# Dynamics of Sound Waves in Interacting Bose Gases 

Dirk - André Deckert<br>Department of Mathematics<br>University of California Davis

March 19, 2014

Joint work with J. Fröhlich (ETH), P. Pickl (LMU), and A. Pizzo (UCD).

## Dynamics of Sound Waves

Quantum Gases


Mach Cone


ATR

## Model of the Bose Gas

$$
\begin{aligned}
i \partial_{t} \Psi_{t}\left(x_{1}, \ldots, x_{N}\right) & =H \Psi_{t}\left(x_{1}, \ldots, x_{N}\right) \\
H & =\sum_{j=1}^{N}\left(-\frac{\Delta_{x_{j}}}{2}+\alpha \sum_{k<j} U\left(x_{j}-x_{k}\right)\right)
\end{aligned}
$$

with $U \in \mathcal{C}_{c}^{\infty}$, and initially the gas particles are quite regularly arranged:

- $\Psi_{0}$ is "close" to a product state

for a smooth one-particle wave function $\varphi_{0}$ with:
1 and supported in a box of volume $\Lambda \subset \mathbb{R}^{3}$


## Model of the Bose Gas

$$
\begin{aligned}
i \partial_{t} \Psi_{t}\left(x_{1}, \ldots, x_{N}\right) & =H \Psi_{t}\left(x_{1}, \ldots, x_{N}\right) \\
H & =\sum_{j=1}^{N}\left(-\frac{\Delta_{x_{j}}}{2}+\alpha \sum_{k<j} U\left(x_{j}-x_{k}\right)\right)
\end{aligned}
$$

with $U \in \mathcal{C}_{c}^{\infty}$, and initially the gas particles are quite regularly arranged:

- $\Psi_{0}$ is "close" to a product state

$$
\psi_{0}\left(x_{1}, \ldots, x_{N}\right)=\prod_{j=1}^{N} \wedge^{-1 / 2} \varphi_{0}\left(x_{j}\right), \quad\left\|\psi_{0}\right\|_{2}=1
$$

for a smooth one-particle wave function $\varphi_{0}$ with:

$$
\left\|\varphi_{0}\right\|_{\infty}=1 \text { and supported in a box of volume } \Lambda \subset \mathbb{R}^{3} .
$$

## A physically relevant scaling

- Gas density: $\rho=\frac{N}{\Lambda}$.
- For the product state $\psi_{0}$ one finds

$$
\left\langle\Psi_{0}, \alpha \sum_{k=1}^{N} U\left(x-x_{k}\right) \Psi_{0}\right\rangle=N \alpha U *\left|\frac{\varphi_{0}}{\Lambda^{1 / 2}}\right|^{2}(x)=\rho \alpha U *\left|\varphi_{0}\right|^{2}(x)
$$

- For $U \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ one formally has:

$$
-\frac{\Delta_{x_{j}}}{2}+\alpha \sum_{k<j} U\left(x_{j}-x_{k}\right)=O(1)+O\left(\alpha_{p}\right)
$$

Hence, for
one can expect non-trivial dynamics for $\rho \gg 1$.

## A physically relevant scaling

- Gas density: $\rho=\frac{N}{\Lambda}$.
- For the product state $\Psi_{0}$ one finds

$$
\left\langle\Psi_{0}, \alpha \sum_{k=1}^{N} U\left(x-x_{k}\right) \Psi_{0}\right\rangle=N \alpha U *\left|\frac{\varphi_{0}}{\Lambda^{1 / 2}}\right|^{2}(x)=\rho \alpha U *\left|\varphi_{0}\right|^{2}(x) .
$$

- For $U \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ one formally has:

Hence, for
one can expect non-trivial dynamics for $\rho \gg 1$.

## A physically relevant scaling

- Gas density: $\rho=\frac{N}{\Lambda}$.
- For the product state $\Psi_{0}$ one finds

$$
\left\langle\Psi_{0}, \alpha \sum_{k=1}^{N} U\left(x-x_{k}\right) \Psi_{0}\right\rangle=N \alpha U *\left|\frac{\varphi_{0}}{\Lambda^{1 / 2}}\right|^{2}(x)=\rho \alpha U *\left|\varphi_{0}\right|^{2}(x) .
$$

- For $U \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ one formally has:

$$
-\frac{\Delta_{x_{j}}}{2}+\alpha \sum_{k<j} U\left(x_{j}-x_{k}\right)=\mathcal{O}(1)+\mathcal{O}(\alpha \rho)
$$

Hence, for

$$
\alpha \sim \frac{1}{\rho},
$$

one can expect non-trivial dynamics for $\rho \gg 1$.

## Microscopic dynamics:

$$
i \partial_{t} \Psi\left(x_{1}, \ldots, x_{N}\right)=H \Psi\left(x_{1}, \ldots, x_{N}\right), \quad H=\sum_{j=1}^{N}\left(-\frac{\Delta_{x_{j}}}{2}+\frac{1}{\rho} \sum_{k<j} U\left(x_{j}-x_{k}\right)\right)
$$

Macroscopic dynamics:

$$
i \partial_{t} \varphi_{t}(x)=h\left[\varphi_{t}\right] \varphi_{t}(x), \quad h_{x}\left[\varphi_{t}\right]=-\frac{\Delta_{x}}{2}+1 \cdot U *\left|\varphi_{t}\right|^{2}(x) .
$$



## Microscopic dynamics:

$$
i \partial_{t} \Psi\left(x_{1}, \ldots, x_{N}\right)=H \Psi\left(x_{1}, \ldots, x_{N}\right), \quad H=\sum_{j=1}^{N}\left(-\frac{\Delta_{x_{j}}}{2}+\frac{1}{\rho} \sum_{k<j} U\left(x_{j}-x_{k}\right)\right)
$$

Macroscopic dynamics:

$$
i \partial_{t} \varphi_{t}(x)=h\left[\varphi_{t}\right] \varphi_{t}(x), \quad h_{x}\left[\varphi_{t}\right]=-\frac{\Delta_{x}}{2}+1 \cdot U *\left|\varphi_{t}\right|^{2}(x) .
$$

For $\rho \gg 1$ one can hope to control the micro- with the macro-dynamics in a sufficiently strong sense, e.g.,

$$
\| \operatorname{Tr}_{x_{2}, \ldots, x_{N}}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|-\left|\frac{\varphi_{t}}{\left\|\varphi_{t}\right\|_{2}}\right\rangle\left\langle\frac{\varphi_{t}}{\left\|\varphi_{t}\right\|_{2}}\right| \| \leq C(t) \rho^{-\gamma}, \quad \text { for } \gamma>0, \rho \gg 1 .
$$

For fixed volume $\Lambda$, i.e., $\rho=\mathcal{O}(N)$, many results are available, e.g., Hepp '74, Spohn '80, Rodniaski \& Schlein '09, Fröhlich \& Knowles \& Schwarz '09, Pickl '10, Erdõs \& Schlein \& Yau '10, ...

## Microscopic dynamics:

$$
i \partial_{t} \Psi\left(x_{1}, \ldots, x_{N}\right)=H \Psi\left(x_{1}, \ldots, x_{N}\right), \quad H=\sum_{j=1}^{N}\left(-\frac{\Delta_{x_{j}}}{2}+\frac{1}{\rho} \sum_{k<j} U\left(x_{j}-x_{k}\right)\right)
$$

## Macroscopic dynamics:

$$
i \partial_{t} \varphi_{t}(x)=h\left[\varphi_{t}\right] \varphi_{t}(x), \quad h_{x}\left[\varphi_{t}\right]=-\frac{\Delta_{x}}{2}+1 \cdot U *\left|\varphi_{t}\right|^{2}(x) .
$$

For $\rho \gg 1$ one can hope to control the micro- with the macro-dynamics in a sufficiently strong sense, e.g.,

$$
\| \operatorname{Tr}_{x_{2}, \ldots, x_{N}}\left|\Psi_{t}\right\rangle\left\langle\Psi_{t}\right|-\left|\frac{\varphi_{t}}{\left\|\varphi_{t}\right\|_{2}}\right\rangle\left\langle\frac{\varphi_{t}}{\left\|\varphi_{t}\right\|_{2}}\right| \| \leq C(t) \rho^{-\gamma}, \quad \text { for } \gamma>0, \rho \gg 1 .
$$

For fixed volume $\Lambda$, i.e., $\rho=\mathcal{O}(N)$, many results are available, e.g., Hepp '74, Spohn '80, Rodniaski \& Schlein '09, Fröhlich \& Knowles \& Schwarz '09, Pickl '10, Erdõs \& Schlein \& Yau '10, ...

Spectrum for large volume: Dereziński \& Napiórkowski '13

## Open Key Questions

1 Can the control be maintained for large volume $\Lambda$ ?
2 Is the approximation good enough to be able to see $\mathcal{O}_{\Lambda, \rho}(1)$ excitations of the gas, e.g., sound waves, for large $\Lambda$ ?
3 Can the thermodynamic limit, $\Lambda \rightarrow \infty$ for fixed $\rho$, and the mean-field limit, $\rho \rightarrow \infty$, be decoupled?

## We demonstrate how to control the microscopic dynamics of excitations in the following large volume regime:



## Open Key Questions

1 Can the control be maintained for large volume $\Lambda$ ?
2 Is the approximation good enough to be able to see $\mathcal{O}_{\Lambda, \rho}(1)$ excitations of the gas, e.g., sound waves, for large $\Lambda$ ?
3 Can the thermodynamic limit, $\Lambda \rightarrow \infty$ for fixed $\rho$, and the mean-field limit, $\rho \rightarrow \infty$, be decoupled?

We demonstrate how to control the microscopic dynamics of excitations in the following large volume regime:

$$
\Lambda, \rho \gg 1 \quad \text { such that } \quad \frac{\Lambda}{\rho} \ll 1 \quad \text { and } \quad N=\rho \Lambda \text {. }
$$

## Tracking Excitations for large $\wedge$

Coherent excitation of the gas:

$$
\Psi_{0}\left(x_{1}, \ldots, x_{N}\right)=\prod_{j=1}^{N} \wedge^{-1 / 2} \varphi_{0}\left(x_{j}\right), \quad \text { for } \varphi_{0}=\Omega_{0}+\epsilon_{0}, \quad \text { given: }
$$

- A smooth and flat reference state $\Omega_{0}$ :
$\operatorname{supp} \Omega_{0}=\mathcal{O}(\Lambda),\|\Omega\|_{\infty}=1$ with sufficiently regular tails;
- A smooth and localized coherent excitation $\epsilon_{0}$ :

$$
\operatorname{supp} \epsilon_{0}=\mathcal{O}(1)
$$

Splitting of the dynamics: given the macroscopic dynamics $\varphi_{t}$ use

$$
i \partial_{t} \Omega_{t}=\left(-\frac{\Delta_{x}}{2}+U *\left(\left|\Omega_{t}\right|^{2}-1\right)\right) \Omega_{t}
$$

as reference state and define the excitation by

$$
\epsilon_{t}=\varphi_{t} e^{i\|U\|_{1} t}-\Omega_{t}
$$

Control of approximation: define

and control $\left\|\rho_{t}^{\text {(micro) }}-\rho_{t}^{(\text {macro })}\right\|$ for large $\Lambda, \rho$.
which turns out to be not so easy.

Splitting of the dynamics: given the macroscopic dynamics $\varphi_{t}$ use

$$
i \partial_{t} \Omega_{t}=\left(-\frac{\Delta_{x}}{2}+U *\left(\left|\Omega_{t}\right|^{2}-1\right)\right) \Omega_{t}
$$

as reference state and define the excitation by

$$
\begin{equation*}
\epsilon_{t}=\varphi_{t} e^{i\|U\|_{1} t}-\Omega_{t} \tag{excitation}
\end{equation*}
$$

Control of approximation: define

$$
\begin{aligned}
& \rho_{t}^{\text {(micro) }}=\operatorname{proj} \Omega_{\Omega_{t}}^{\perp} \operatorname{Tr}_{x_{2}, \ldots, \chi_{N}}\left|\Lambda^{1 / 2} \Psi_{t}\right\rangle\left\langle\Lambda^{1 / 2} \Psi_{t}\right| \operatorname{proj}_{\Omega_{t}}^{\perp}, \\
& \rho_{t}^{\text {(macro) }}=\left|\epsilon_{t}\right\rangle\left\langle\epsilon_{t}\right|,
\end{aligned}
$$

and control $\left\|\rho_{t}^{(\text {micro })}-\rho_{t}^{(\text {macro })}\right\|$ for large $\Lambda, \rho$.
which turns out to be not so easy.

Splitting of the dynamics: given the macroscopic dynamics $\varphi_{t}$ use

$$
i \partial_{t} \Omega_{t}=\left(-\frac{\Delta_{x}}{2}+U *\left(\left|\Omega_{t}\right|^{2}-1\right)\right) \Omega_{t}
$$

as reference state and define the excitation by

$$
\begin{equation*}
\epsilon_{t}=\varphi_{t} e^{i\|U\|_{1} t}-\Omega_{t} \tag{excitation}
\end{equation*}
$$

Control of approximation: define

$$
\begin{aligned}
& \rho_{t}^{\text {(micro) }}=\operatorname{proj} \Omega_{\Omega_{t}}^{\perp} \operatorname{Tr}_{x_{2}, \ldots, x_{N}}\left|\Lambda^{1 / 2} \Psi_{t}\right\rangle\left\langle\Lambda^{1 / 2} \Psi_{t}\right| \operatorname{proj}_{\Omega_{t}}^{\perp}, \\
& \rho_{t}^{\text {(macro) }}=\left|\epsilon_{t}\right\rangle\left\langle\epsilon_{t}\right|,
\end{aligned}
$$

and control $\left\|\rho_{t}^{(\text {micro })}-\rho_{t}^{(\text {macro })}\right\|$ for large $\Lambda, \rho$.
... which turns out to be not so easy.

New mode of approximation: Though weaker, it is strong enough to answer most physical questions in a satisfactory way.

## Theorem (Micro approximated by Macro)

Suppose $\left\|\varphi_{t}\right\|_{\infty}$ is bounded on $[0, T]$. There is a trajectory $t \mapsto \widetilde{\Psi}_{t}$ with corresponding reduced density matrix $\widetilde{\rho}_{t}^{\text {(micro) }}$ such that:

- $\left\|\Psi_{t}-\widetilde{\Psi}_{t}\right\|_{2}^{2} \leq C(t) \frac{\Lambda}{\rho} ;$
- $\left\|\widetilde{\rho}_{t}^{(\text {micro })}-\rho_{t}^{(\text {macro })}\right\| \leq C(t)\left(\frac{\Lambda}{\rho}\right)^{1 / 2}$,
for all times $t \in[0, T]$ and sufficiently large $\Lambda$ and $\rho$.

This implies that the actual quantity

$$
\left\|\rho_{t}^{(\text {micro })}-\rho_{t}^{(\text {macro })}\right\|
$$

is typically small, provided $\Lambda, \rho \gg 1$ such that $\frac{\Lambda}{\rho} \ll 1$.

## Strategy of Proof

- Similar to Pickl's '10 technique we count "bad" particles, i.e., particles that do not follow the macroscopic dynamics given by $\varphi_{t}$.
- For this we employ the orthogonal one-particle projectors:

and define the $N$-particle operators:

which projects onto wave functions with exactly $k$ "bad" particles.
- A quantity that was successfully used to control fixed-volume mean-field limits is

the expected ratio of "bad particles" over N.


## Strategy of Proof

- Similar to Pickl's '10 technique we count "bad" particles, i.e., particles that do not follow the macroscopic dynamics given by $\varphi_{t}$.
- For this we employ the orthogonal one-particle projectors:

$$
p^{\varphi_{t}}=\frac{1}{\left\|\varphi_{t}\right\|^{2}}\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right|, \quad q^{\varphi_{t}}=1-p^{\varphi_{t}}
$$

and define the $N$-particle operators:

$$
P_{k}^{\varphi_{t}}=\left(q^{\varphi_{t}}\right)^{\odot k} \odot\left(p^{\varphi_{t}}\right)^{\odot(N-k)}, \quad \sum_{k=0}^{N} P_{k}^{\varphi_{t}}=\mathrm{id}
$$

which projects onto wave functions with exactly $k$ "bad" particles.

- A quantity that was successfully used to control fixed-volume mean-field limits is

the expected ratio of "bad particles" over N.


## Strategy of Proof

- Similar to Pickl's '10 technique we count "bad" particles, i.e., particles that do not follow the macroscopic dynamics given by $\varphi_{t}$.
- For this we employ the orthogonal one-particle projectors:

$$
p^{\varphi_{t}}=\frac{1}{\left\|\varphi_{t}\right\|^{2}}\left|\varphi_{t}\right\rangle\left\langle\varphi_{t}\right|, \quad q^{\varphi_{t}}=1-p^{\varphi_{t}}
$$

and define the $N$-particle operators:

$$
P_{k}^{\varphi_{t}}=\left(q^{\varphi_{t}}\right)^{\odot k} \odot\left(p^{\varphi_{t}}\right)^{\odot(N-k)}, \quad \sum_{k=0}^{N} P_{k}^{\varphi_{t}}=\mathrm{id},
$$

which projects onto wave functions with exactly $k$ "bad" particles.

- A quantity that was successfully used to control fixed-volume mean-field limits is

$$
\left\langle\Psi_{t}, q_{1}^{\varphi_{t}} \Psi_{t}\right\rangle=\left\langle\Psi_{t}, \sum_{k=0}^{N} \frac{k}{N} P_{k}^{\varphi_{t}} \Psi_{t}\right\rangle,
$$

the expected ratio of "bad particles" over $N$.

## Strategy of Proof

■ However, to silhouette the $\mathcal{O}(1)$ excitation $\epsilon_{t}$ against the reference state $\Omega_{t}$ we need much finer control on the ratio of bad particles over $\rho$ :

Only less than $\rho$ particles may behave badly!

- Therefore, we regard



## Strategy of Proof

■ However, to silhouette the $\mathcal{O}(1)$ excitation $\epsilon_{t}$ against the reference state $\Omega_{t}$ we need much finer control on the ratio of bad particles over $\rho$ :

Only less than $\rho$ particles may behave badly!

- Therefore, we regard

$$
\left\langle\widehat{m}^{\varphi_{t}}\right\rangle_{t}:=\left\langle\Psi_{t}, \sum_{k=0}^{N} m(k) P_{k}^{\varphi_{t}} \Psi_{t}\right\rangle, \quad m(k)=\left\{\begin{array}{l}
\frac{k}{\rho} \text { for } 0 \leq k \leq \rho \\
1 \text { otherwise }
\end{array}\right.
$$

## One can show:

## Lemma

- same conditions - Define:

$$
\widetilde{\Psi}_{t}:=\sum_{0 \leq k \leq \rho} P_{k}^{\varphi_{t}} \Psi_{t}
$$

$=\Psi_{t}$ projected onto the subspace with at most $\rho$ bad particles.
Then:

- $\left\|\Psi_{t}-\widetilde{\Psi}_{t}\right\| \|_{2} \leq\left\langle\widehat{m}^{\varphi_{t}}\right\rangle_{t} ;$

■ $\left\|\tilde{\rho}_{t}^{\text {(micro) }}-\rho_{t}^{\text {(macro) }}\right\| \leq C(t) \sqrt{\left\langle\hat{m}^{\varphi_{t}}\right\rangle_{t}}$.

Hence, it is sufficient to prove:

## Lemma (Expected ratio of bad particles over $\rho$ )

- same conditions -

$$
\left\langle\widehat{m}^{\varphi_{t}}\right\rangle_{t} \leq C(t) \frac{\Lambda}{\rho}
$$

$$
\begin{aligned}
\frac{d}{d t}\left\langle\widehat{m}^{\varphi_{t}}\right\rangle_{t} & =\left\langle\Psi_{t},\left[H-\sum_{j=1}^{N} h_{x_{j}}\left[\varphi_{t}\right], \widehat{m}_{t}\right] \Psi_{t}\right\rangle \\
& =\left\langle\Psi_{t}, \sum_{j=1}^{N}\left[\frac{1}{\rho} \sum_{j<k} U\left(x_{j}-x_{k}\right)-\frac{N}{\rho} U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{j}\right), \widehat{m}_{t}\right] \Psi_{t}\right\rangle \\
& \approx \frac{N^{2}}{2 \rho}\langle\Psi_{t},[\underbrace{U\left(x_{1}-x_{2}\right)-U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{1}\right)-U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{2}\right)}_{=: Z\left(x_{1}, x_{2}\right)}, \widehat{m}_{t}] \Psi_{t}\rangle \\
& =\frac{N^{2}}{2 \rho}\left\langle\Psi_{t},\left[Z\left(x_{1}, x_{2}\right), \hat{m}_{t}^{\varphi_{t}}\right] \Psi_{t}\right\rangle \\
& =\frac{N^{2}}{2 \rho}\left\langle\Psi_{t}, \text { id id }\left[Z\left(x_{1}, x_{2}\right), \widehat{m}^{\varphi_{t}}\right] \operatorname{id} \text { id } \Psi_{t}\right\rangle, \\
& =16 \text { terms. }
\end{aligned}
$$



+ h.c. + diagrams that conserve the particle numbers

$$
\leq C(t)\left(0+\left\langle\widehat{m}^{\varphi_{t}}\right\rangle+\frac{\Lambda}{\rho}\right) .
$$

This yields:

$$
\frac{d}{d t}\left\langle\widehat{m}^{\varphi_{t}}\right\rangle_{t} \leq C(t)\left(\left\langle\hat{m}^{\varphi_{t}}\right\rangle_{t}+\frac{\Lambda}{\rho}\right)
$$

and, thanks to Grönwall's Lemma, concludes the proof.

The term determining the structure of the macroscopic equation is:

and one finds

$$
p_{1}^{\varphi_{t}} p_{2}^{\varphi_{t}} Z\left(x_{1}, x_{2}\right) p_{1}^{\varphi_{t}} q_{2}^{\varphi_{t}}
$$

$$
\begin{aligned}
&= p_{1}^{\varphi_{t}} p_{2}^{\varphi_{t}}\left(U\left(x_{1}-x_{2}\right)-U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{2}\right)-U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{1}\right)\right) p_{1}^{\varphi_{t}} q_{2}^{\varphi_{t}} \\
&= p_{1}^{\varphi_{t}} p_{2}^{\varphi_{t}}(\underbrace{p_{1}^{\varphi_{t}} U\left(x_{1}-x_{2}\right) p_{1}^{\varphi_{t}}}_{\left.=\Lambda^{-1} U *\left|\varphi_{t}\right|^{2}\left(x_{2}\right)\right)_{1}^{\varphi_{t}}}-U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{2}\right) p_{1}^{\varphi_{t}}) q_{2}^{\varphi_{t}} \\
&-p_{1}^{\varphi_{t}} U * \frac{\left|\varphi_{t}\right|^{2}}{\Lambda}\left(x_{1}\right) p_{1}^{\varphi_{t}} \underbrace{p_{2}^{\varphi_{t}} q_{2}^{\varphi_{t}}}_{=0} \\
&=0
\end{aligned}
$$

## Effective Equation for the Excitation

$$
\begin{aligned}
i \partial_{t} \epsilon_{t}= & \left(-\frac{\Delta_{x}}{2}+U *\left(\left|\Omega_{t}\right|^{2}-1\right)+U *\left|\epsilon_{t}\right|^{2}+U * 2 \Re \epsilon_{t}^{*} \Omega_{t}\right) \epsilon_{t} \\
& +\left(U *\left|\epsilon_{t}\right|^{2}+U * 2 \Re \epsilon_{t}^{*} \Omega_{t}\right) \Omega_{t}, \quad \text { (excitation) }
\end{aligned}
$$

If there are no blow-ups for $t \in[0, T]$ and the $L^{2}$ norm is small enough, we find a simple effective equation for the excitation:

## Theorem (Small Excitations)

Let $\eta_{t}$ solve

$$
i \partial_{t} \eta_{t}=-\frac{\Delta_{x}}{2} \eta_{t}+U * 2 \Re \eta_{t}, \quad \eta_{0}=\epsilon_{0}
$$

Then:

$$
\left\|\epsilon_{t}-\eta_{t}\right\|_{2} \leq C(t)\left(\Lambda^{-1 / 3}+\sup _{s \in[0, T]}\left\|\epsilon_{t}\right\|_{2}\right)
$$

for all $t \in[0, T]$.

The evolution equation

$$
i \partial_{t} \eta_{t}=-\frac{\Delta_{x}}{2} \eta_{t}+U * 2 \Re \eta_{t}
$$

for Fourier transform $\widehat{\eta}_{t}$ can be given by
$i \partial_{t}\binom{\widehat{\eta}_{t}(k)}{\widehat{\eta}_{t}^{*}(-k)}=\mathcal{H}(k)\binom{\widehat{\eta}_{t}(k)}{\widehat{\eta}_{t}^{*}(-k)}, \quad \mathcal{H}(k)=\left(\begin{array}{cc}\omega_{0}(k)+\widehat{U}(k) & \widehat{U}(k) \\ -\widehat{U}(k) & -\omega(k)-\widehat{U}(k)\end{array}\right)$,
where $\omega_{0}(k)=k^{2} / 2$. The eigenvalues $\omega(k)$ of $\mathcal{H}(k)$ fulfill

$$
\omega(k)^{2}=\omega_{0}(k)\left(\omega_{0}(k)+2 \widehat{U}(k)\right) .
$$

One can explicitly solve for the dispersion relation:

$$
\omega(k)=|k| \sqrt{\frac{k^{2}}{4}+\widehat{U}(k)} .
$$

first discovered by Bogulyubov.
For small momenta $|k|$ we can distinguish two cases:

- Repulsive potential, i.e., $\widehat{U}(0)>0$ :

$$
v_{\text {sound }}=\left.\frac{d}{d k} \omega(k)\right|_{k \rightarrow 0}=\sqrt{\widehat{U}(0)}
$$

Sound waves with arbitrary small modes travel at a strictly positive speed.

- Attractive potential, i.e., $\widehat{U}(0)<0$ :
- Modes with wave vectors $k$ such that $k^{2} / 4=\widehat{U}(k)$ become static.
- Modes such that $k^{2} / 4<\widehat{U}(k)$ become dynamical unstable.

Laser induced sound waves in a BEC [Ketterle et. al.]



## Outlook

■ Show that the actual ground state of the gas is "close" to a product state much like our initial state.

- Uncouple the scales $\Lambda \gg 1$ and $\rho \gg 1$.
- Treat the case of non-zero temperature.

Thank you!

