

Phase transitions and coarse graining for a system of particles in the continuum

Elena Pulvirenti

(joint work with E. Presutti and D. Tsagkarogiannis)

Leiden University

April 7, 2014

Symposium on Statistical Mechanics: Combinatorics and Statistical Mechanics

University of Warwick

Elena Pulvirenti (Leiden University)

Phase transitions

April 7, 2014 1 / 30

Problem: derivation of phase diagrams of fluids.

Phase transition (1st order, order parameter ρ): there is a *forbidden interval* $[\rho', \rho'']$ of density values, namely: if we put a mass $\rho|\Lambda|$, $\rho \in (\rho', \rho'')$, T small enough, then we see ρ' in a set $\Lambda' \subset \Lambda$ and ρ'' in $\Lambda \setminus \Lambda'$

We want to study the liquid-vapour coexistence line

Introduction

Model: identical point particles which interact pairwise via a potential repulsive at the origin and with an attractive tail at large distances (the prototype is the Lennard-Jones potential)

Conjecture: fluids interacting via a Lennard-Jones potential behave according to the phase diagram.

... but no rigorous proof of this conjecture!

State of the art:

- In the discrete: first proof of liquid-vapor type phase transitions was given for lattice systems as the Ising model (argument of Peierls).
- In the continuum:
 - Widom-Rowlinson model of two component fluids (Ruelle, '71)
 - 1d with long range interaction (Johansson, '95)
 - Lebowitz, Mazel and Presutti (LMP) in '99 prove liquid-vapor phase transition for a model of **particles in the continuum** $d \ge 2$ interacting via a 2-body attractive plus a 4-body repulsive interaction (both long range).

Microscopic model

Local mean field: local energy density $e(\cdot)$ is a function of local particle density

 $\rho_\gamma(r;\mathbf{q}):=\sum_{q_i\in\mathbf{q}}J_\gamma(r,q_i)\qquad\text{local particle density at }r\in\mathbb{R}^d$

Kac potentials

$$J_{\gamma}(r,r') = \gamma^d J(\gamma r, \gamma r')$$

 $\gamma > 0$: Kac scaling parameter ($\gamma \rightarrow 0$ mean field limit)

1

$$\int dr J(r, r') =$$

$$H_{\gamma}(\mathbf{q}) = \int_{\mathbb{R}^d} e(\rho_{\gamma}(r; \mathbf{q})) dr$$

LMP model

LMP model (Lebowitz, Mazel, Presutti): Take the energy density

$$\begin{split} e(\rho) &= -\frac{\rho^2}{2} + \frac{\rho^4}{4!} \qquad H_{\gamma}^{\mathsf{LMP}}(\mathbf{q}) = \int_{\mathbb{R}^d} e(\rho_{\gamma}(r; \mathbf{q})) \, dr, \\ H_{\gamma}^{\mathsf{LMP}}(\mathbf{q}) &= -\underbrace{\frac{1}{2!} \sum_{i \neq j} J_{\gamma}^{(2)}(q_i, q_j)}_{2\text{-body}} + \underbrace{\frac{1}{4!} \sum_{i_1 \neq \dots \neq i_4} J_{\gamma}^{(4)}(q_{i_1}, \dots, q_{i_4})}_{4\text{-body}}}_{4\text{-body}} \\ J_{\gamma}^{(2)}(q_i, q_j) &:= J_{\gamma} * J_{\gamma}(q_i, q_j) = \int J_{\gamma}(r, q_i) J_{\gamma}(r, q_j) \, dr \end{split}$$

Towards our model

Theorem (LMP): There are $\beta_c > 0, \beta^* > \beta_c$ such that for $\beta \in (\beta_c, \beta^*)$ for any γ small enough there is a "forbidden interval" $(\rho'_{\beta,\gamma}, \rho''_{\beta,\gamma})$.

Drawbacks:

- ullet scale attraction \sim scale repulsion
- \bullet towards crystal structures and solid phase...need repulsion on scale 1

Towards our model

Theorem (LMP): There are $\beta_c > 0, \beta^* > \beta_c$ such that for $\beta \in (\beta_c, \beta^*)$ for any γ small enough there is a "forbidden interval" $(\rho'_{\beta,\gamma}, \rho''_{\beta,\gamma})$.

Drawbacks:

- ullet scale attraction \sim scale repulsion
- \bullet towards crystal structures and solid phase...need repulsion on scale 1

LMP + h.c. model:

add the interaction given by $H^{hc}(\mathbf{q}) := \sum_{i < j} V^{hc}(q_i, q_j)$ where $V^{hc} : \mathbb{R}^d \to \mathbb{R}$

$$V^{\mathsf{hc}}(q_i, q_j) = \begin{cases} +\infty & \text{if } |q_i - q_j| \le R\\ 0 & \text{if } |q_i - q_j| > R \end{cases}$$

with R the radius of the hard spheres and $\epsilon = |B_0(R)|$ their volume.

Our goal: to extend this result to: LMP + hard core (perturbation theory for small values of the radius R) (...work in progress)

Grand canonical measure in the region $\Lambda \subset \mathbb{R}^d$ and b. c. \bar{q} in Λ^c is:

$$\mu^{\Lambda}_{\gamma,\beta,R,\lambda}(d\mathbf{q}|\bar{q}) = Z^{-1}_{\gamma,\beta,R,\lambda}(\Lambda|\bar{q})e^{-\beta H_{\gamma,R,\lambda}(\mathbf{q}|\bar{q})}\nu^{\Lambda}(d\mathbf{q})$$

First order phase transition \iff if β is large enough, the limiting $(\Lambda \nearrow \mathbb{R}^d)$ Gibbs state is **not unique**, i.e. we have instability with respect to boundary conditions

Diluted Gibbs measure:

 $\mu^\pm_{\Lambda,\beta,\gamma,R}=\mu^\Lambda_{\gamma,\beta,R}\mathbb{1}_{\{\text{on the boundary of }\Lambda\text{ we fix a frame with the phase }\pm\}}$

R: radius of the hard spheres, $\gamma:$ Kac scaling parameter

Theorem (Liquid-vapor phase transition for LMP+hc)

 $\begin{array}{ll} \mbox{Consider the LMP+hc model in dimensions } d \geq 2. \\ \mbox{For:} & 0 < R \leq R_0, \qquad \beta \in (\beta_{c,R}, \beta_{0,R}), \qquad \gamma \leq \gamma_{\beta,R}, \\ \mbox{there is } \lambda_{\beta,\gamma,R} \mbox{ such that:} \end{array}$

There are two distinct infinite volume measures $\mu_{\beta,\gamma,R}^{\pm}$ with chemical potential $\lambda_{\beta,\gamma,R}$ and inverse temperature β and two different densities: $0 < \rho_{\beta,\gamma,R,-} < \rho_{\beta,\gamma,R,+}$.

Remark 1.

$$\lim_{\gamma \to 0} \rho_{\beta,\gamma,R,\pm} = \rho_{\beta,R,\pm}, \qquad \lim_{\gamma \to 0} \lambda_{\beta,\gamma,R} = \lambda_{\beta,R}$$

with are respectively densities and chemical potential for which there is a phase transition in the LMP + h.c. mean field model. $\rho_{\beta,R,-} < \rho_{\beta,R,+}$.

Remark 2.

$$\beta_{c,R} = \beta_c^{\mathsf{LMP}} - \epsilon \left(\beta_c^{\mathsf{LMP}}\right)^{2/3} + O(\epsilon^2)$$
$$\beta_c^{\mathsf{LMP}} = \frac{3}{2}^{\frac{3}{2}}, \quad \epsilon = |B_0(R)|$$

Contour method approach and Pirogov-Sinai theory

Idea (for Ising): to look at configurations at small T as of perturbations of the two ground states (+ and -) Instead: perturb mean field ($\gamma \rightarrow 0$), where two g.s. are ρ_+ , ρ_-

Analogy:

 $T \quad \mathsf{small} \iff \gamma \quad \mathsf{small}$

spin-flip symmetry \iff no symmetry

... towards an abstract contour model!

Scaling parameters:

$$\ell_-=\gamma^{-(1-\alpha)},\quad \ell_+=\gamma^{-(1+\alpha)},\quad \zeta=\gamma^a,\qquad 1\gg\alpha\gg a>0$$

Two partitions with cubes $C^{(\ell_-)}, C^{(\ell_+)}$

$$\begin{aligned} \bullet \quad \eta^{(\zeta,\ell_-)}(q;r) &= \begin{cases} \pm 1 & \text{if } \left| \rho^{(\ell_-)}(q;r) - \rho_{\beta,R,\pm} \right| \leq \zeta \\ 0 & \text{otherwise} \end{cases} \\ \bullet \quad \theta^{(\zeta,\ell_-,\ell_+)}(q;r) &= \begin{cases} \pm 1 & \text{if } \eta^{(\zeta,\ell_-)}(q;r') = \pm 1 & \forall r' \in C_r^{(\ell_+)} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Scaling parameters:

$$\ell_-=\gamma^{-(1-\alpha)},\quad \ell_+=\gamma^{-(1+\alpha)},\quad \zeta=\gamma^a,\qquad 1\gg\alpha\gg a>0$$

Two partitions with cubes $C^{(\ell_-)}, C^{(\ell_+)}$

$$\begin{aligned} \bullet \quad & \eta^{(\zeta,\ell_{-})}(q;r) = \begin{cases} \pm 1 & \text{if } \left| \rho^{(\ell_{-})}(q;r) - \rho_{\beta,R,\pm} \right| \leq \zeta \\ 0 & \text{otherwise} \end{cases} \\ \bullet \quad & \theta^{(\zeta,\ell_{-},\ell_{+})}(q;r) = \begin{cases} \pm 1 & \text{if } \eta^{(\zeta,\ell_{-})}(q;r') = \pm 1 & \forall r' \in C_{r}^{(\ell_{+})} \\ 0 & \text{otherwise} \end{cases} \\ \\ & (\zeta,\ell_{-},\ell_{+})(q;r) = \begin{cases} \pm 1 & \text{if } \eta^{(\zeta,\ell_{-})}(q;r') = \pm 1 & \forall r' \in C_{r}^{(\ell_{+})} \cup \delta_{\text{out}}^{\ell_{+}}[C_{r}^{(\ell_{+})}] \\ 0 & \text{otherwise} \end{cases}$$

which are the phase indicators!

Θ

Abstract contour model

Definition (Contour)

A contour is a pair $\Gamma = (\operatorname{sp}(\Gamma), \eta_{\Gamma})$, where $\operatorname{sp}(\Gamma)$ is a maximal connected component of the "incorrect set" $\{r \in \mathbb{R}^d : \Theta^{(\zeta,\ell_-,\ell_+)}(q;r) = 0\}$ and η_{Γ} is the restriction to $\operatorname{sp}(\Gamma)$ of $\eta^{(\zeta,\ell_-)}(q;\cdot)$.

 $\Gamma = (\operatorname{sp}(\Gamma), \eta_{\Gamma})$ is called + (or -) contour if $\Theta(q; r) = +1$ (or -1) on the frame of width ℓ^+ around the set $c(\Gamma)$.

Abstract contour model

The weight $W^+_{\gamma,R,\lambda}(\Gamma;\bar{q})$ of a + contour Γ is

 $\frac{\text{Prob. of having a} + \text{contour}}{\text{Prob. of having the } + \text{phase}}$

Abstract contour model

The weight $W^+_{\gamma,R,\lambda}(\Gamma;\bar{q})$ of a + contour Γ is

$$\frac{\mu_{q^+}^{c(\Gamma)}\Big(\eta(q_{c(\Gamma)};r) = \eta_{\Gamma}(r), r \in \operatorname{sp}(\Gamma); \ \Theta(q_{c(\Gamma)};r) = \pm 1, r \in A^{\pm}(\Gamma)\Big)}{\mu_{q^+}^{c(\Gamma)}\Big(\eta(q_{c(\Gamma)};r) = 1, r \in \operatorname{sp}(\Gamma); \ \Theta(q_{c(\Gamma)};r) = 1, r \in A^{\pm}(\Gamma)\Big)}$$

Peierls bounds

The main technical point is to prove that contours are improbable, i.e. Peierls estimates:

Theorem

 $\begin{array}{ll} \mbox{For:} & 0 < R \leq R_0, & \beta \in (\beta_{c,R},\beta_{0,R}), & \gamma \leq \gamma_{\beta,R}, \\ \mbox{there is } \lambda_{\beta,\gamma,R} \mbox{ so that:} \\ \mbox{for any } \pm \mbox{ contour } \Gamma \mbox{ and any } \pm \mbox{ boundary condition } q^{\pm} \mbox{ outside } \Gamma, \end{array}$

$$W_{\gamma,R,\lambda}^{\pm}(\Gamma;q^{\pm}) \le \exp\left\{-\beta c\left(\zeta^{2}\ell_{-}^{d}\right)N_{\Gamma}\right\}, \qquad N_{\Gamma} = \frac{|\mathrm{sp}(\Gamma)|}{\ell_{+}^{d}}$$

Corollary

...then for any bounded, simply connected, $\mathcal{D}^{(\ell_+)}$ -measurable region Λ , any \pm boundary condition q^{\pm} and any $r \in \Lambda$,

$$\mu_{q^{\pm}}^{\Lambda,\pm}(\{\Theta(q;r)=\pm 1\}) \ge 1 - \exp\Big\{-\beta \frac{c}{2} \, (\zeta^2 \ell_-^d)\Big\}.$$

Problems:

- both numerator and denominator in the weight defined in terms of expressions which involve not only the support of Γ but also its whole interior (bulk quantities!).
- the desired bound involves only the volume of the support of Γ which is a surface quantity!
- Cancellation of bulk terms difficult when there is no simmetry between phases (as for Ising).

Step one: Equality of pressures For any $\lambda \in [\lambda(\beta, R) - 1, \lambda(\beta, R) + 1]$ the following holds

$$\lim_{n \to \infty} \frac{1}{\beta |\Lambda_n|} \log Z_{\lambda}^{\pm}(\Lambda_n | q_n^{\pm}) = P_{\lambda}^{\pm}$$

moreover, for all γ small enough there is $\lambda^* := \lambda_{\beta,\gamma,R}$ such that

$$P_{\lambda^*}^+ = P_{\lambda^*}^-, \qquad |\lambda^* - \lambda(\beta, R)| \le c\gamma^{1/2}$$

(coarse graining argument a la Lebowitz-Penrose, closeness of the pressures to their mean field values $p_{R,\lambda}^{\pm;mf}$)

$\begin{array}{l} \mbox{Step two:} \\ \mbox{Energy estimates} \\ \mbox{Given } \gamma \mbox{ small and } R < R_0 : \end{array}$

$$\frac{N_{\lambda^*}^+(\Gamma,q^+)}{D_{\lambda^*}^+(\Gamma,q^+)} \le e^{-\beta(c\zeta^2 - c'\gamma^{1/2 - 2\alpha d})\ell_-^d N_\Gamma} \frac{e^{\beta I^-(\operatorname{int}^-(\Gamma))} Z_{\lambda^*}^-(\operatorname{int}^-(\Gamma)|\chi^-)}{e^{\beta I^+(\operatorname{int}^-(\Gamma))} Z_{\lambda^*}^+(\operatorname{int}^-(\Gamma)|\chi^+)}$$

where:

•
$$I^{\pm}(\operatorname{int}^{-}(\Gamma))$$
 is a surface term
• $\chi^{\pm}_{\Delta}(r) = \rho_{\beta,\pm} \mathbb{1}_{r \in \Delta}, \quad \chi^{\pm} = \chi^{\pm}_{\mathbb{R}^d}$
• $\exp\left\{-\beta c \zeta^2 \ell^d_- N_{\Gamma}\right\}$ is Peierls' gain term
• $\exp\left\{\beta c \gamma^{1/2 - 2\alpha d} \ell^d_- N_{\Gamma}\right\}$ small error

Step three: Surface correction to the pressure

For any γ small enough and all plus contours $\Gamma :$

$$\left|\log\left\{\frac{e^{\beta I^{\pm}(\operatorname{int}^{-}(\Gamma))}Z_{\lambda^{*}}^{\pm}(\operatorname{int}^{-}(\Gamma)|\chi^{\pm})}{e^{\beta|\operatorname{int}^{-}(\Gamma)|P_{\lambda^{*}}^{\pm}}}\right\}\right| \leq c'\gamma^{1/2}\ell_{+}^{d}N_{\Gamma}$$

Three steps

Let x_i be the centers of the cubes $C^{(\ell_-)} \in \mathcal{D}^{(\ell_-)}$.

$$f_{x_1,x_2} = \frac{1}{2!} \sum_{q_{i_1} \in C_{x_1}^{(\ell_-)}, q_{i_2} \in C_{x_2}^{(\ell_-)}} J_{\gamma}^{(2)}(q_{i_1}, q_{i_2})$$

Theorem (Exponential decay of correlations)

There are positive constants δ , c' and c so that for all $f_{x_1,..,x_n}$

$$\Rightarrow \left| E_{\mu^{1}} (f_{x_{1},..,x_{n}}) - E_{\mu^{2}} (f_{x_{1},..,x_{n}}) \right| \leq c' e^{-c[\gamma^{-\delta} \ell_{+}^{-1} \operatorname{dist}(C_{x_{1}}^{(\ell_{-})},\Lambda^{c})]}$$

where μ^1 is the Gibbs measure in the volume Λ with b.c. \bar{q} and μ^2 is the Gibbs measure on a torus \mathcal{T} much larger than Λ , both referring to the hamiltonian $H_{\gamma,R}$.

Eventually take the limit $\mathcal{T} \to \mathbb{R}^d$...

To prove exponential decay of correlations we need two ingredients:

- Cluster expansion
- Obrushin condition

A central point in P-S theory is a change of measure.

The diluted partition function in a region Λ can be written as a partition function in $\mathcal{Q}^{\Lambda}_{+} = \{q \in \mathcal{Q}_{\Lambda} : \eta(q, r) = 1, r \in \Lambda\}$ (restricted ensemble).

Let us consider Λ bounded and $\mathcal{D}^{(\ell_+)}$ measurable and \bar{q} + b.c.

$$Z^+_{\gamma,R,\lambda}(\Lambda|\bar{q}) = \sum_{\underline{\Gamma}: \mathsf{sp}(\Gamma) \subset \Lambda} \int_{\mathcal{Q}^{\Lambda}_+} \nu^{\Lambda}(dq) e^{-\beta H_{\gamma,R}(q|\bar{q})} \prod_{\Gamma \in \underline{\Gamma}} W^+_{\gamma,R,\lambda}(\Gamma,q)$$

Coarse graining: fix the number of particles in each cube $C^{(\ell_{-})}$ \rightarrow density configuration $\rho = \{\rho_x\}_{x \in X_{\Lambda}^{(\ell_{-})}}$. Hence:

$$Z^+_{\gamma,R,\lambda}(\Lambda|\bar{q}) = \sum_{\rho} e^{-h(\rho|\bar{q})}$$

where h is finite volume **effective hamiltonian** (function only of the cell variables).

... cluster expansion to find h, multi-canonical constraint ...

Why it works:

- Kac: Because we can confuse H_{γ} with its coarse grained version $H_{\gamma}^{(\ell_{-})}$ making a small error ΔH_{γ} , $\Rightarrow e^{-\beta \Delta H_{\gamma}}$ is ok for cl. exp.!
- Hard core: ... "Cluster expansion in the canonical ensemble" (E. P., D. Tsagkarogiannis) Commun. Math. Phys. (2012)

Cluster expansion in the canonical ensemble

Model with *stable* and *tempered* pair potential:

Theorem

 $\exists c_0$, indep. of N and Λ , s.t. if $\rho C(\beta) < c_0$:

$$\frac{1}{|\Lambda|} \log Z_{\beta,\Lambda,N} = \frac{1}{|\Lambda|} \log \frac{|\Lambda|^N}{N!} + \frac{N}{|\Lambda|} \sum_{n \ge 1} F_{\beta,\Lambda,N}(n)$$

with $N = \lfloor \rho |\Lambda| \rfloor$ and $|F_{\beta,\Lambda,N}(n)| \le Ce^{-cn}$.

Furthermore in the thermodynamic limit:

$$\lim_{N,|\Lambda|\to\infty, N=\lfloor\rho|\Lambda|\rfloor} F_{\beta,N,\Lambda}(n) = \frac{1}{n+1}\beta_n \rho^{n+1}, \qquad \forall n \ge 1$$

where β_n are the Mayer's coefficients.

Remark: $C(\beta)$ is equal to the volume of hard spheres ϵ .

Dobrushin condition

Weak dependence on the boundaries \rightarrow decay of correlations Space for spin block model:

$$\mathcal{X}^{\Lambda} = \left\{ \underline{n} = (n_x)_{x \in X_{\Lambda}} \in \mathbb{N}^{X_{\Lambda}} : |\ell_{-}^{-d} n_x - \rho_{\beta,R,+}| \le \zeta, \text{ for all } x \in X_{\Lambda} \right\}$$

 p^1, p^2 conditional Gibbs measures on \mathcal{X}^x :

$$p^{i}(n_{x}) := p(n_{x}|\rho^{i}, \bar{q}^{i}) = \frac{1}{Z_{x}(\rho^{i}, \bar{q}^{i})} \exp\left\{-h(\rho_{x}|\rho^{i}, \bar{q}^{i})\right\} \qquad i = 1, 2$$

Vaserstein distance is

$$R\Big(p^{1}(\cdot), p^{2}(\cdot)\Big) := \inf_{Q} \sum_{n_{x}^{1}, n_{x}^{2}} Q(n_{x}^{1}, n_{x}^{2}) d(n_{x}^{1}, n_{x}^{2})$$

where ${\boldsymbol{Q}}$ are joint representations of p^1 and p^2

Dobrushin condition

Theorem

There are $u, c_1, c_2 > 0$ s.t. $\forall x \in \Lambda$

$$R\Big(p^1(\cdot),p^2(\cdot)\Big) \leq \sum_{z \in X_\Lambda, z \neq x} r_{\gamma,R}(x,z)d(n_z^1,n_z^2) + \sum_{z \in X_\Lambda^c} r_{\gamma,R}(x,z)D_z(\bar{q}^1,\bar{q}^2)$$

with

$$\sum_{z} r_{\gamma,R}(x,z) \le u < 1$$
$$r_{\gamma,R}(x,z) \le c_1 e^{-c_2 \gamma |z-x|}, \quad |z-x| \ge \ell_+$$

Then: "local bounds can be made global"

if μ^1, μ^2 Gibbs measures on \mathcal{X}^{Λ} , there exists a joint repr. $\mathcal{P}(\underline{n}^1, \underline{n}^2 | \bar{q}^1, \bar{q}^2)$ s.t.

$$\begin{split} \mathcal{E}\big[(d(n_x^1, n_x^2)\big] &:= \sum_{\underline{n}^1, \underline{n}^2} d(n_x^1, n_x^2) \mathcal{P}(\underline{n}^1, \underline{n}^2) \\ &\leq c \, \exp\Big\{ - c' \gamma^{-\delta} \ell_+^{-1} \mathsf{dist}(x, \Lambda^c) \Big\} \end{split}$$

• Phase transitions in the canonical ensemble

• Cluster expansion in the canonical ensemble

- compute correlations (work in progress...)
- get a better radius of convergence
- finite volume corrections to the free energy (work in progress...)

• Quantum models

- Cluster expansion (Ginibre)
- Phase transitions for systems of bosons (Kuna-Merola-Presutti, for quantum gas with Boltzmann statistics)