Maxima and entropic repulsion of Gaussian free field: Going beyond \mathbb{Z}^d

Joe P. Chen

Department of Mathematics University of Connecticut

March 21, 2014

1 / 8

Gaussian free field (GFF)

- $\mathcal{G} = (V, E)$: connected graph, containing a distinguished set of vertices $B \subset V$. Assume $(V \backslash B, E)$ remains connected.
- A free field $\varphi = \{\varphi_x\}_{x \in V}$ on $\mathcal G$ is a collection of centered Gaussian random variables with covariance $\mathbb E[\varphi_x\varphi_y] = G(x,y)$, where G is the Green's function for (symmetric) random walk on $\mathcal G$ killed upon hitting B.

The law of the free field is (formally) given by the Gibbs measure

$$\mathbb{P} = \frac{1}{\mathcal{Z}} e^{-\frac{1}{2}\mathcal{E}(\varphi)} \prod_{x \in V \setminus B} d\varphi_x \prod_{y \in B} \delta_0(\varphi_y), \quad \text{where } \mathcal{E}(\varphi) = \frac{1}{2} \sum_{\langle xy \rangle \in E} (\varphi_x - \varphi_y)^2$$

is the Dirichlet energy on G, and $\mathcal Z$ is a normalization factor.

• For this talk, it is helpful to imagine φ as a random interface in $\mathcal{G} \times \mathbb{R}$ separating two phases (water/oil, (+)-spin/(-)-spin).

2 / 8

Stochastic geometry of the free field (I)

- Let $\mathcal{G}_n = (V_n, E_n)$ be an increasing nested sequence of graphs which tends to an infinite graph $\mathcal{G}_{\infty} = (V_{\infty}, E_{\infty})$.
- Let $\varphi^{(n)}$ be the free field on \mathcal{G}_n (with "wired" boundary condition by gluing $(V_\infty \setminus V_n)$ into one vertex).

Maxima of the (unconditioned) free field

$$\varphi_*^{(n)} = \max_{x \in V_n} (\varphi^{(n)})_x$$

Question I: Find the asymptotics of $\varphi_*^{(n)}$ as $n \to \infty$.

In particular, identify the leading-order term $\mathbb{E}[\varphi_*^{(n)}]$, as well as the recentered fluctuations about the mean $[\varphi_*^{(n)}] - \mathbb{E}[\varphi_*^{(n)}]$.

Stochastic geometry of the free field (II)

Entropic repulsion under the "hard wall" condition

Let φ be a free field on \mathcal{G}_{∞} , with law \mathbb{P} . Define the "hard wall" event

$$\Omega_n^+ = \{ \varphi_x \ge 0 \text{ for all } x \in V_n \}.$$

We want to look at

$$arphi_{ imes}$$
 under $\mathbb{P}(\cdot|\Omega_n^+)$

Due to the loss of volume on V_n , the field φ needs to gain space above the hard wall in order to accommodate local fluctuations (an entropic effect).

Question II: Identify the asymptotics of the height of the free field under Ω_n^+ as $n \to \infty$.

For both Question I and Question II:

- ullet Naively, the leading-order asymptotics in both situations grow at the same order of n.
- ullet The asymptotics differ qualitatively depending on whether \mathcal{G}_{∞} supports strongly recurrent random walk ('subcritical regime') or transient recurrent random walk ('supercritical regime').

4 / 8

The case of \mathbb{Z}^d

Finite box $\Lambda_n = ([-n, n] \cap \mathbb{Z})^d$. Let $\varphi^{(n)}$ be the free field on Λ_n .

Maxima: $\varphi_*^{(n)} = \max_{x \in V_n} (\varphi^{(n)})_x$

$$\begin{array}{c|cccc} d & \mathbb{E}[\varphi_*^{(n)}] & \varphi_*^{(n)} - \mathbb{E}[\varphi_*^{(n)}] \\ \hline 1 & \mathcal{O}(\sqrt{n}) & \mathcal{O}(\sqrt{n}) \\ 2 & \mathcal{O}(\log(n)) & \mathcal{O}(1) \\ \geq 3 & \mathcal{O}(\sqrt{\log(n)}) & \mathcal{O}(1) \end{array}$$

The sequence of recentered maxima is tight when d=2 [Bramson-Zeitouni '12] and $d\geq 3$ [via Borell-TIS ineq].

Entropic repulsion

• $d \ge 3$ [Bolthausen-Deuschel-Zeitouni '95]: For every $x \in \mathbb{Z}^d$,

$$\frac{\varphi_{\mathbb{X}}}{\sqrt{\log(n)}} \text{ under } \mathbb{P}(\cdot|\Omega_n^+) \underset{n \to \infty}{\overset{P}{\longrightarrow}} 2\sqrt{G_{\mathbb{Z}^d}(0,0)}.$$

• d=2 [BDZ '01]: For every $x\in\mathbb{Z}^2$,

$$\frac{\varphi_{\times}}{\log(n)} \text{ under } \mathbb{P}(\cdot|\Omega_n^+) \text{ tends to } 2\sqrt{\mathsf{G}_{\mathbb{Z}^2}(0,0)},$$

the mode of convergence being more delicate.

Going beyond \mathbb{Z}^d : fractal-like graphs

Sequence of approximating graphs $\mathcal{G}_n=(V_n,E_n)$ tending to $\mathcal{G}_\infty=(V_\infty,E_\infty)$. Assume there exist positive constants ℓ , m, and ρ such that for all $x\in V_\infty$,

$$|V_n| \asymp m^n$$
, $R_{\text{eff}}(x, (B(x, \ell^n))^c) \asymp \rho^n$.

Here B(x,r) is the ball of radius r in the graph distance centered at x, and $R_{\rm eff}(A_1,A_2)$ is the effective resistance between sets $A_1,A_2\subset V_\infty$.

When ho > 1, random walk on graph is strongly recurrent; if ho < 1, RW is transient.

In the strongly recurrent case (
ho>1), the maxima of the unconditioned free field has asymptotics

$$\mathbb{E}[\varphi_*^{(n)}] = \mathcal{O}(\rho^{n/2}), \quad \varphi_*^{(n)} - \mathbb{E}[\varphi_*^{(n)}] = \mathcal{O}(\rho^{n/2}).$$

The latter [Kumagai-Zeitouni '13] shows the absence of tightness in the recentered fluctuations, which generalizes the case of \mathbb{Z} .

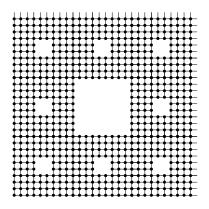
In the transient case (
ho < 1), the leading-order asymptotics for entropic repulsion is demonstrated for (highly symmetric) generalized Sierpinski carpet graphs [C.-Ugurcan '13]. For every $x \in V_{\infty}$,

$$\frac{\left(\text{local sample mean of } \varphi \text{ at } x \right)}{\sqrt{\log((m\rho)^n)}} \text{ under } \mathbb{P}(\cdot|\Omega_n^+) \underset{n \to \infty}{\overset{P}{\longrightarrow}} \sqrt{2\underline{\mathcal{G}}},$$

where $\underline{G} = \inf_{x \in V_{\infty}} G_{\mathcal{G}_{\infty}}(x,x)$. This generalizes the case of $\mathbb{Z}^d, \ d \geq 3$ treated in [BDZ '95].

4 □ ト 4 回 ト 4 重 ト 4 重 ト 9 Q @

Generalized Sierpinski carpet graphs



This is the graph associated with the standard two-dimensional Sierpinski carpet, which has $\rho>1$. Higher-dimensional analogs (such as the Menger sponge) may have $\rho<1$.

More aboue the supercritical regime

$$\mathbb{Z}^d,\ d\geq 3$$

Maximum of the unconditioned free field: $\sqrt{2dG_{\mathbb{Z}^d}(0,0)\log(n)}$.

Height of the free field under entropic repulsion: $2\sqrt{G_{\mathbb{Z}^d}(0,0)\log(n)}$

For fractal-like graphs in the supercritical regime

Maximum of the unconditioned free field: $\sqrt{2c_d G_*} \log((m\rho)^n)$ (?).

Height of the free field under entropic repulsion: $2\sqrt{\underline{G}\log((m\rho)^n)}$

To be resolved: Is $G_* = \underline{G} := \inf_{x \in V_{\infty}} G_{\mathcal{G}_{\infty}}(x, x)$? What is the dimensional constant c_d ?

Resolving this question will allow us to find sharp asymptotics for the expected cover times of random walk on fractal-like graphs, building on the results of [Ding-Lee-Peres '12, Ding '12].

[Note that we expect 'concentration' of cover times to the mean.]