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Open Questions

Other physical models/problems to apply combinatorial species of
structure - renormalisation in QFT?

Can the cancellations be understood in a larger framework/context?

How can we use this knowledge and understanding of combinatorics
to make effective cancellations in inequalities for our expansions?
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