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Model of the Bose Gas

i∂tΨt(x1, . . . , xN) = HΨt(x1, . . . , xN)

H =
N∑
j=1

−∆xj

2
+ α

∑
k<j

U(xj − xk)


with U ∈ C∞c , and initially the gas particles are quite regularly arranged:

Ψ0 is “close” to a product state

Ψ0(x1, . . . , xN) =
N∏
j=1

Λ−1/2ϕ0(xj), ‖Ψ0‖2 = 1

for a smooth one-particle wave function ϕ0 with:

‖ϕ0‖∞ = 1 and supported in a box of volume Λ ⊂ R3.
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A physically relevant scaling

Gas density: ρ = N
Λ .

For the product state Ψ0 one finds〈
Ψ0, α

N∑
k=1

U(x − xk)Ψ0

〉
= N αU ∗

∣∣∣ ϕ0

Λ1/2

∣∣∣2 (x) = ραU ∗ |ϕ0|2(x).

For U ∈ C∞c (R3) one formally has:

−
∆xj

2
+ α

∑
k<j

U(xj − xk) = O(1) +O(αρ)

Hence, for

α ∼ 1

ρ
,

one can expect non-trivial dynamics for ρ� 1.
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Microscopic dynamics:

i∂tΨ(x1, . . . , xN) = HΨ(x1, . . . , xN), H =
N∑
j=1

−∆xj

2
+

1

ρ

∑
k<j

U(xj − xk)


Macroscopic dynamics:

i∂tϕt(x) = h[ϕt ]ϕt(x), hx [ϕt ] = −∆x

2
+ 1 · U ∗ |ϕt |2(x).

For ρ� 1 one can hope to control the micro- with the macro-dynamics in a
sufficiently strong sense, e.g.,∥∥∥∥ Trx2,...,xN |Ψt〉〈Ψt | −

∣∣∣∣ ϕt

‖ϕt‖2

〉〈
ϕt

‖ϕt‖2

∣∣∣∣ ∥∥∥∥ ≤ C (t)ρ−γ , for γ > 0, ρ� 1.

For fixed volume Λ, i.e., ρ = O(N), many results are available, e.g.,

Hepp ’74, Spohn ’80, Rodniaski & Schlein ’09, Fröhlich & Knowles & Schwarz ’09,
Pickl ’10, Erdõs & Schlein & Yau ’10, . . .

Spectrum for large volume: Dereziński & Napiórkowski ’13
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D.-A. Deckert (UC Davis) Sound Waves in BECs @ Warwick March 19, 2014 5 / 20



Open Key Questions

1 Can the control be maintained for large volume Λ?

2 Is the approximation good enough to be able to see OΛ,ρ(1) excitations of
the gas, e.g., sound waves, for large Λ?

3 Can the thermodynamic limit, Λ→∞ for fixed ρ, and the mean-field limit,
ρ→∞, be decoupled?

We demonstrate how to control the microscopic dynamics of excitations in the
following large volume regime:

Λ, ρ� 1 such that
Λ

ρ
� 1 and N = ρΛ.
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Tracking Excitations for large Λ

Coherent excitation of the gas:

Ψ0(x1, . . . , xN) =
N∏
j=1

Λ−1/2ϕ0(xj), for ϕ0 = Ω0 + ε0, given:

A smooth and flat reference state Ω0:
supp Ω0 = O(Λ), ‖Ω‖∞ = 1 with sufficiently regular tails;

A smooth and localized coherent excitation ε0:
supp ε0 = O(1).
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Splitting of the dynamics: given the macroscopic dynamics ϕt use

i∂tΩt =

(
−∆x

2
+ U ∗

(
|Ωt |2 − 1

))
Ωt . (reference)

as reference state and define the excitation by

εt = ϕte
i‖U‖1t − Ωt (excitation)

Control of approximation: define

ρ
(micro)
t = proj⊥Ωt

Trx2,...,XN

∣∣∣Λ1/2Ψt

〉〈
Λ1/2Ψt

∣∣∣ proj⊥Ωt
,

ρ
(macro)
t = |εt〉〈εt |,

and control
∥∥∥ρ(micro)

t − ρ(macro)
t

∥∥∥ for large Λ, ρ.

. . . which turns out to be not so easy.
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New mode of approximation: Though weaker, it is strong enough to answer
most physical questions in a satisfactory way.

Theorem (Micro approximated by Macro)

Suppose ‖ϕt‖∞ is bounded on [0,T ]. There is a trajectory t 7→ Ψ̃t with

corresponding reduced density matrix ρ̃
(micro)
t such that:∥∥∥Ψt − Ψ̃t

∥∥∥ 2
2 ≤ C (t) Λ

ρ ;∥∥∥ρ̃(micro)
t − ρ(macro)

t

∥∥∥ ≤ C (t)
(

Λ
ρ

)1/2

,

for all times t ∈ [0,T ] and sufficiently large Λ and ρ.

This implies that the actual quantity∥∥∥ρ(micro)
t − ρ(macro)

t

∥∥∥
is typically small, provided Λ, ρ� 1 such that Λ

ρ � 1.
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Strategy of Proof

Similar to Pickl’s ’10 technique we count “bad” particles, i.e., particles that
do not follow the macroscopic dynamics given by ϕt .

For this we employ the orthogonal one-particle projectors:

pϕt =
1

‖ϕt‖2
|ϕt〉〈ϕt |, qϕt = 1− pϕt ,

and define the N-particle operators:

Pϕt

k = (qϕt )�k � (pϕt )�(N−k)
,

N∑
k=0

Pϕt

k = id,

which projects onto wave functions with exactly k “bad” particles.

A quantity that was successfully used to control fixed-volume mean-field
limits is

〈Ψt , q
ϕt

1 Ψt〉 =

〈
Ψt ,

N∑
k=0

k

N
Pϕt

k Ψt

〉
,

the expected ratio of “bad particles” over N.
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Strategy of Proof

However, to silhouette the O(1) excitation εt against the reference state Ωt

we need much finer control on the ratio of bad particles over ρ:

Only less than ρ particles may behave badly!

Therefore, we regard

〈m̂ϕt 〉t :=

〈
Ψt ,

N∑
k=0

m(k)Pϕt

k Ψt

〉
, m(k) =

{
k
ρ for 0 ≤ k ≤ ρ
1 otherwise

.
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One can show:

Lemma

– same conditions – Define:

Ψ̃t :=
∑

0≤k≤ρ

Pϕt

k Ψt

= Ψt projected onto the subspace with at most ρ bad particles.

Then:∥∥∥Ψt − Ψ̃t

∥∥∥ 2
2 ≤ 〈m̂ϕt 〉t ;∥∥∥ρ̃(micro)

t − ρ(macro)
t

∥∥∥ ≤ C (t)
√
〈m̂ϕt 〉t .

Hence, it is sufficient to prove:

Lemma (Expected ratio of bad particles over ρ)

– same conditions –

〈m̂ϕt 〉t ≤ C (t)
Λ

ρ
.
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d

dt
〈m̂ϕt 〉t =

〈
Ψt ,

H −
N∑
j=1

hxj [ϕt ], m̂t

Ψt

〉

=

〈
Ψt ,

N∑
j=1

1

ρ

∑
j<k

U(xj − xk)− N

ρ
U ∗ |ϕt |2

Λ
(xj), m̂t

Ψt

〉

≈ N2

2ρ

〈
Ψt ,

U(x1 − x2)− U ∗ |ϕt |2

Λ
(x1)− U ∗ |ϕt |2

Λ
(x2)︸ ︷︷ ︸

=:Z(x1,x2)

, m̂t

Ψt

〉

=
N2

2ρ
〈Ψt , [Z (x1, x2), m̂ϕt

t ] Ψt〉

=
N2

2ρ

〈
Ψt , id id [Z (x1, x2), m̂ϕt ] id idΨt

〉
,

for id = pϕt

1 + qϕt

1 = pϕt

2 + qϕt

2 ,

= 16 terms.
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d

dt
〈m̂ϕt 〉t ≤�Z

g

g

g

b

+�Z

g

b

b

b

+�Z

g

g

b

b

+ h.c .+ diagrams that conserve the particle numbers

≤C (t)

(
0 + 〈m̂ϕt 〉 +

Λ

ρ

)
.

This yields:
d

dt
〈m̂ϕt 〉t ≤ C (t)

(
〈m̂ϕt 〉t +

Λ

ρ

)
and, thanks to Grönwall’s Lemma, concludes the proof.
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The term determining the structure of the macroscopic equation is:

�Z

g

g

g

b

=
N2

2ρ

〈
Ψt , p

ϕt

1 pϕt

2 [Z (x1, x2), m̂ϕt ] pϕt

1 qϕt

2 Ψt

〉
,

and one finds

pϕt

1 pϕt

2 Z (x1, x2)pϕt

1 qϕt

2

= pϕt

1 pϕt

2

(
U(x1 − x2)− U ∗ |ϕt |2

Λ
(x2)− U ∗ |ϕt |2

Λ
(x1)

)
pϕt

1 qϕt

2

= pϕt

1 pϕt

2

pϕt

1 U(x1 − x2)pϕt

1︸ ︷︷ ︸
=Λ−1U∗|ϕt |2(x2)p

ϕt
1

−U ∗ |ϕt |2

Λ
(x2)pϕt

1

 qϕt

2

− pϕt

1 U ∗ |ϕt |2

Λ
(x1)pϕt

1 pϕt

2 qϕt

2︸ ︷︷ ︸
=0

= 0
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Effective Equation for the Excitation

i∂tεt =

(
−∆x

2
+ U ∗

(
|Ωt |2 − 1

)
+ U ∗ |εt |2 + U ∗ 2<ε∗t Ωt

)
εt

+
(
U ∗ |εt |2 + U ∗ 2<ε∗t Ωt

)
Ωt , (excitation)

If there are no blow-ups for t ∈ [0,T ] and the L2 norm is small enough, we find a
simple effective equation for the excitation:

Theorem (Small Excitations)

Let ηt solve

i∂tηt = −∆x

2
ηt + U ∗ 2<ηt , η0 = ε0.

Then:

‖εt − ηt‖2 ≤ C (t)

(
Λ−1/3 + sup

s∈[0,T ]

‖εt‖2

)
for all t ∈ [0,T ].
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The evolution equation

i∂tηt = −∆x

2
ηt + U ∗ 2<ηt

for Fourier transform η̂t can be given by

i∂t

(
η̂t(k)
η̂t
∗(−k)

)
= H(k)

(
η̂t(k)
η̂t
∗(−k)

)
, H(k) =

(
ω0(k) + Û(k) Û(k)

−Û(k) −ω(k)− Û(k)

)
,

where ω0(k) = k2/2. The eigenvalues ω(k) of H(k) fulfill

ω(k)2 = ω0(k)
(
ω0(k) + 2Û(k)

)
.
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One can explicitly solve for the dispersion relation:

ω(k) = |k |
√

k2

4
+ Û(k).

first discovered by Bogulyubov.

For small momenta |k| we can distinguish two cases:

Repulsive potential, i.e., Û(0) > 0:

vsound =
d

dk
ω(k)

∣∣∣∣
k→0

=

√
Û(0).

Sound waves with arbitrary small modes travel at a strictly positive speed.

Attractive potential, i.e., Û(0) < 0:

Modes with wave vectors k such that k2/4 = Û(k) become static.

Modes such that k2/4 < Û(k) become dynamical unstable.
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Outlook

Show that the actual ground state of the gas is “close” to a product state
much like our initial state.

Uncouple the scales Λ� 1 and ρ� 1.

Treat the case of non-zero temperature.

Thank you!
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